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Preface

This book provides a carefully motivated, accessible, and interesting introduction to
probability, statistics, and random processes for electrical and computer engineers. The
complexity of the systems encountered in engineering practice calls for an understand-
ing of probability concepts and a facility in the use of probability tools. The goal of the
introductory course should therefore be to teach both the basic theoretical concepts
and techniques for solving problems that arise in practice. The third edition of this
book achieves this goal by retaining the proven features of previous editions:

e Relevance to engineering practice

¢ (lear and accessible introduction to probability

¢ Computer exercises to develop intuition for randomness
e Large number and variety of problems

¢ Curriculum flexibility through rich choice of topics

¢ Careful development of random process concepts.

This edition also introduces two major new features:

¢ Introduction to statistics
¢ Extensive use of MATLAB®/Octave.

RELEVANCE TO ENGINEERING PRACTICE

Motivating students is a major challenge in introductory probability courses. Instructors
need to respond by showing students the relevance of probability theory to engineering
practice. Chapter 1 addresses this challenge by discussing the role of probability models
in engineering design. Practical current applications from various areas of electrical and
computer engineering are used to show how averages and relative frequencies provide
the proper tools for handling the design of systems that involve randomness. These ap-
plication areas include wireless and digital communications, digital media and signal
processing, system reliability, computer networks, and Web systems. These areas are
used in examples and problems throughout the text.

ACCESSIBLE INTRODUCTION TO PROBABILITY THEORY

Probability theory is an inherently mathematical subject so concepts must be presented
carefully, simply, and gradually. The axioms of probability and their corollaries are devel-
oped in a clear and deliberate manner. The model-building aspect is introduced through
the assignment of probability laws to discrete and continuous sample spaces. The notion
of a single discrete random variable is developed in its entirety, allowing the student to

ix
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focus on the basic probability concepts without analytical complications. Similarly, pairs
of random variables and vector random variables are discussed in separate chapters.

The most important random variables and random processes are developed in
systematic fashion using model-building arguments. For example, a systematic devel-
opment of concepts can be traced across every chapter from the initial discussions on
coin tossing and Bernoulli trials, through the Gaussian random variable, central limit
theorem, and confidence intervals in the middle chapters, and on to the Wiener process
and the analysis of simulation data at the end of the book. The goal is to teach the stu-
dent not only the fundamental concepts and methods of probability, but to also devel-
op an awareness of the key models and their interrelationships.

COMPUTER EXERCISES TO DEVELOP INTUITION FOR RANDOMNESS

A true understanding of probability requires developing an intuition for variability
and randomness. The development of an intuition for randomness can be aided by the
presentation and analysis of random data. Where applicable, important concepts are
motivated and reinforced using empirical data. Every chapter introduces one or more
numerical or simulation techniques that enable the student to apply and validate the
concepts. Topics covered include: Generation of random numbers, random variables,
and random vectors; linear transformations and application of FFT; application of sta-
tistical tests; simulation of random processes, Markov chains, and queueing models; sta-
tistical signal processing; and analysis of simulation data.

The sections on computer methods are optional. However, we have found that
computer generated data is very effective in motivating each new topic and that the
computer methods can be incorporated into existing lectures. The computer exercises
can be done using MATLAB or Octave. We opted to use Octave in the examples be-
cause it is sufficient to perform our exercises and it is free and readily available on the
Web. Students with access can use MATLAB instead.

STATISTICS TO LINK PROBABILITY MODELS TO THE REAL WORLD

Statistics plays the key role of bridging probability models to the real world, and for this
reason there is a trend in introductory undergraduate probability courses to include an
introduction to statistics. This edition includes a new chapter that covers all the main
topics in an introduction to statistics: Sampling distributions, parameter estimation,
maximum likelihood estimation, confidence intervals, hypothesis testing, Bayesian deci-
sion methods and goodness of fit tests. The foundation of random variables from earlier
chapters allows us to develop statistical methods in a rigorous manner rather than pre-
sent them in “cookbook” fashion. In this chapter MATLAB/Octave prove extremely
useful in the generation of random data and the application of statistical methods.

EXAMPLES AND PROBLEMS

Numerous examples in every section are used to demonstrate analytical and problem-
solving techniques, develop concepts using simplified cases, and illustrate applications.
The text includes 1200 problems, nearly double the number in the previous edition. A
large number of new problems involve the use of MATLAB or Octave to obtain
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numerical or simulation results. Problems are identified by section to help the instruc-
tor select homework problems. Additional problems requiring cumulative knowledge
are provided at the end of each chapter. Answers to selected problems are included in
the book website. A Student Solutions Manual accompanies this text to develop prob-
lem-solving skills. A sampling of 25% of carefully worked out problems has been se-
lected to help students understand concepts presented in the text. An Instructor
Solutions Manual with complete solutions is also available on the book website.

http://www.prenhall.com/leongarcia

FROM RANDOM VARIABLES TO RANDOM PROCESSES

Discrete-time random processes provide a crucial “bridge” in going from random vari-
ables to continuous-time random processes. Care is taken in the first seven chapters to
lay the proper groundwork for this transition. Thus sequences of dependent experiments
are discussed in Chapter 2 as a preview of Markov chains. In Chapter 6, emphasis is
placed on how a joint distribution generates a consistent family of marginal distributions.
Chapter 7 introduces sequences of independent identically distributed (iid) random vari-
ables. Chapter 8 uses the sum of an iid sequence to develop important examples of ran-
dom processes.

The traditional introductory course in random processes has focused on applica-
tions from linear systems and random signal analysis. However, many courses now also
include an introduction to Markov chains and some examples from queueing theory.
We provide sufficient material in both topic areas to give the instructor leeway in strik-
ing a balance between these two areas. Here we continue our systematic development
of related concepts. Thus, the development of random signal analysis includes a discus-
sion of the sampling theorem which is used to relate discrete-time signal processing to
continuous-time signal processing. In a similar vein, the embedded chain formulation
of continuous-time Markov chains is emphasized and later used to develop simulation
models for continuous-time queueing systems.

FLEXIBILITY THROUGH RICH CHOICE OF TOPICS

The textbook is designed to allow the instructor maximum flexibility in the selection of
topics. In addition to the standard topics taught in introductory courses on probability,
random variables, statistics and random processes, the book includes sections on mod-
eling, computer simulation, reliability, estimation and entropy, as well as chapters that
provide introductions to Markov chains and queueing theory.

SUGGESTED SYLLABI

A variety of syllabi for undergraduate and graduate courses are supported by the text.
The flow chart below shows the basic chapter dependencies, and the table of contents
provides a detailed description of the sections in each chapter.

The first five chapters (without the starred or optional sections) form the basis for
a one-semester undergraduate introduction to probability. A course on probability and
statistics would proceed from Chapter 5 to the first three sections of Chapter 7 and then
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1. Probability Models 1. Review Chapters 1-5

2. Basic Concepts 2.8 “Event Classes

3. Discrete Random Variables 2.9 “Borel Fields

4. Continuous Random Variables 3.1 *Random Variable

5. Pairs of Random Variables 4.1 "Limiting Properties of CDF
| 6. Vector Random Variables | | 6. Vector Random Variables

7. Sums of Random Variables
7.4 Sequences of Random Variables

| 7. Sums of Random Variables

A

| 8. Statistics | | 9. Random Processes | | 9. Random Processes |

10. Analysis & Processing 1'1. Markov Chains

of Random Signals

| 12. Queueing Theory |

to Chapter 8. A first course on probability with a brief introduction to random processes
would go from Chapter 5 to Sections 6.1,7.1 — 7.3, and then the first few sections in Chap-
ter 9, as time allows. Many other syllabi are possible using the various optional sections.

A first-level graduate course in random processes would begin with a quick re-
view of the axioms of probability and the notion of a random variable, including the
starred sections on event classes (2.8), Borel fields and continuity of probability (2.9),
the formal definition of a random variable (3.1), and the limiting properties of the cdf
(4.1). The material in Chapter 6 on vector random variables, their joint distributions,
and their transformations would be covered next. The discussion in Chapter 7 would
include the central limit theorem and convergence concepts. The course would then
cover Chapters 9, 10, and 11. A statistical signal processing emphasis can be given to
the course by including the sections on estimation of random variables (6.5), maxi-
mum likelihood estimation and Cramer-Rao lower bound (8.3) and Bayesian decision
methods (8.6). An emphasis on queueing models is possible by including renewal
processes (7.5) and Chapter 12. We note in particular that the last section in Chapter
12 provides an introduction to simulation models and output data analysis not found
in most textbooks.

CHANGES IN THE THIRD EDITION

This edition of the text has undergone several major changes:

¢ The introduction to the notion of a random variable is now carried out in two
phases: discrete random variables (Chapter 3) and continuous random variables
(Chapter 4).
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¢ Pairs of random variables and vector random variables are now covered in sepa-
rate chapters (Chapters 5 and 6). More advanced topics have been placed in
Chapter 6, e.g., general transformations, joint characteristic functions.

¢ Chapter 8, a new chapter, provides an introduction to all of the standard topics on
statistics.

e Chapter 9 now provides separate and more detailed development of the random
walk, Poisson, and Wiener processes.

e Chapter 10 has expanded the coverage of discrete-time linear systems, and the
link between discrete-time and continuous-time processing is bridged through
the discussion of the sampling theorem.

¢ Chapter 11 now provides a complete coverage of discrete-time Markov chains be-
fore introducing continuous-time Markov chains. A new section shows how tran-
sient behavior can be investigated through numerical and simulation techniques.

e Chapter 12 now provides detailed discussions on the simulation of queueing sys-
tems and the analysis of simulation data.
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CHAPTER

Probability Models
in Electrical and
Computer Engineering

Electrical and computer engineers have played a central role in the design of modern
information and communications systems. These highly successful systems work reli-
ably and predictably in highly variable and chaotic environments:

e Wireless communication networks provide voice and data communications to
mobile users in severe interference environments.

¢ The vast majority of media signals, voice, audio, images, and video are processed
digitally.

e Huge Web server farms deliver vast amounts of highly specific information to
users.

Because of these successes, designers today face even greater challenges. The sys-
tems they build are unprecedented in scale and the chaotic environments in which they
must operate are untrodden terrritory:

e Web information is created and posted at an accelerating rate; future search ap-
plications must become more discerning to extract the required response from a
vast ocean of information.

¢ Information-age scoundrels hijack computers and exploit these for illicit purpos-
es, so methods are needed to identify and contain these threats.

e Machine learning systems must move beyond browsing and purchasing applica-
tions to real-time monitoring of health and the environment.

e Massively distributed systems in the form of peer-to-peer and grid computing
communities have emerged and changed the nature of media delivery, gaming,
and social interaction; yet we do not understand or know how to control and
manage such systems.

Probability models are one of the tools that enable the designer to make sense
out of the chaos and to successfully build systems that are efficient, reliable, and cost
effective. This book is an introduction to the theory underlying probability models as
well as to the basic techniques used in the development of such models.
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1.1

Chapter 1 Probability Models in Electrical and Computer Engineering

This chapter introduces probability models and shows how they differ from the
deterministic models that are pervasive in engineering. The key properties of the no-
tion of probability are developed, and various examples from electrical and computer
engineering, where probability models play a key role, are presented. Section 1.6 gives
an overview of the book.

MATHEMATICAL MODELS AS TOOLS IN ANALYSIS AND DESIGN

The design or modification of any complex system involves the making of choices from
various feasible alternatives. Choices are made on the basis of criteria such as cost, re-
liability, and performance. The quantitative evaluation of these criteria is seldom made
through the actual implementation and experimental evaluation of the alternative con-
figurations. Instead, decisions are made based on estimates that are obtained using
models of the alternatives.

A model is an approximate representation of a physical situation. A model at-
tempts to explain observed behavior using a set of simple and understandable rules.
These rules can be used to predict the outcome of experiments involving the given
physical situation. A useful/ model explains all relevant aspects of a given situation.
Such models can be used instead of experiments to answer questions regarding the
given situation. Models therefore allow the engineer to avoid the costs of experimenta-
tion, namely, labor, equipment, and time.

Mathematical models are used when the observational phenomenon has measur-
able properties. A mathematical model consists of a set of assumptions about how a
system or physical process works. These assumptions are stated in the form of mathe-
matical relations involving the important parameters and variables of the system. The
conditions under which an experiment involving the system is carried out determine the
“givens” in the mathematical relations, and the solution of these relations allows us to
predict the measurements that would be obtained if the experiment were performed.

Mathematical models are used extensively by engineers in guiding system design
and modification decisions. Intuition and rules of thumb are not always reliable in pre-
dicting the performance of complex and novel systems, and experimentation is not pos-
sible during the initial phases of a system design. Furthermore, the cost of extensive
experimentation in existing systems frequently proves to be prohibitive. The availabil-
ity of adequate models for the components of a complex system combined with a
knowledge of their interactions allows the scientist and engineer to develop an overall
mathematical model for the system. It is then possible to quickly and inexpensively an-
swer questions about the performance of complex systems. Indeed, computer pro-
grams for obtaining the solution of mathematical models form the basis of many
computer-aided analysis and design systems.

In order to be useful, a model must fit the facts of a given situation. Therefore the
process of developing and validating a model necessarily consists of a series of experi-
ments and model modifications as shown in Fig. 1.1. Each experiment investigates a
certain aspect of the phenomenon under investigation and involves the taking of ob-
servations and measurements under a specified set of conditions. The model is used
to predict the outcome of the experiment, and these predictions are compared with
the actual observations that result when the experiment is carried out. If there is a
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FIGURE 1.1
The modeling process.

significant discrepancy, the model is then modified to account for it. The modeling
process continues until the investigator is satisfied that the behavior of all relevant as-
pects of the phenomenon can be predicted to within a desired accuracy. It should be
emphasized that the decision of when to stop the modeling process depends on the im-
mediate objectives of the investigator. Thus a model that is adequate for one applica-
tion may prove to be completely inadequate in another setting.

The predictions of a mathematical model should be treated as hypothetical until
the model has been validated through a comparison with experimental measure-
ments. A dilemma arises in a system design situation: The model cannot be validated
experimentally because the real system does not exist. Computer simulation models
play a useful role in this situation by presenting an alternative means of predicting sys-
tem behavior, and thus a means of checking the predictions made by a mathematical
model. A computer simulation model consists of a computer program that simulates or
mimics the dynamics of a system. Incorporated into the program are instructions that
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1.2
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Chapter 1 Probability Models in Electrical and Computer Engineering

“measure” the relevant performance parameters. In general, simulation models are
capable of representing systems in greater detail than mathematical models. Howev-
er, they tend to be less flexible and usually require more computation time than math-
ematical models.

In the following two sections we discuss the two basic types of mathematical
models, deterministic models and probability models.

DETERMINISTIC MODELS

In deterministic models the conditions under which an experiment is carried out deter-
mine the exact outcome of the experiment. In deterministic mathematical models, the
solution of a set of mathematical equations specifies the exact outcome of the experi-
ment. Circuit theory is an example of a deterministic mathematical model.

Circuit theory models the interconnection of electronic devices by ideal circuits
that consist of discrete components with idealized voltage-current characteristics. The
theory assumes that the interaction between these idealized components is completely
described by Kirchhoff’s voltage and current laws. For example, Ohm’s law states that
the voltage-current characteristic of a resistor is / = V/R. The voltages and currents in
any circuit consisting of an interconnection of batteries and resistors can be found by
solving a system of simultaneous linear equations that is found by applying Kirchhoff’s
laws and Ohm’s law.

If an experiment involving the measurement of a set of voltages is repeated a
number of times under the same conditions, circuit theory predicts that the observa-
tions will always be exactly the same. In practice there will be some variation in the ob-
servations due to measurement errors and uncontrolled factors. Nevertheless, this
deterministic model will be adequate as long as the deviation about the predicted val-
ues remains small.

PROBABILITY MODELS

Many systems of interest involve phenomena that exhibit unpredictable variation and
randomness. We define a random experiment to be an experiment in which the out-
come varies in an unpredictable fashion when the experiment is repeated under the
same conditions. Deterministic models are not appropriate for random experiments
since they predict the same outcome for each repetition of an experiment. In this sec-
tion we introduce probability models that are intended for random experiments.

As an example of a random experiment, suppose a ball is selected from an urn
containing three identical balls, labeled 0, 1, and 2. The urn is first shaken to random-
ize the position of the balls, and a ball is then selected. The number of the ball is noted,
and the ball is then returned to the urn. The outcome of this experiment is a number
from the set S = {0, 1, 2}. We call the set S of all possible outcomes the sample space.
Figure 1.2 shows the outcomes in 100 repetitions (trials) of a computer simulation of
this urn experiment. It is clear that the outcome of this experiment cannot consistent-
ly be predicted correctly.
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Outcomes of urn experiment.

Statistical Regularity

In order to be useful, a model must enable us to make predictions about the future be-
havior of a system, and in order to be predictable, a phenomenon must exhibit regu-
larity in its behavior. Many probability models in engineering are based on the fact
that averages obtained in long sequences of repetitions (trials) of random experi-
ments consistently yield approximately the same value. This property is called
statistical regularity.

Suppose that the above urn experiment is repeated n times under identical condi-
tions. Let Ny(n), Ni(n), and N,(n) be the number of times in which the outcomes are
balls 0, 1, and 2, respectively, and let the relative frequency of outcome k be defined by

_ Ni(n)

n

fi(n) (1.1)

By statistical regularity we mean that f,(n) varies less and less about a constant value
as n is made large, that is,

Jim, fi(n) = i (12)
The constant p, is called the probability of the outcome k. Equation (1.2) states that
the probability of an outcome is the long-term proportion of times it arises in a long se-
quence of trials. We will see throughout the book that Eq. (1.2) provides the key con-
nection in going from the measurement of physical quantities to the probability
models discussed in this book.
Figures 1.3 and 1.4 show the relative frequencies for the three outcomes in the
above urn experiment as the number of trials 7 is increased. It is clear that all the relative
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frequencies are converging to the value 1/3. This is in agreement with our intuition that
the three outcomes are equiprobable.

Suppose we alter the above urn experiment by placing in the urn a fourth identi-
cal ball with the number 0. The probability of the outcome 0 is now 2/4 since two of the
four balls in the urn have the number 0. The probabilities of the outcomes 1 and 2
would be reduced to 1/4 each. This demonstrates a key property of probability models,
namely, the conditions under which a random experiment is performed determine the
probabilities of the outcomes of an experiment.

Properties of Relative Frequency

We now present several properties of relative frequency. Suppose that a random exper-
iment has K possible outcomes, that is, § = {1,2,..., K}. Since the number of occur-
rences of any outcome in # trials is a number between zero and n, we have that

0=N(n)=n fork =1,2,...,K,

and thus dividing the above equation by #, we find that the relative frequencies are a
number between zero and one:

0=fi(n)=1 fork =1,2,...,K. (1.3)

The sum of the number of occurrences of all possible outcomes must be 7:

> Ni(n) = n.
=1

If we divide both sides of the above equation by n, we find that the sum of all the rela-
tive frequencies equals one:

K
Shuln) = 1. (14)

Sometimes we are interested in the occurrence of events associated with the out-
comes of an experiment. For example, consider the event “an even-numbered ball is se-
lected” in the above urn experiment. What is the relative frequency of this event? The
event will occur whenever the number of the ball is 0 or 2. The number of experiments
in which the outcome is an even-numbered ball is therefore Ng(n) = Ny(n) + Ny(n).
The relative frequency of the event is thus

_ Ng(n) _ No(n) + Ny(n)

n n

fe(n) = foln) + fo(n).

This example shows that the relative frequency of an event is the sum of the relative
frequencies of the associated outcomes. More generally, let C be the event “A or B oc-
curs,” where A and B are two events that cannot occur simultaneously, then the num-
ber of times when C occurs is N¢(n) = Ny(n) + Np(n), so

fe(n) = fa(n) + fa(n). (1.5)

Equations (1.3), (1.4), and (1.5) are the three basic properties of relative frequency
from which we can derive many other useful results.
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The Axiomatic Approach to a Theory of Probability

Equation (1.2) suggests that we define the probability of an event by its long-term rel-
ative frequency. There are problems with using this definition of probability to develop
a mathematical theory of probability. First of all, it is not clear when and in what math-
ematical sense the limit in Eq. (1.2) exists. Second, we can never perform an experi-
ment an infinite number of times, so we can never know the probabilities p, exactly.
Finally, the use of relative frequency to define probability would rule out the applica-
bility of probability theory to situations in which an experiment cannot be repeated.
Thus it makes practical sense to develop a mathematical theory of probability that is
not tied to any particular application or to any particular notion of what probability
means. On the other hand, we must insist that, when appropriate, the theory should
allow us to use our intuition and interpret probability as relative frequency.

In order to be consistent with the relative frequency interpretation, any definition
of “probability of an event” must satisfy the properties in Egs. (1.3) through (1.5). The
modern theory of probability begins with a construction of a set of axioms that specify
that probability assignments must satisfy these properties. It supposes that: (1) a ran-
dom experiment has been defined, and a set S of all possible outcomes has been identi-
fied; (2) a class of subsets of S called events has been specified; and (3) each event A has
been assigned a number, P[A], in such a way that the following axioms are satisfied:

1. 0= P[A] = 1.
2. P[S]=1.

3. If A and B are events that cannot occur simultaneously,
then P[A or B] =P[A] + P[B].

The correspondence between the three axioms and the properties of relative frequen-
cy stated in Egs. (1.3) through (1.5) is apparent. These three axioms lead to many use-
ful and powerful results. Indeed, we will spend the remainder of this book developing
many of these results.

Note that the theory of probability does not concern itself with how the proba-
bilities are obtained or with what they mean. Any assignment of probabilities to events
that satisfies the above axioms is legitimate. It is up to the user of the theory, the model
builder, to determine what the probability assignment should be and what interpreta-
tion of probability makes sense in any given application.

Building a Probability Model

Let us consider how we proceed from a real-world problem that involves randomness
to a probability model for the problem. The theory requires that we identify the ele-
ments in the above axioms. This involves (1) defining the random experiment inherent
in the application, (2) specifying the set S of all possible outcomes and the events of in-
terest, and (3) specifying a probability assignment from which the probabilities of all
events of interest can be computed. The challenge is to develop the simplest model that
explains all the relevant aspects of the real-world problem.

As an example, suppose that we test a telephone conversation to determine
whether a speaker is currently speaking or silent. We know that on the average the
typical speaker is active only 1/3 of the time; the rest of the time he is listening to the
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other party or pausing between words and phrases. We can model this physical situa-
tion as an urn experiment in which we select a ball from an urn containing two white
balls (silence) and one black ball (active speech). We are making a great simplification
here; not all speakers are the same, not all languages have the same silence-activity
behavior, and so forth. The usefulness and power of this simplification becomes ap-
parent when we begin asking questions that arise in system design, such as: What is
the probability that more than 24 speakers out of 48 independent speakers are active
at the same time? This question is equivalent to: What is the probability that more
than 24 black balls are selected in 48 independent repetitions of the above urn exper-
iment? By the end of Chapter 2 you will be able to answer the latter question and all
the real-world problems that can be reduced to it!

A DETAILED EXAMPLE: A PACKET VOICE TRANSMISSION SYSTEM

In the beginning of this chapter we claimed that probability models provide a tool that
enables the designer to successfully design systems that must operate in a random en-
vironment, but that nevertheless are efficient, reliable, and cost effective. In this sec-
tion, we present a detailed example of such a system. Our objective here is to convince
you of the power and usefulness of probability theory. The presentation intentionally
draws upon your intuition. Many of the derivation steps that may appear nonrigorous
now will be made precise later in the book.

Suppose that a communication system is required to transmit 48 simultaneous
conversations from site A to site B using “packets” of voice information. The speech of
each speaker is converted into voltage waveforms that are first digitized (i.e., convert-
ed into a sequence of binary numbers) and then bundled into packets of information
that correspond to 10-millisecond (ms) segments of speech. A source and destination
address is appended to each voice packet before it is transmitted (see Fig. 1.5).

The simplest design for the communication system would transmit 48 packets
every 10 ms in each direction. This is an inefficient design, however, since it is known
that on the average about 2/3 of all packets contain silence and hence no speech infor-
mation. In other words, on the average the 48 speakers only produce about 48/3 = 16
active (nonsilence) packets per 10-ms period. We therefore consider another system
that transmits only M < 48 packets every 10 ms.

Every 10 ms, the new system determines which speakers have produced packets
with active speech. Let the outcome of this random experiment be A, the number of ac-
tive packets produced in a given 10-ms segment. The quantity A takes on values in the
range from O (all speakers silent) to 48 (all speakers active). If A < M, then all the active
packets are transmitted. However, if A > M, then the system is unable to transmit all
the active packets,so A — M of the active packets are selected at random and discarded.
The discarding of active packets results in the loss of speech, so we would like to keep the
fraction of discarded active packets at a level that the speakers do not find objectionable.

First consider the relative frequencies of A. Suppose the above experiment is re-
peated n times. Let A(j) be the outcome in the jth trial. Let Ny (n) be the number of trials
in which the number of active packets is k. The relative frequency of the outcome & in the
first » trials is then fi(n) = Ny(n)/n, which we suppose converges to a probability p;:



10  Chapter 1 Probability Models in Electrical and Computer Engineering

Site A
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To site B
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M packets/
10 ms
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N
N packets/10 ms

FIGURE 1.5
A packet voice transmission system.

In Chapter 2 we will derive the probability p, that k speakers are active. Figure 1.6
shows p; versus k. It can be seen that the most frequent number of active speakers is 16
and that the number of active speakers is seldom above 24 or so.

Next consider the rate at which active packets are produced. The average number
of active packets produced per 10-ms interval is given by the sample mean of the num-
ber of active packets:

(4), = > A() 17)
j=1
48

= S N;(n) (1.8)
k=0

The first expression adds the number of active packets produced in the first # trials in the
order in which the observations were recorded. The second expression counts how many
of these observations had k active packets for each possible value of k, and then com-
putes the total.! As 7 gets large, the ratio Ny (n)/n in the second expression approaches
pr- Thus the average number of active packets produced per 10-ms segment approaches

48
<A>n—>k§0kpk 2 E[A] (1.9)

Suppose you pull out the following change from your pocket: 1 quarter, 1 dime, 1 quarter, 1 nickel. Equa-
tion (1.7) says your total is 25 + 10 + 25 + 5 = 65 cents. Equation (1.8) says your total is (1)5 + (1)10 +
(2)(25) = 65 cents.
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FIGURE 1.6
Probabilities for number of active speakers in a group of 48.

The expression on the right-hand side will be defined as the expected value of A in
Section 3.3. E[A] is completely determined by the probabilities p, and in Chapter 3 we
will show that E[A] = 48 X 1/3 = 16. Equation (1.9) states that the long-term average
number of active packets produced per 10-ms period is E[A] = 16 speakers per 10 ms.

The information provided by the probabilities p, allows us to design systems that
are efficient and that provide good voice quality. For example, we can reduce the trans-
mission capacity in half to 24 packets per 10-ms period, while discarding an impercep-
tible number of active packets.

Let us summarize what we have done in this section. We have presented an ex-
ample in which the system behavior is intrinsically random, and in which the system
performance measures are stated in terms of long-term averages. We have shown how
these long-term measures lead to expressions involving the probabilities of the various
outcomes. Finally we have indicated that, in some cases, probability theory allows us to
derive these probabilities. We are then able to predict the long-term averages of vari-
ous quantities of interest and proceed with the system design.

OTHER EXAMPLES

In this section we present further examples from electrical and computer engineering,
where probability models are used to design systems that work in a random environ-
ment. Our intention here is to show how probabilities and long-term averages arise
naturally as performance measures in many systems. We hasten to add, however, that
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this book is intended to present the basic concepts of probability theory and not de-
tailed applications. For the interested reader, references for further reading are provid-
ed at the end of this and other chapters.

Communication over Unreliable Channels

Many communication systems operate in the following way. Every T seconds, the
transmitter accepts a binary input, namely, a 0 or a 1, and transmits a corresponding sig-
nal. At the end of the 7 seconds, the receiver makes a decision as to what the input was,
based on the signal it has received. Most communications systems are unreliable in the
sense that the decision of the receiver is not always the same as the transmitter input.
Figure 1.7(a) models systems in which transmission errors occur at random with prob-
ability e. As indicated in the figure, the output is not equal to the input with probabili-
ty e. Thus ¢ is the long-term proportion of bits delivered in error by the receiver. In
situations where this error rate is not acceptable, error-control techniques are intro-
duced to reduce the error rate in the delivered information.

One method of reducing the error rate in the delivered information is to use
error-correcting codes as shown in Fig. 1.7(b). As a simple example, consider a repeti-
tion code where each information bit is transmitted three times:

0— 000
1—111.

If we suppose that the decoder makes a decision on the information bit by taking a ma-
jority vote of the three bits output by the receiver, then the decoder will make the
wrong decision only if two or three of the bits are in error. In Example 2.37, we show
that this occurs with probability 3¢> — 2¢°. Thus if the bit error rate of the channel
without coding is 10>, then the delivered bit error with the above simple code will be
3 X 107°, a reduction of three orders of magnitude! This improvement is obtained at a

Input Output
1—¢
0 0
B
e
1 1
1—¢
(a)
Bmary . — Coder Binary Decoder — Pehverefi
information channel information
(b)
FIGURE 1.7

(a) A model for a binary communication channel. (b) Error control system.
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cost, however: The rate of transmission of information has been slowed down to 1 bit
every 37 seconds. By going to longer, more complicated codes, it is possible to obtain
reductions in error rate without the drastic reduction in transmission rate of this simple
example.

Error detection and correction methods play a key role in making reliable
communications possible over radio and other noisy channels. Probability plays a
role in determining the error patterns that are likely to occur and that hence must
be corrected.

Compression of Signals

The outcome of a random experiment need not be a single number, but can also be an
entire function of time. For example, the outcome of an experiment could be a voltage
waveform corresponding to speech or music. In these situations we are interested in
the properties of a signal and of processed versions of the signal.

For example, suppose we are interested in compressing a music signal S(¢). This
involves representing the signal by a sequence of bits. Compression techniques provide
efficient representations by using prediction, where the next value of the signal is pre-
dicted using past encoded values. Only the error in the prediction needs to be encoded
so the number of bits can be reduced.

In order to work, prediction systems require that we know how the signal values
are correlated with each other. Given this correlation structure we can then design op-
timum prediction systems. Probability plays a key role in solving these problems. Com-
pression systems have been highly successful and are found in cell phones, digital
cameras, and camcorders.

Reliability of Systems

Reliability is a major concern in the design of modern systems. A prime example is the
system of computers and communication networks that support the electronic transfer
of funds between banks. It is of critical importance that this system continues operating
even in the face of subsystem failures. The key question is, How does one build reliable
systems from unreliable components? Probability models provide us with the tools to
address this question in a quantitative way.

The operation of a system requires the operation of some or all of its compo-
nents. For example, Fig. 1.8(a) shows a system that functions only when all of its com-
ponents are functioning, and Fig. 1.8(b) shows a system that functions as long as at least
one of its components is functioning. More complex systems can be obtained as combi-
nations of these two basic configurations.

We all know from experience that it is not possible to predict exactly when a
component will fail. Probability theory allows us to evaluate measures of reliability
such as the average time to failure and the probability that a component is still func-
tioning after a certain time has elapsed. Furthermore, we will see in Chapters 2 and 4
that probability theory enables us to determine these averages and probabilities for an
entire system in terms of the probabilities and averages of its components. This allows
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(a) Series configuration of components. (b) Parallel configuration of components.

FIGURE 1.8
Systems with n components.

us to evaluate system configurations in terms of their reliability, and thus to select sys-
tem designs that are reliable.

Resource-Sharing Systems

Many applications involve sharing resources that are subject to unsteady and random
demand. Clients intersperse demands for short periods of service between relatively
long idle periods. The demands of the clients can be met by dedicating sufficient re-
sources to each individual client, but this approach can be wasteful because the re-
sources go unused when a client is idle. A better approach is to configure systems
where client demands are met through dynamic sharing of resources.

For example, many Web server systems operate as shown in Fig. 1.9. These sys-
tems allow up to c clients to be connected to a server at any given time. Clients submit
queries to the server. The query is placed in a waiting line and then processed by the
server. After receiving the response from the server, each client spends some time

®
-, ()
/
Queue Server
()
Clients

FIGURE 1.9
Simple model for Web server system.
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FIGURE 1.10
A large community of users interacting across the Internet.
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thinking before placing the next query. The system closes an existing client’s connec-
tion after a timeout period, and replaces it with a new client.

The system needs to be configured to provide rapid responses to clients, to avoid
premature closing of connections, and to utilize the computing resources effectively.
This requires the probabilistic characterization of the query processing time, the num-
ber of clicks per connection, and the time between clicks (think time). These parame-
ters are then used to determine the optimum value of ¢ as well as the timeout value.

Internet Scale Systems

One of the major current challenges today is the design of Internet-scale systems as the
client-server systems of Fig. 1.9 evolve into massively distributed systems, as in Fig. 1.10.
In these new systems the number of users who are online at the same time can be in the
tens of thousands and in the case of peer-to-peer systems in the millions.

The interactions among users of the Internet are much more complex than those
of clients accessing a server. For example, the links in Web pages that point to other
Web pages create a vast web of interconnected documents. The development of
graphing and mapping techniques to represent these logical relationships is key to un-
derstanding user behavior. A variety of Web crawling techniques have been devel-
oped to produce such graphs [Broder]. Probabilistic techniques can assess the relative
importance of nodes in these graphs and, indeed, play a central role in the operation
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of search engines. New applications, such as peer-to-peer file sharing and content dis-
tribution, create new communities with their own interconnectivity patterns and
graphs. The behavior of users in these communities can have dramatic impact on the
volume, patterns, and dynamics of traffic flows in the Internet. Probabilistic methods
are playing an important role in understanding these systems and in developing meth-
ods to manage and control resources so that they operate in reliable and predictable
fashion [15].

OVERVIEW OF BOOK

In this chapter we have discussed the important role that probability models play in the
design of systems that involve randomness. The principal objective of this book is to in-
troduce the student to the basic concepts of probability theory that are required to under-
stand probability models used in electrical and computer engineering. The book is not
intended to cover applications per se; there are far too many applications, with each one
requiring its own detailed discussion. On the other hand, we do attempt to keep the ex-
amples relevant to the intended audience by drawing from relevant application areas.
Another objective of the book is to present some of the basic techniques required to
develop probability models. The discussion in this chapter has made it clear that the
probabilities used in a model must be determined experimentally. Statistical techniques
are required to do this, so we have included an introduction to the basic but essential
statistical techniques. We have also alluded to the usefulness of computer simulation
models in validating probability models. Most chapters include a section that presents
some useful computer method. These sections are optional and can be skipped without
loss of continuity. However, the student is encouraged to explore these techniques.
They are fun to play with, and they will provide insight into the nature of randomness.
The remainder of the book is organized as follows:

¢ Chapter 2 presents the basic concepts of probability theory. We begin with the ax-
ioms of probability that were stated in Section 1.3 and discuss their implications.
Several basic probability models are introduced in Chapter 2.

¢ In general, probability theory does not require that the outcomes of random ex-
periments be numbers. Thus the outcomes can be objects (e.g., black or white
balls) or conditions (e.g., computer system up or down). However, we are usually
interested in experiments where the outcomes are numbers. The notion of a ran-
dom variable addresses this situation. Chapters 3 and 4 discuss experiments
where the outcome is a single number from a discrete set or a continuous set, re-
spectively. In these two chapters we develop several extremely useful problem-
solving techniques.

e Chapter 5 discusses pairs of random variables and introduces methods for de-
scribing the correlation of interdependence between random variables. Chapter 6
extends these methods to vector random variables.

e Chapter 7 presents mathematical results (limit theorems) that answer the ques-
tion of what happens in a very long sequence of independent repetitions of an
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experiment. The results presented will justify our extensive use of relative fre-
quency to motivate the notion of probability.

Chapter 8 provides an introduction to basic statistical methods.

Chapter 9 introduces the notion of a random or stochastic process, which is sim-
ply an experiment in which the outcome is a function of time.

Chapter 10 introduces the notion of the power spectral density and its use in the
analysis and processing of random signals.

Chapter 11 discusses Markov chains, which are random processes that allow us to
model sequences of nonindependent experiments.

Chapter 12 presents an introduction to queueing theory and various applications.

Mathematical models relate important system parameters and variables using
mathematical relations. They allow system designers to predict system perfor-
mance by using equations when experimentation is not feasible or too costly.
Computer simulation models are an alternative means of predicting system per-
formance. They can be used to validate mathematical models.

In deterministic models the conditions under which an experiment is performed
determine the exact outcome. The equations in deterministic models predict an
exact outcome.

In probability models the conditions under which a random experiment is per-
formed determine the probabilities of the possible outcomes. The solution of the
equations in probability models yields the probabilities of outcomes and events
as well as various types of averages.

The probabilities and averages for a random experiment can be found experi-
mentally by computing relative frequencies and sample averages in a large num-
ber of repetitions of a random experiment.

The performance measures in many systems of practical interest involve relative
frequencies and long-term averages. Probability models are used in the design of
these systems.

CHECKLIST OF IMPORTANT TERMS

Deterministic model Random experiment
Event Relative frequency
Expected value Sample mean
Probability Sample space
Probability model Statistical regularity
ANNOTATED REFERENCES

References [1] through [5] discuss probability models in an engineering context.
References [6] and [7] are classic works, and they contain excellent discussions on
the foundations of probability models. Reference [8] is an introduction to error
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Consider the following three random experiments:

Experiment 1: Toss a coin.

Experiment 2: Toss a die.

Experiment 3: Select a ball at random from an urn containing balls numbered 0 to 9.

(a) Specify the sample space of each experiment.

(b) Find the relative frequency of each outcome in each of the above experiments in a
large number of repetitions of the experiment. Explain your answer.
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Explain how the following experiments are equivalent to random urn experiments:
(a) Flip a fair coin twice.
(b) Toss a pair of fair dice.

(¢) Draw two cards from a deck of 52 distinct cards, with replacement after the first
draw; without replacement after the first draw.

Explain under what conditions the following experiments are equivalent to a random
coin toss. What is the probability of heads in the experiment?

(a) Observe a pixel (dot) in a scanned black-and-white document.
(b) Receive a binary signal in a communication system.

(c¢) Test whether a device is working.

(d) Determine whether your friend Joe is online.

(e) Determine whether a bit error has occurred in a transmission over a noisy communi-
cation channel.

An urn contains three electronically labeled balls with labels 00, 01, 10. Lisa, Homer, and
Bart are asked to characterize the random experiment that involves selecting a ball at ran-
dom and reading the label. Lisa’s label reader works fine; Homer’s label reader has the
most significant digit stuck at 1; Bart’s label reader’s least significant digit is stuck at 0.

(a) What is the sample space determined by Lisa, Homer, and Bart?

(b) What are the relative frequencies observed by Lisa, Homer, and Bart in a large num-
ber of repetitions of the experiment?

A random experiment has sample space S = {1,2,3,4} with probabilities p; = 1/2,

p2=1/4,p3 = 1/8, py = 1/8.

(a) Describe how this random experiment can be simulated using tosses of a fair coin.

(b) Describe how this random experiment can be simulated using an urn experiment.

(¢) Describe how this experiment can be simulated using a deck of 52 distinct cards.

A random experiment consists of selecting two balls in succession from an urn containing

two black balls and and one white ball.

(a) Specify the sample space for this experiment.

(b) Suppose that the experiment is modified so that the ball is immediately put back into
the urn after the first selection. What is the sample space now?

(¢) What is the relative frequency of the outcome (white, white) in a large number of
repetitions of the experiment in part a? In part b?

(d) Does the outcome of the second draw from the urn depend in any way on the out-
come of the first draw in either of these experiments?

Let A be an event associated with outcomes of a random experiment, and let the event B

be defined as “event A does not occur.” Show that fg(n) = 1 — f4(n).

Let A, B, and C be events that cannot occur simultaneously as pairs or triplets, and let D
be the event “A or B or C occurs.” Show that

fo(n) = fa(n) + fp(n) + fe(n).

The sample mean for a series of numerical outcomes X (1), X(2),..., X(n) of a se-
quence of random experiments is defined by

(X)a = 13 X()
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Show that the sample mean satisfies the recursion formula:

X(n) — (X),_
(X, = (Xg + 2T 2

Suppose that the signal 2 cos 27¢ is sampled at random instants of time.
(a) Find the long-term sample mean.

99, ¢

(b) Find the long-term relative frequency of the events “voltage is positive”; “voltage is
less than —2.”

(¢) Do the answers to parts a and b change if the sampling times are periodic and taken
every 7 seconds?

In order to generate a random sequence of random numbers you take a column of tele-

phone numbers and output a “0” if the last digit in the telephone number is even and a

“1” if the digit is odd. Discuss how one could determine if the resulting sequence is “ran-

dom.” What test would you apply to the relative frequencies of single outcomes? Of pairs

of outcomes?



Basic Concepts
of Probability Theory

CHAPTER

2.1

This chapter presents the basic concepts of probability theory. In the remainder of the
book, we will usually be further developing or elaborating the basic concepts present-
ed here. You will be well prepared to deal with the rest of the book if you have a good
understanding of these basic concepts when you complete the chapter.

The following basic concepts will be presented. First, set theory is used to specify
the sample space and the events of a random experiment. Second, the axioms of prob-
ability specify rules for computing the probabilities of events. Third, the notion of con-
ditional probability allows us to determine how partial information about the outcome
of an experiment affects the probabilities of events. Conditional probability also allows
us to formulate the notion of “independence” of events and of experiments. Finally, we
consider “sequential” random experiments that consist of performing a sequence of
simple random subexperiments. We show how the probabilities of events in these exper-
iments can be derived from the probabilities of the simpler subexperiments. Throughout
the book it is shown that complex random experiments can be analyzed by decompos-
ing them into simple subexperiments.

SPECIFYING RANDOM EXPERIMENTS

A random experiment is an experiment in which the outcome varies in an unpre-
dictable fashion when the experiment is repeated under the same conditions. A ran-
dom experiment is specified by stating an experimental procedure and a set of one or
more measurements or observations.

Example 2.1

Experiment E;: Select a ball from an urn containing balls numbered 1 to 50. Note the number of
the ball.

Experiment E,: Select a ball from an urn containing balls numbered 1 to 4. Suppose that balls 1
and 2 are black and that balls 3 and 4 are white. Note the number and color of the ball you select.
Experiment E5: Toss a coin three times and note the sequence of heads and tails.

Experiment E4: Toss a coin three times and note the number of heads.

Experiment Es: Count the number of voice packets containing only silence produced from a
group of N speakers in a 10-ms period.

21
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Experiment Eg: A block of information is transmitted repeatedly over a noisy channel until an
error-free block arrives at the receiver. Count the number of transmissions required.
Experiment E;: Pick a number at random between zero and one.

Experiment Eg: Measure the time between page requests in a Web server.

Experiment Ey: Measure the lifetime of a given computer memory chip in a specified environment.
Experiment Eyy: Determine the value of an audio signal at time .

Experiment E;;: Determine the values of an audio signal at times #; and ¢,.

Experiment E,: Pick two numbers at random between zero and one.

Experiment E5: Pick a number X at random between zero and one, then pick a number Y at
random between zero and X.

Experiment E,4: A system component is installed at time = 0. For ¢t = 0 let X(¢) = 1 as long
as the component is functioning, and let X (¢) = 0 after the component fails.

The specification of a random experiment must include an unambiguous statement
of exactly what is measured or observed. For example, random experiments may consist
of the same procedure but differ in the observations made, as illustrated by E; and Ej.

A random experiment may involve more than one measurement or observation,
as illustrated by E,, E3, Eqy, E», and Eq3. A random experiment may even involve a
continuum of measurements, as shown by E14.

Experiments Ej, E,4, Es, Eg, E15, and E;3 are examples of sequential experi-
ments that can be viewed as consisting of a sequence of simple subexperiments. Can
you identify the subexperiments in each of these? Note that in E;3 the second subex-
periment depends on the outcome of the first subexperiment.

The Sample Space

Since random experiments do not consistently yield the same result, it is necessary to
determine the set of possible results. We define an outcome or sample point of a ran-
dom experiment as a result that cannot be decomposed into other results. When we
perform a random experiment, one and only one outcome occurs. Thus outcomes are
mutually exclusive in the sense that they cannot occur simultaneously. The sample
space S of a random experiment is defined as the set of all possible outcomes.

We will denote an outcome of an experiment by £, where ¢ is an element or point
in S. Each performance of a random experiment can then be viewed as the selection at
random of a single point (outcome) from S.

The sample space S can be specified compactly by using set notation. It can be visu-
alized by drawing tables, diagrams, intervals of the real line, or regions of the plane. There
are two basic ways to specify a set:

1. List all the elements, separated by commas, inside a pair of braces:
A ={0,1,2,3},

2. Give a property that specifies the elements of the set:
A = {x:xisaninteger such that 0 = x = 3}.

Note that the order in which items are listed does not change the set, e.g., {0, 1, 2, 3}
and {1, 2, 3,0} are the same set.
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Example 2.2

The sample spaces corresponding to the experiments in Example 2.1 are given below using set
notation:

Sy = {1,2,...,50}

S2 = {(1, ), (2,b), (3, w), (4, w)}

S; = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

S, =1{0,1,2,3}

Ss = {0,1,2,...,N}

Se=1{1,2,3,...}

S;={x:0=x=1} =[0,1] See Fig.2.1(a).

Sg = {r:t = 0} = [0, )

So = {t:t = 0} = [0, 00) See Fig. 2.1(b).

Sip = {v:—00 < v < 00} = (—00,00)

St ={(v,1):—0 < v < ooand —00 < v, < 0}
Sp={(x,y):0=x=1land0 =y =1} See Fig.2.1(c).
Sy ={(x,y):0=y=x=1} See Fig.2.1(d).

S14 = set of functions X (¢) for which X(¢) = 1for 0 = ¢ < fyand X(¢) = 0 for t = ¢,

where #, > 0 is the time when the component fails.

Random experiments involving the same experimental procedure may have dif-
ferent sample spaces as shown by Experiments E5 and E,. Thus the purpose of an ex-
periment affects the choice of sample space.

S, So
X t
0 1 0
(a) Sample space for Experiment E;. (b) Sample space for Experiment Eq.
y y
1 1
Sia
Si3
X X
0 1 0 1
(c) Sample space for Experiment E . (d) Sample space for Experiment E 5.

FIGURE 2.1
Sample spaces for Experiments £, Eg, Eq,, and £q3.
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There are three possibilities for the number of outcomes in a sample space. A
sample space can be finite, countably infinite, or uncountably infinite. We call S a
discrete sample space if S is countable; that is, its outcomes can be put into one-to-one
correspondence with the positive integers. We call S a continuous sample space if S is
not countable. Experiments E;, E,, E5, E,;, and E5 have finite discrete sample spaces.
Experiment E4 has a countably infinite discrete sample space. Experiments E; through
E3 have continuous sample spaces.

Since an outcome of an experiment can consist of one or more observations or
measurements, the sample space S can be multi-dimensional. For example, the out-
comes in Experiments E,, Eq;, E;,, and E;5 are two-dimensional, and those in Experi-
ment Fj are three-dimensional. In some instances, the sample space can be written as
the Cartesian product of other sets.! For example, S;; = R X R, where R is the set of
real numbers,and §3 = § X S X S, where S = {H, T}.

It is sometimes convenient to let the sample space include outcomes that are
impossible. For example, in Experiment Ej it is convenient to define the sample
space as the positive real line, even though a device cannot have an infinite life-
time.

Events

We are usually not interested in the occurrence of specific outcomes, but rather in
the occurrence of some event (i.e., whether the outcome satisfies certain condi-
tions). This requires that we consider subsets of S. We say that A is a subset of B if
every element of A also belongs to B. For example, in Experiment Ej,, which in-
volves the measurement of a voltage, we might be interested in the event “signal
voltage is negative.” The conditions of interest define a subset of the sample space,
namely, the set of points ¢ from § that satisfy the given conditions. For example,
“voltage is negative” corresponds to the set {{:—00 < ¢ < 0}. The event occurs if
and only if the outcome of the experiment ¢ is in this subset. For this reason events
correspond to subsets of S.

Two events of special interest are the certain event, S, which consists of all out-
comes and hence always occurs, and the impossible or null event, J, which contains no
outcomes and hence never occurs.

Example 2.3
In the following examples, A refers to an event corresponding to Experiment £, in Example 2.1.

E;: “An even-numbered ball is selected,” A; = {2,4,...,48,50}.
E,: “The ball is white and even-numbered,” A, = {(4, w)}.

E;: “The three tosses give the same outcome,” A; = {HHH, TTT}.
E4: “The number of heads equals the number of tails,” A4, = .

Es: “No active packets are produced,” A5 = {0}.

The Cartesian product of the sets A and B consists of the set of all ordered pairs (a, b), where the first ele-
ment is taken from A and the second from B.
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Es: “Fewer than 10 transmissions are required,” Ag = {1,...,9}.

E;: “The number selected is nonnegative,” A; = §;.

Eg: “Less than ¢, seconds elapse between page requests,” Ag = {r:0 =t < 1y} = [0, t).

Ey: “The chip lasts more than 1000 hours but fewer than 1500 hours,” Ag = {¢: 1000 < ¢t < 1500}
= (1000, 1500).

Ejp: “The absolute value of the voltage is less than 1 volt,” Ay = {v: -1 < v <1} = (-1

E,: “The two voltages have opposite polarities,” Ay = {(vy, v,): (v; < 0and v, > 0) or (v,
and v, < 0)}.

E,,: “The two numbers differ by less than 1/10,” Ay, = {(x, y):(x, y) in S;; and |x — y| < 1/10}.

E,3: “The two numbers differ by less than 1/10,” A3 = {(x, y):(x, y) in S;zand |x — y| < 1/10}.

Ei4: “The system is functioning at time #,” A4 = subset of Sy, for which X (#;) = 1.

1)
>0

An event may consist of a single outcome, as in A, and As. An event from a
discrete sample space that consists of a single outcome is called an elementary event.
Events A, and As are elementary events. An event may also consist of the entire sam-
ple space, as in A5. The null event,(J, arises when none of the outcomes satisfy the con-
ditions that specify a given event, as in Ay.

Review of Set Theory

In random experiments we are interested in the occurrence of events that are repre-
sented by sets. We can combine events using set operations to obtain other events. We
can also express complicated events as combinations of simple events. Before proceed-
ing with further discussion of events and random experiments, we present some essen-
tial concepts from set theory.

A set is a collection of objects and will be denoted by capital letters S, 4, B, . ...
We define U as the universal set that consists of all possible objects of interest in a
given setting or application. In the context of random experiments we refer to the uni-
versal set as the sample space. For example, the universal set in Experiment Eg is
U= {1,2,...}. Aset A is a collection of objects from U, and these objects are called
the elements or points of the set A and will be denoted by lowercase letters,
{,a,b,x,y,.... We use the notation:

xeA and xe A

to indicate that “x is an element of A” or “x is not an element of A,” respectively.

We use Venn diagrams when discussing sets. A Venn diagram is an illustration of
sets and their interrelationships. The universal set U is usually represented as the set of
all points within a rectangle as shown in Fig. 2.2(a). The set A is then the set of points
within an enclosed region inside the rectangle.

We say A is a subset of B if every element of A also belongs to B, that is,if xe A
implies x € B. We say that “A is contained in B” and we write:

A CB.

If A is a subset of B, then the Venn diagram shows the region for A to be inside the
region for B as shown in Fig. 2.2(e).
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U
A B A B
(@)AUB (bANB

@ANB=0O

(e)ACB

(&) (AU B)

FIGURE 2.2
Set operations and set relations.

Example 2.4

In Experiment Eg three sets of interest might be A = {x:x = 10} = {10, 11,... }, thatis, 10 or
more transmissions are required; B = {2,4,6,... }, the number of transmissions is an even num-
ber;and C = {x: x = 20} = {20,21,... }. Which of these sets are subsets of the others?

Clearly, C is a subset of A(C C A). However, C is not a subset of B, and B is not a subset
of C, because both sets contain elements the other set does not contain. Similarly, B is not a sub-
set of A, and A is not a subset of B.

The empty set & is defined as the set with no elements. The empty set (J is a sub-
set of every set, that is, for any set A,(J C A.

We say sets A and B are equal if they contain the same elements. Since every ele-
ment in A is also in B, then x € A implies x € B, so A C B. Similarly every element in B
is also in A,so x € B implies x € A and so B C A. Therefore:

A =B ifandonlyif ACB and BC A.

The standard method to show that two sets, A and B, are equal is to show that
A C Band B C A. A second method is to list all the items in A and all the items in B,
and to show that the items are the same. A variation of this second method is to use a
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Venn diagram to identify the region that corresponds to A and to then show that the
Venn diagram for B occupies the same region. We provide examples of both methods
shortly.

We will use three basic operations on sets. The union and the intersection opera-
tions are applied to two sets and produce a third set. The complement operation is ap-
plied to a single set to produce another set.

The union of two sets A and B is denoted by A U B and is defined as the set of
outcomes that are either in A or in B, or both:

AUB = {x:xeA or xeB}.

The operation A U B corresponds to the logical “or” of the properties that define set A
and set B, thatis,x is in A U B if x satisfies the property that defines A, or x satisfies the
property that defines B, or both. The Venn diagram for A U B consists of the shaded
region in Fig. 2.2(a).

The intersection of two sets A and B is denoted by A N B and is defined as the set
of outcomes that are in both A and B:

ANB={x:xeA and xeB}.

The operation A N B corresponds to the logical “and” of the properties that define
set A and set B. The Venn diagram for A N B consists of the double shaded region
in Fig. 2.2(b). Two sets are said to be disjoint or mutually exclusive if their intersec-
tion is the null set, AN B = J. Figure 2.2(d) shows two mutually exclusive sets A
and B.

The complement of a set A is denoted by A° and is defined as the set of all ele-
ments not in A:

A= {x:x¢A}.

The operation A° corresponds to the logical “not” of the property that defines set A.
Figure 2.2(c) shows A°. Note that S¢ = Jand ° = S.

The relative complement or difference of sets A and B is the set of elements in A
that are not in B:

A — B ={x:xeAand x¢ B}.

A — B is obtained by removing from A all the elements that are also in B, as illustrat-
ed in Fig. 2.2(f). Note that A — B = AN B“. Note also that B = S — B.

Example 2.5

Let A, B, and C be the events from Experiment E¢ in Example 2.4. Find the following events:
AUB,ANB, A, BA— B,and B — A.

AUB = {2,4,6,8,10,11,12,... };
ANB = {10,12,14,... };

A= {x:x <10} = {1,2,...,9};
B ={1,3,5,... };



28  Chapter 2 Basic Concepts of Probability Theory

A- B={11,13,15,... };
and B — A = {2,4,6,8}.

The three basic set operations can be combined to form other sets. The following
properties of set operations are useful in deriving new expressions for combinations
of sets:

Commutative properties:

AUB=BUA and ANB = BN A. (2.1)
Associative properties:

AU(BUC) = (AUB)UC and AN(BNC)=(ANB)NC. (2.2)
Distributive properties:

AU(BNC)=(AUB)N(AUCQC) and
AN(BUC)=(ANB)U(ANCQC). (2.3)

By applying the above properties we can derive new identities. DeMorgan’s rules pro-
vide an important such example:

DeMorgan’s rules:

(AUBY = ANB°  and (ANB) = AUB (2.4)

Example 2.6

Prove DeMorgan’s rules by using Venn diagrams and by demonstrating set equality.

First we will use a Venn diagram to show the first equality. The shaded region in Fig. 2.2(g)
shows the complement of A U B, the left-hand side of the equation. The cross-hatched region in
Fig. 2.2(h) shows the intersection of A° and B°. The two regions are the same and so the sets are
equal. Try sketching the Venn diagrams for the second equality in Eq. (2.4).

Next we prove DeMorgan’s rules by proving set equality. The proof has two parts: First we
show that (AU B)¢ C A°N B¢ then we show that A°N B¢ C (AU B)*. Together these results
imply (AU B)° = A°N B“.

First, suppose that x e (A U B)¢, then x ¢ AU B. In particular, we have x ¢ A, which im-
plies x € A°. Similarly, we have x ¢ B, which implies x € B°. Hence x is in both A° and B¢, that is,
x € A°N B°. We have shown that (AU B)° C A°N B.

To prove inclusion in the other direction, suppose that x e A°N B¢. This implies that
xe A%, 50 x¢ A. Similarly, x € B¢ and so x ¢ B. Therefore, x ¢ (AU B) and so xe (AU B)‘. We
have shown that A°N B C (A U B)“. This proves that (AU B)° = A°N B“.

To prove the second DeMorgan rule, apply the first DeMorgan rule to A° and B¢ to
obtain:

(AUB) = (A)°N(B) = ANB,

where we used the identity A = (A°)°. Now take complements of both sides of the above
equation:

AUB = (AN B)-.
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Example 2.7

For Experiment E,, let the sets A, B, and C be defined by
A = {v: |v| > 10}, “magnitude of v is greater than 10 volts,”
B = {v:v < -5}, “vis less than —5 volts,”
C = {v:v >0}, “p is positive.”

You should then verify that

AUB = {v:v < =5o0rv > 10},
ANB = {v:v < —10},
C‘={v:v =0},
(AUB)NC = {v:v > 10},
ANBNC =, and

(AUB) = {v: =5 = v = 10}.

The union and intersection operations can be repeated for an arbitrary number
of sets. Thus the union of n sets

UAi=4,U4,U---UA, (2.5)
k=1

is the set that consists of all elements that are in A, for at least one value of k. The same
definition applies to the union of a countably infinite sequence of sets:

o0

UA k- (2.6)

k=1
The intersection of n sets

k=1

is the set that consists of elements that are in all of the sets A4, ..., A,,. The same defi-
nition applies to the intersection of a countably infinite sequence of sets:

M Ax- (2.8)

k=1

We will see that countable unions and intersections of sets are essential in dealing with
sample spaces that are not finite.

Event Classes

We have introduced the sample space S as the set of all possible outcomes of the ran-
dom experiment. We have also introduced events as subsets of S. Probability theory
also requires that we state the class F of events of interest. Only events in this class
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are assigned probabilities. We expect that any set operation on events in F will pro-
duce a set that is also an event in F. In particular, we insist that complements, as well
as countable unions and intersections of events in F, i.e., Egs. (2.1) and (2.5) through
(2.8), result in events in F. When the sample space S is finite or countable, we simply
let F consist of all subsets of S and we can proceed without further concerns about F.
However, when S is the real line R (or an interval of the real line), we cannot let F be
all possible subsets of R and still satisfy the axioms of probability. Fortunately, we can
obtain all the events of practical interest by letting F be of the class of events ob-
tained as complements and countable unions and intersections of intervals of the real
line, e.g., (a, b] or (—00, b]. We will refer to this class of events as the Borel field. In the
remainder of the book, we will refer to the event class F from time to time. For the in-
troductory-level course in probability you will not need to know more than what is
stated in this paragraph.

When we speak of a class of events we are referring to a collection (set) of events
(sets), that is, we are speaking of a “set of sets.” We refer to the collection of sets as a
class to remind us that the elements of the class are sets. We use script capital letters to
refer to a class, e.g., C, F, G. If the class C consists of the collection of sets Aq,..., Ay,
then we write C = {Ay,..., A}

Example 2.8

Let S = {T, H} be the outcome of a coin toss. Let every subset of S be an event. Find all possi-
ble events of S.
An event is a subset of S, so we need to find all possible subsets of S. These are:

S = {&, {H}, {T}, {H, T} }.

Note that S includes both the empty set and S. Let it and iy be binary numbers where i = 1 in-
dicates that the corresponding element of S is in a given subset. We generate all possible subsets
by taking all possible values of the pair it and iy. Thus it = 0, iy = 1 corresponds to the set
{H}. Clearly there are 22 possible subsets as listed above.

For a finite sample space, S = {1,2,..., k},2 we usually allow all subsets of S to be
events. This class of events is called the power set of S and we will denote it by S. We can
index all possible subsets of S with binary numbers iy, iy, ..., i;, and we find that the
power set of S has 2% members. Because of this, the power set is also denoted by S = 25.

Section 2.8 discusses some of the fine points on event classes.

THE AXIOMS OF PROBABILITY

Probabilities are numbers assigned to events that indicate how “likely” it is that the
events will occur when an experiment is performed. A probability law for a random ex-
periment is a rule that assigns probabilities to the events of the experiment that belong
to the event class F. Thus a probability law is a function that assigns a number to sets
(events). In Section 1.3 we found a number of properties of relative frequency that any
definition of probability should satisfy. The axioms of probability formally state that a

2The discussion applies to any finite sample space with arbitrary objects § = {x;,..., x;}, but we consider
{1,2,..., k} for notational simplicity.
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probability law must satisfy these properties. In this section, we develop a number of
results that follow from this set of axioms.

Let E be a random experiment with sample space S and event class F. A
probability law for the experiment E is a rule that assigns to each event Ae F a
number P[A], called the probability of A, that satisfies the following axioms:

Axiom I 0= P[A]

Axiom 1 P[S]=1

Axiom 111 If ANB = J,then PPAU B] = P[A] + P[B].
Axiom I11' If A{, A,,... is a sequence of events such that

A;NA; =foralli # j, then

P|:6Ak:| = iP[Ak].
k=1 k=1

Axioms I, II, and III are enough to deal with experiments with finite sample
spaces. In order to handle experiments with infinite sample spaces, Axiom III needs to
be replaced by Axiom III'. Note that Axiom III' includes Axiom III as a special case,
by letting A, = J for k = 3. Thus we really only need Axioms I, II, and III'. Never-
theless we will gain greater insight by starting with Axioms I, II, and III.

The axioms allow us to view events as objects possessing a property (i.e., their
probability) that has attributes similar to physical mass. Axiom I states that the proba-
bility (mass) is nonnegative, and Axiom II states that there is a fixed total amount of
probability (mass), namely 1 unit. Axiom III states that the total probability (mass) in
two disjoint objects is the sum of the individual probabilities (masses).

The axioms provide us with a set of consistency rules that any valid probability
assignment must satisfy. We now develop several properties stemming from the axioms
that are useful in the computation of probabilities.

The first result states that if we partition the sample space into two mutually ex-
clusive events, A and A, then the probabilities of these two events add up to one.

Corollary 1
P[A] =1— P[A]

Proof: Since an event A and its complement A° are mutually exclusive, A N A° = J, we have
from Axiom III that

P[AU Al = P[A] + P[A].
Since § = AU A°, by Axiom II,
1= P[S] = P[AU A°] = P[A] + P[A"].

The corollary follows after solving for P[ A°].

The next corollary states that the probability of an event is always less than or
equal to one. Corollary 2 combined with Axiom I provide good checks in problem
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solving: If your probabilities are negative or are greater than one, you have made a
mistake somewhere!

Corollary 2
P[A] =1
Proof: From Corollary 1,

since P[A°] = 0.

Corollary 3 states that the impossible event has probability zero.

Corollary 3
P[] =0
Proof: Let A = S and A° = Jin Corollary 1:
P[] =1-P[S]=0.

Corollary 4 provides us with the standard method for computing the probability
of a complicated event A. The method involves decomposing the event A into the
union of disjoint events A, A,,..., A,,. The probability of A is the sum of the proba-
bilities of the A;’s.

Corollary 4

If Ay, A,,..., A, are pairwise mutually exclusive, then

P[UA,(} = Y P[A] forn=2.
k=1 k=1

Proof: We use mathematical induction. Axiom III implies that the result is true for n = 2. Next
we need to show that if the result is true for some #, then it is also true for n» + 1. This, combined
with the fact that the result is true for n = 2, implies that the result is true for n = 2.

Suppose that the result is true for some n > 2; that is,

P|:UA1<:| = > P[A], (2.9)
k=1 k=1
and consider the n + 1 case
n+1 n n
P[UA,(} = P|:{UAk} UAnH} = P[UA,{] + P[A,+1], (2.10)
k=1 k=1 k=1

where we have applied Axiom III to the second expression after noting that the union of events
Ajto A, is mutually exclusive with A, ;. The distributive property then implies

{kLJlAk} NAu1 = H{AkmAn+l} = H@ = .
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Substitution of Eq. (2.9) into Eq. (2.10) gives the n + 1 case

n+1 n+1
P[HA,(} = kglP[Ak].

Corollary 5 gives an expression for the union of two events that are not necessar-
ily mutually exclusive.

Corollary 5
P[AUB] = P[A] + P[B] — P[ANB]

Proof: First we decompose A U B, A, and B as unions of disjoint events. From the Venn diagram
in Fig. 2.3,

P[AUB] = PLANB] + P[BN A + P[AN B]
P[A] = PlJANB‘] + P[ANB]
P[B] = P[BN A] + P[AN B]

By substituting P[ A N B°] and P[ B N A°] from the two lower equations into the top equation,
we obtain the corollary.

By looking at the Venn diagram in Fig. 2.3, you will see that the sum P[A] + P[B]
counts the probability (mass) of the set AN B twice. The expression in Corollary 5
makes the appropriate correction.

Corollary 5 is easily generalized to three events,

P[AUBUC] = P[A] + P[B] + P[C] — P[ANB]
~ P[ANC] - P[BNC] + PLANBNC],  (2.11)

and in general to n events, as shown in Corollary 6.

FIGURE 2.3
Decomposition of A U B into three disjoint sets.
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Corollary 6

j<k

P[]QA,(} = éP[Aj} — D P[ANA] + -

+ (-D)P[AN - N A,

Proofis by induction (see Problems 2.26 and 2.27).

Since probabilities are nonnegative, Corollary 5 implies that the probability
of the union of two events is no greater than the sum of the individual event prob-
abilities

P[AUB] = P[A] + P[B]. (2.12)

The above inequality is a special case of the fact that a subset of another set must
have smaller probability. This result is frequently used to obtain upper bounds for
probabilities of interest. In the typical situation, we are interested in an event A whose
probability is difficult to find; so we find an event B for which the probability can be
found and that includes A as a subset.

Corollary 7
If AC B,then P[A] = P[B].
Proof: In Fig. 2.4, B is the union of A and A° N B, thus

P[B] = P[A] + P[ANB] = P[A],

since P[A“N B] = 0.

The axioms together with the corollaries provide us with a set of rules for comput-
ing the probability of certain events in terms of other events. However, we still need an
initial probability assignment for some basic set of events from which the probability of
all other events can be computed. This problem is dealt with in the next two subsections.

B

FIGURE 2.4
If A C B, then P(A) = P(B).
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Discrete Sample Spaces

In this section we show that the probability law for an experiment with a countable sam-
ple space can be specified by giving the probabilities of the elementary events. First, sup-
pose that the sample space is finite, S = {ay, a,,..., a,} and let F consist of all subsets
of S. All distinct elementary events are mutually exclusive, so by Corollary 4 the prob-
ability of any event B = {a}, a5,..., a,,} is given by

P[B] = P[{a},a5,...,a,}]
= P[{a1}] + P[{as}] + -+ + P[{an}]; (2.13)

that is, the probability of an event is equal to the sum of the probabilities of the outcomes
in the event. Thus we conclude that the probability law for a random experiment with a fi-
nite sample space is specified by giving the probabilities of the elementary events.

If the sample space has n elements, S = {ay,..., a,}, a probability assignment of
particular interest is the case of equally likely outcomes. The probability of the ele-
mentary events is

1
Pl{a}] = P[{as}] = - = P[{a,}] = (2.14)
The probability of any event that consists of k outcomes, say B = {a},..., ai}, is
k
P[B] = P[{ai}] + -~ + P[{ap}] = . (2.15)

Thus if outcomes are equally likely, then the probability of an event is equal to the num-
ber of outcomes in the event divided by the total number of outcomes in the sample
space. Section 2.3 discusses counting methods that are useful in finding probabilities in
experiments that have equally likely outcomes.

Consider the case where the sample space is countably infinite, S = {ay, a,,... }.
Let the event class F be the class of all subsets of S. Note that F must now satisty Eq. (2.8)
because events can consist of countable unions of sets. Axiom III' implies that the
probability of an event such as D = {b{, b,, bs, ... } is given by

P[D] = P[{by, b3, b5,... }] = P[{b1}] + P[{D2}] + P[{b5}] + ...

The probability of an event with a countably infinite sample space is determined from
the probabilities of the elementary events.

Example 2.9

An urn contains 10 identical balls numbered 0, 1, ..., 9. A random experiment involves selecting a
ball from the urn and noting the number of the ball. Find the probability of the following events:

A = “number of ball selected is odd,”
B = “number of ball selected is a multiple of 3,”

C = “number of ball selected is less than 5,”

andof AUBand AUBUC.
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The sample space is § = {0, 1,..., 9}, so the sets of outcomes corresponding to the above
events are

A={1,3579, B={3,69}, and C=1{01,234}.

If we assume that the outcomes are equally likely, then

PLAT = PL{1}) + PL{3}] + PLSY + PLOTH + PO} = 1
PLB] = PL{3}] + PL{6}] + PL{OH) = 1.
PIC] = PL{O}] + PL{1}] + PI{2}] + PL{3}] + PI{4}] = 5.

From Corollary 5,

5 3 2 6
PIAUB] = PA] + P[B] - PLANB] =+ > - 2 -5

where we have used the fact that AN B = {3,9},s0 P[A N B] = 2/10. From Corollary 6,
P[AUBUC] = P[A] + P[B] + P[C] — P[AN B]
— P[ANC] - P[BNC]+ Pl[ANBNC]
5 3 5 2 2 1 1

=+ 4 +
10 10 10 10 10 10 10

_2
10°
You should verify the answers for P[A U B] and P[A U B U C] by enumerating the outcomes in
the events.

Many probability models can be devised for the same sample space and events by
varying the probability assignment; in the case of finite sample spaces all we need to do
is come up with n nonnegative numbers that add up to one for the probabilities of the
elementary events. Of course, in any particular situation, the probability assignment
should be selected to reflect experimental observations to the extent possible. The fol-
lowing example shows that situations can arise where there is more than one “reason-
able” probability assignment and where experimental evidence is required to decide
on the appropriate assignment.

Example 2.10

Suppose that a coin is tossed three times. If we observe the sequence of heads and tails, then
there are eight possible outcomes S; = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. If
we assume that the outcomes of S are equiprobable, then the probability of each of the eight el-
ementary events is 1/8. This probability assignment implies that the probability of obtaining two
heads in three tosses is, by Corollary 3,

P[“2 heads in 3 tosses”] = P[{HHT, HTH, THH}]

= P[{HHT}] + P[{HTH}] + P[{THH}] = %
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Now suppose that we toss a coin three times but we count the number of heads in three
tosses instead of observing the sequence of heads and tails. The sample space is now
S, = {0,1,2,3}. If we assume the outcomes of S, to be equiprobable, then each of the elemen-
tary events of S, has probability 1/4. This second probability assignment predicts that the proba-
bility of obtaining two heads in three tosses is

1
P[“2 heads in 3 tosses”] = P[{2}] = e

The first probability assignment implies that the probability of two heads in three toss-
es is 3/8, and the second probability assignment predicts that the probability is 1/4. Thus the
two assignments are not consistent with each other. As far as the theory is concerned, either
one of the assignments is acceptable. It is up to us to decide which assignment is more ap-
propriate. Later in the chapter we will see that only the first assignment is consistent with
the assumption that the coin is fair and that the tosses are “independent.” This assignment
correctly predicts the relative frequencies that would be observed in an actual coin tossing
experiment.

Finally we consider an example with a countably infinite sample space.

Example 2.11

A fair coin is tossed repeatedly until the first heads shows up; the outcome of the experiment is
the number of tosses required until the first heads occurs. Find a probability law for this experi-
ment.

It is conceivable that an arbitrarily large number of tosses will be required until heads
occurs, so the sample space is S = {1,2,3,... }. Suppose the experiment is repeated n times.
Let N; be the number of trials in which the jth toss results in the first heads. If n is very large,
we expect N; to be approximately n/2 since the coin is fair. This implies that a second toss is
necessary about n — N; = n/2 times, and again we expect that about half of these —that is,
n/4—will result in heads, and so on, as shown in Fig. 2.5. Thus for large n, the relative fre-

quencies are
N; 1V
j .
sz—n :(E) i=12,....

We therefore conclude that a reasonable probability law for this experiment is

1\
P[j tosses till first heads] = (5) j=12,.... (2.16)

We can verify that these probabilities add up to one by using the geometric series with & = 1/2:

o o
J =
f;a

=1.

1= ale=1n

Continuous Sample Spaces

Continuous sample spaces arise in experiments in which the outcomes are numbers
that can assume a continuum of values, so we let the sample space S be the entire real
line R (or some interval of the real line). We could consider letting the event class con-
sist of all subsets of R. But it turns out that this class is “too large” and it is impossible
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n trials

n. .
~ — trials
4

n .
~ — trials
8

FIGURE 2.5
In n trials heads comes up in the first toss approximately n/2 times, in
the second toss approximately n/4 times, and so on.

to assign probabilities to all the subsets of R. Fortunately, it is possible to assign proba-
bilities to all events in a smaller class that includes all events of practical interest. This
class denoted by B, is called the Borel field and it contains all open and closed intervals
of the real line as well as all events that can be obtained as countable unions, intersec-
tions, and complements.®> Axiom III' is once again the key to calculating probabilities of
events. Let A, A,,... be a sequence of mutually exclusive events that are represented
by intervals of the real line, then

P[GAk:| = EO:P[A/«]
k=1 &=l

where each P[A,] is specified by the probability law. For this reason, probability laws
in experiments with continuous sample spaces specify a rule for assigning numbers to in-
tervals of the real line.

Example 2.12

Consider the random experiment “pick a number x at random between zero and one.” The sample
space S for this experiment is the unit interval [0, 1], which is uncountably infinite. If we suppose that
all the outcomes § are equally likely to be selected, then we would guess that the probability that the
outcome is in the interval [0, 1/2] is the same as the probability that the outcome is in the interval
[1/2,1]. We would also guess that the probability of the outcome being exactly equal to 1/2 would be
zero since there are an uncountably infinite number of equally likely outcomes.

3Section 2.9 discusses B in more detail.
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Consider the following probability law: “The probability that the outcome falls in a subin-
terval of S is equal to the length of the subinterval,” that is,

Pl[a,b]] = (b — a) for0=a=b=1, (2.17)

where by P[[a, b]] we mean the probability of the event corresponding to the interval [a, b].
Clearly, Axiom I is satisfied since b = a = 0. Axiom II follows from S = [a, b] with @ = 0 and
b=1.

We now show that the probability law is consistent with the previous guesses about the
probabilities of the events [0, 1/2],[1/2,1], and {1/2}:

P[[0,05]]=05-0=5
P[[05,1]]=1-05=5

In addition, if x is any point in S, then P[[xg, xq]] = 0 since individual points have zero width.

Now suppose that we are interested in an event that is the union of several intervals; for
example, “the outcome is at least 0.3 away from the center of the unit interval,” that is,
A =0,0.2]U[0.8,1]. Since the two intervals are disjoint, we have by Axiom III

P[A] = P[[0,02]] + P[[0.8,1]] = 4.

The next example shows that an initial probability assignment that specifies the
probability of semi-infinite intervals also suffices to specify the probabilities of all
events of interest.

Example 2.13

Suppose that the lifetime of a computer memory chip is measured, and we find that “the propor-
tion of chips whose lifetime exceeds ¢ decreases exponentially at a rate «.” Find an appropriate
probability law.

Let the sample space in this experiment be § = (0, 00). If we interpret the above finding
as “the probability that a chip’s lifetime exceeds ¢ decreases exponentially at a rate «,” we then
obtain the following assignment of probabilities to events of the form (¢, 0):

P[(t,0)] =e*  fort >0, (2.18)

where @ > (. Note that the exponential is a number between 0 and 1 for t > 0, so Axiom [ is sat-
isfied. Axiom II is satisfied since

P[S] = P[(0,00)] = 1.

The probability that the lifetime is in the interval (r, s] is found by noting in Fig. 2.6 that
(r,s]U (s, 00) = (r, 00), so by Axiom III,

P[(r,00)] = P[(r,s]] + P[(s, o)].

/_
v ==

FIGURE 2.6
(r,00) = (1, s]U (s, 00).
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By rearranging the above equation we obtain
P[(r,s]] = P[(r,00)] = P[(s,0)] = e — ™.

We thus obtain the probability of arbitrary intervals in S.

In both Example 2.12 and Example 2.13, the probability that the outcome takes on
a specific value is zero. You may ask: If an outcome (or event) has probability zero, doesn’t
that mean it cannot occur? And you may then ask: How can all the outcomes in a sam-
ple space have probability zero? We can explain this paradox by using the relative
frequency interpretation of probability. An event that occurs only once in an infinite num-
ber of trials will have relative frequency zero. Hence the fact that an event or outcome has
relative frequency zero does not imply that it cannot occur, but rather that it occurs very
infrequently. In the case of continuous sample spaces, the set of possible outcomes is so
rich that all outcomes occur infrequently enough that their relative frequencies are zero.

We end this section with an example where the events are regions in the plane.

Example 2.14

Consider Experiment E;,, where we picked two numbers x and y at random between zero and
one. The sample space is then the unit square shown in Fig. 2.7(a). If we suppose that all pairs of
numbers in the unit square are equally likely to be selected, then it is reasonable to use a proba-
bility assignment in which the probability of any region R inside the unit square is equal to the
area of R. Find the probability of the following events: A = {x > 0.5}, B = {y > 0.5}, and
C={x>y}

y y
1 1
S x>=
x x
0 i o 1 1
2
(a) Sample space (b) Event {x > %}
y y
1 1
1
> —_—
| 02
2 x>y
x x
0 1 0 1
(c) Event {y > %} (d) Event {x > y}
FIGURE 2.7

A two-dimensional sample space and three events.
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Figures 2.7(b) through 2.7(d) show the regions corresponding to the events A, B, and C.
Clearly each of these regions has area 1/2. Thus

We reiterate how to proceed from a problem statement to its probability model.
The problem statement implicitly or explicitly defines a random experiment, which
specifies an experimental procedure and a set of measurements and observations.
These measurements and observations determine the set of all possible outcomes and
hence the sample space S.

An initial probability assignment that specifies the probability of certain events
must be determined next. This probability assignment must satisfy the axioms of prob-
ability. If S is discrete, then it suffices to specify the probabilities of elementary events.
If S is continuous, it suffices to specify the probabilities of intervals of the real line or
regions of the plane. The probability of other events of interest can then be determined
from the initial probability assignment and the axioms of probability and their corol-
laries. Many probability assignments are possible, so the choice of probability assign-
ment must reflect experimental observations and/or previous experience.

COMPUTING PROBABILITIES USING COUNTING METHODS*

In many experiments with finite sample spaces, the outcomes can be assumed to be
equiprobable. The probability of an event is then the ratio of the number of outcomes in
the event of interest to the total number of outcomes in the sample space (Eq. (2.15)).
The calculation of probabilities reduces to counting the number of outcomes in an
event. In this section, we develop several useful counting (combinatorial) formulas.

Suppose that a multiple-choice test has k questions and that for question i the
student must select one of n; possible answers. What is the total number of ways of an-
swering the entire test? The answer to question i can be viewed as specifying the ith
component of a k-tuple, so the above question is equivalent to: How many distinct or-
dered k-tuples (xq, ..., x;) are possible if x; is an element from a set with »; distinct el-
ements?

Consider the k = 2 case. If we arrange all possible choices for x; and for x, along
the sides of a table as shown in Fig. 2.8, we see that there are nn, distinct ordered pairs.
For triplets we could arrange the nin, possible pairs (x;, x,) along the vertical side of
the table and the n; choices for x; along the horizontal side. Clearly, the number of pos-
sible triplets is nin,n;.

In general, the number of distinct ordered k-tuples (x1, ..., x;) with components
Xx; from a set with n; distinct elements is

number of distinct ordered k-tuples = nn,...ny. (2.19)

Many counting problems can be posed as sampling problems where we select
“balls” from “urns” or “objects” from “populations.” We will now use Eq. (2.19) to de-
velop combinatorial formulas for various types of sampling.

“This section and all sections marked with an asterisk may be skipped without loss of continuity.
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X1

a; a, . a,,
by| (@nb)  (anby) e (@y,.b)
by | (ay.by) (az,by) te (11”,7172)
X2
bnz (al’bn:) (aZ’bng) U (anpbnz)
FIGURE 2.8

If there are n- distinct choices for x; and n, distinct choices
for x,, then there are nqn; distinct ordered pairs (x1, X;).

Sampling with Replacement and with Ordering

Suppose we choose k objects from a set A that has n distinct objects, with replace-
ment—that is, after selecting an object and noting its identity in an ordered list, the ob-
ject is placed back in the set before the next choice is made. We will refer to the set A
as the “population.” The experiment produces an ordered k-tuple

(X15-05 Xg)s
where x;e Aandi = 1,..., k. Equation (2.19) with n; = n, = --- = n; = nimplies that
number of distinct ordered k-tuples = r. (2.20)

Example 2.15

An urn contains five balls numbered 1 to 5. Suppose we select two balls from the urn with re-
placement. How many distinct ordered pairs are possible? What is the probability that the two
draws yield the same number?

Equation (2.20) states that the number of ordered pairs is 52 = 25. Table 2.1 shows the 25
possible pairs. Five of the 25 outcomes have the two draws yielding the same number; if we sup-
pose that all pairs are equiprobable, then the probability that the two draws yield the same num-
beris 5/25 = 2.

Sampling without Replacement and with Ordering

Suppose we choose k objects in succession without replacement from a population A of
n distinct objects. Clearly, k = n. The number of possible outcomes in the first draw is
ny = n; the number of possible outcomes in the second draw is n, = n — 1, namely all
n objects except the one selected in the first draw;and so on,upton;, = n — (k — 1) in
the final draw. Equation (2.19) then gives

number of distinct ordered k-tuples = n(n — 1)...(n — k + 1). (2.21)
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TABLE 2.1 Enumeration of possible outcomes in various types of
sampling of two balls from an urn containing five distinct balls.

(a) Ordered pairs for sampling with replacement.

(1,1) 1,2) 1,3) 1,4) 1,5)

2,1) 2,2) 2,3) (2,4) 2,5)
(3,1) 3,2) (3,3) 3,4) 3.,5)
4,1) 4,2) 4,3) (4,4) 4,5)
5,1) 5,2) 5,3) (5,4) 5,5)
(b) Ordered pairs for sampling without replacement.
1,2) 1,3) 1,4) 1,5)
2,1) 2,3) 2,4) 2,5)
3,1) 3,2) (3,4) 3,5)
4,1) 4,2) 4,3) 4,5)
5,1) 5,2) 5,3) 5,4)
(c) Pairs for sampling without replacement or ordering.
(1,2) (1,3) (1,4) 1,5)
2,3) 2,4) 2,5)
3,4) 3.,5)
(4.5)

Example 2.16

An urn contains five balls numbered 1 to 5. Suppose we select two balls in succession without re-
placement. How many distinct ordered pairs are possible? What is the probability that the first
ball has a number larger than that of the second ball?

Equation (2.21) states that the number of ordered pairs is 5(4) = 20. The 20 possible or-
dered pairs are shown in Table 2.1(b). Ten ordered pairs in Tab. 2.1(b) have the first number larg-
er than the second number; thus the probability of this event is 10/20 = 1/2.

Example 2.17

An urn contains five balls numbered 1, 2,. .., 5. Suppose we draw three balls with replacement.
What is the probability that all three balls are different?

From Eq. (2.20) there are 5° = 125 possible outcomes, which we will suppose are
equiprobable. The number of these outcomes for which the three draws are different is given
by Eq. (2.21): 5(4)(3) = 60. Thus the probability that all three balls are different is
60/125 = .48.

Permutations of n Distinct Objects

Consider sampling without replacement with k = n. This is simply drawing objects
from an urn containing »n distinct objects until the urn is empty. Thus, the number of
possible orderings (arrangements, permutations) of n distinct objects is equal to the
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number of ordered n-tuples in sampling without replacement with k = »n. From Eq. (2.21),
we have

number of permutations of n objects = n(n — 1)...(2)(1) = n!. (2.22)

We refer to n! as n factorial.
We will see that n! appears in many of the combinatorial formulas. For large n,
Stirling’s formula is very useful:

n! ~ \2mn" 1%, (2.23)

where the sign ~ indicates that the ratio of the two sides tends to unity as n— o0
[Feller, p. 52].

Example 2.18

Find the number of permutations of three distinct objects {1,2,3}. Equation (2.22) gives
3! = 3(2)(1) = 6. The six permutations are

123 312 231 132 213 321

Example 2.19

Suppose that 12 balls are placed at random into 12 cells, where more than 1 ball is allowed to oc-
cupy a cell. What is the probability that all cells are occupied?

The placement of each ball into a cell can be viewed as the selection of a cell number be-
tween 1 and 12. Equation (2.20) implies that there are 12'2 possible placements of the 12 balls in
the 12 cells. In order for all cells to be occupied, the first ball selects from any of the 12 cells, the
second ball from the remaining 11 cells, and so on. Thus the number of placements that occupy
all cells is 12!. If we suppose that all 122 possible placements are equiprobable, we find that the
probability that all cells are occupied is

120 (12)(11) (1) s
2L ()(1) () = 509,

This answer is surprising if we reinterpret the question as follows. Given that 12 airplane
crashes occur at random in a year, what is the probability that there is exactly 1 crash each
month? The above result shows that this probability is very small. Thus a model that assumes
that crashes occur randomly in time does not predict that they tend to occur uniformly over time
[Feller, p. 32].

Sampling without Replacement and without Ordering

Suppose we pick k objects from a set of n distinct objects without replacement and that
we record the result without regard to order. (You can imagine putting each selected
object into another jar, so that when the k selections are completed we have no record
of the order in which the selection was done.) We call the resulting subset of k selected
objects a “combination of size k.”

From Eq. (2.22), there are k! possible orders in which the k objects in the second
jar could have been selected. Thus if C} denotes the number of combinations of size k
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from a set of size n, then Cjk! must be the total number of distinct ordered samples of
k objects, which is given by Eq. (2.21). Thus

k!=nn—-1)...(n — k + 1), (2.24)
and the number of different combinations of size k from a set of size n, k < n, is

Cn(n—1)...(n—k+1) ! A«)

kT k! T k(n-k  \k 225)

The expression (Z) is called a binomial coefficient and is read “n choose k.”

Note that choosing k objects out of a set of n is equivalent to choosing the n — k
objects that are to be left out. It then follows that (also see Problem 2.60):

(1))

Find the number of ways of selecting two objects from A = {1, 2, 3, 4, 5} without regard to order.

Equation (2.25) gives
5 5!
(2) T

Example 2.20

Table 2.1(c) gives the 10 pairs.

Example 2.21

Find the number of distinct permutations of k£ white balls and n — k black balls.

This problem is equivalent to the following sampling problem: Put n tokens numbered 1 to
n in an urn, where each token represents a position in the arrangement of balls; pick a combina-
tion of k tokens and put the k£ white balls in the corresponding positions. Each combination of
size k leads to a distinct arrangement (permutation) of & white balls and n — k black balls. Thus
the number of distinct permutations of k white balls and n — k black balls is C}.

As a specific example let n = 4 and k = 2. The number of combinations of size 2 from a

set of four distinct objects is
4\ 4 40
2 2121 2(1)

The 6 distinct permutations with 2 whites (zeros) and 2 blacks (ones) are

1100 0110 0011 1001 1010 0101.

Example 2.22 Quality Control

A batch of 50 items contains 10 defective items. Suppose 10 items are selected at random and
tested. What is the probability that exactly 5 of the items tested are defective?
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The number of ways of selecting 10 items out of a batch of 50 is the number of combina-
tions of size 10 from a set of 50 objects:

50\ 50!

10 10! 40!
The number of ways of selecting 5 defective and 5 nondefective items from the batch of 50 is the
product N;N,, where N is the number of ways of selecting the 5 items from the set of 10 defec-

tive items, and N, is the number of ways of selecting 5 items from the 40 nondefective items. Thus
the probability that exactly 5 tested items are defective is

<10><40>
SJ\S/ 101401100 40!

= = .016.
50 5151350 51 50!
10

Example 2.21 shows that sampling without replacement and without ordering is
equivalent to partitioning the set of n distinct objects into two sets: B, containing the k&
items that are picked from the urn, and B¢, containing the n — k left behind. Suppose
we partition a set of n distinct objects into J subsets By, B,,..., B;, where B is as-
signed k7 elementsand ky + ky + -+ k; = n.

In Problem 2.61, it is shown that the number of distinct partitions is

n!

kil kol kg (2:26)

Equation (2.26) is called the multinomial coefficient. The binomial coefficient is the
J = 2 case of the multinomial coefficient.

Example 2.23

A six-sided die is tossed 12 times. How many distinct sequences of faces (numbers from the set
{1,2,3,4,5,6}) have each number appearing exactly twice? What is the probability of obtaining
such a sequence?

The number of distinct sequences in which each face of the die appears exactly twice is the
same as the number of partitions of the set {1,2,..., 12} into 6 subsets of size 2, namely

12! 12!
N2 g AB4A00.
From Eq. (2.20) we have that there are 6'? possible outcomes in 12 tosses of a die. If we suppose
that all of these have equal probabilities, then the probability of obtaining a sequence in which
each face appears exactly twice is

12126 7,484,400
62 2,176,782,336

=~ 3.4(107%).
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Sampling with Replacement and without Ordering

Suppose we pick k objects from a set of n distinct objects with replacement and we
record the result without regard to order. This can be done by filling out a form which
has n columns, one for each distinct object. Each time an object is selected, an “x” is
placed in the corresponding column. For example, if we are picking 5 objects from 4

distinct objects, one possible form would look like this:
Object 1 Object 2 Object 3 Object 4

XX / / X / XX

where the slash symbol (“/”) is used to separate the entries for different columns. Note
that this form can be summarized by the sequence

XX//X/xx

where the n — 1 /’s indicate the lines between columns, and where nothing appears be-
tween consecutive /’s if the corresponding object was not selected. Each different
arrangement of 5 x’s and 3 /’s leads to a distinct form. If we identify x’s with “white
balls” and /’s with “black balls,” then this problem was considered in Example 2.21, and
the number of different arrangements is given by (§)

In the general case the form will involve k x’s and n — 1 /’s. Thus the number of
different ways of picking k objects from a set of n distinct objects with replacement and
without ordering is given by

SRRCEY

CONDITIONAL PROBABILITY

Quite often we are interested in determining whether two events, A and B, are related in
the sense that knowledge about the occurrence of one, say B, alters the likelihood of oc-
currence of the other, A. This requires that we find the conditional probability, P[ A | B],
of event A given that event B has occurred. The conditional probability is defined by
P[AN B]
P[A|B] = PIB] for P[B] > 0. (2.27)
Knowledge that event B has occurred implies that the outcome of the experi-
ment is in the set B. In computing P[ A | B] we can therefore view the experiment as
now having the reduced sample space B as shown in Fig. 2.9. The event A occurs in the
reduced sample space if and only if the outcome ¢ is in A N B. Equation (2.27) simply
renormalizes the probability of events that occur jointly with B. Thus if we let A = B,
Eq. (2.27) gives P[B| B] = 1, as required. It is easy to show that P[ A | B], for fixed B,
satisfies the axioms of probability. (See Problem 2.74.)
If we interpret probability as relative frequency, then P[ A | B] should be the rel-
ative frequency of the event A M B in experiments where B occurred. Suppose that the
experiment is performed n times, and suppose that event B occurs np times, and that
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FIGURE 2.9
If B is known to have occurred, then A can occur only
if AM B occurs.

event A M B occurs n 45 times. The relative frequency of interest is then

nang nang/n P[AOB}
= e d

ng ngln P[B] ’

where we have implicitly assumed that P[ B] > 0. This is in agreement with Eq. (2.27).

Example 2.24

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls,
numbered 3 and 4. The number and color of the ball is noted, so the sample space is
{(1,b), (2,b), (3, w), (4, w)}. Assuming that the four outcomes are equally likely, find P[ A | B]
and P[A|C], where A, B, and C are the following events:

= {(1,b), (2,b)}, “black ball selected,”
= {(2,b), (4, w)}, “even-numbered ball selected,” and

= {(3, w), (4, w)}, “number of ball is greater than 2.”

Since PIAN B] = P[(2,b)] and P[ANC] = P[J] = 0, Eq. (2.24) gives

P[ANB

P[A|B] —[P[B]]—'.ZSS— 5 = P[A]
P[ANC] o

P[A|C] :WZEZO¢P[A].

In the first case, knowledge of B did not alter the probability of A. In the second case, knowledge
of C implied that A had not occurred.

If we multiply both sides of the definition of P[ A | B] by P[B] we obtain
P[ANB] = P[A|B]P[B]. (2.28a)
Similarly we also have that

P[ANB] = P[B| A]P[A]. (2.28b)
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In the next example we show how this equation is useful in finding probabilities
in sequential experiments. The example also introduces a tree diagram that facilitates
the calculation of probabilities.

Example 2.25

An urn contains two black balls and three white balls. Two balls are selected at random from the
urn without replacement and the sequence of colors is noted. Find the probability that both balls
are black.

This experiment consists of a sequence of two subexperiments. We can imagine working
our way down the tree shown in Fig. 2.10 from the topmost node to one of the bottom nodes: We
reach node 1 in the tree if the outcome of the first draw is a black ball; then the next subexperi-
ment consists of selecting a ball from an urn containing one black ball and three white balls. On
the other hand, if the outcome of the first draw is white, then we reach node 2 in the tree and the
second subexperiment consists of selecting a ball from an urn that contains two black balls and
two white balls. Thus if we know which node is reached after the first draw, then we can state the
probabilities of the outcome in the next subexperiment.

Let B; and B, be the events that the outcome is a black ball in the first and second draw,
respectively. From Eq. (2.28b) we have

P[BiN B,] = P[B,| B]P[By].

In terms of the tree diagram in Fig. 2.10, P[ B, ] is the probability of reaching node 1 and P[B, | B ] is
the probability of reaching the leftmost bottom node from node 1. Now P[B;] = 2/5 since the first
draw is from an urn containing two black balls and three white balls; P[ B, | B;] = 1/4since, given By,
the second draw is from an urn containing one black ball and three white balls. Thus

12 _1
45 10
In general, the probability of any sequence of colors is obtained by multiplying the probabilities
corresponding to the node transitions in the tree in Fig. 2.10.

P[BiNB,] =

Outcome of first draw

Outcome of second draw

FIGURE 2.10

The paths from the top node to a bottom node correspond to the possible outcomes
in the drawing of two balls from an urn without replacement. The probability of a
path is the product of the probabilities in the associated transitions.
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Example 2.26 Binary Communication System

Many communication systems can be modeled in the following way. First, the user inputsa O or a 1
into the system, and a corresponding signal is transmitted. Second, the receiver makes a decision
about what was the input to the system, based on the signal it received. Suppose that the user sends
0Os with probability 1 — p and 1s with probability p, and suppose that the receiver makes random
decision errors with probability . For i = 0, 1, let A; be the event “input was i,” and let B; be the
event “receiver decision was i.” Find the probabilities P[A; N B;]fori = 0,1andj = 0, 1.

The tree diagram for this experiment is shown in Fig. 2.11. We then readily obtain the de-
sired probabilities

P[AN By] = (1 = p)(1 — &),
P[AgNB] = (1 — p)e,
P[AlmBo} = pe&, and

Let By, B,, ..., B, be mutually exclusive events whose union equals the sample
space S as shown in Fig. 2.12. We refer to these sets as a partition of S. Any event A can
be represented as the union of mutually exclusive events in the following way:

A=ANS=AN(BUBU ---UB,)
= (ANB)UANB)U --- U(ANB,).
(See Fig. 2.12.) By Corollary 4, the probability of A is
P[A] = P[ANB;] + P[ANB,] +---+ P[ANB,].

By applying Eq. (2.28a) to each of the terms on the right-hand side, we obtain the
theorem on total probability:

P[A] = P[A|B\]P[B\] + P[A|B,]P[B;] + -+ + P[A|B,]P[B,].  (2.29)

This result is particularly useful when the experiments can be viewed as consist-
ing of a sequence of two subexperiments as shown in the tree diagram in Fig. 2.10.

Input into binary channel

Output from binary channel

I =pa—e (I —pe pe p(l — &)

FIGURE 2.11
Probabilities of input-output pairs in a binary transmission system.
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FIGURE 2.12
A partition of S into n disjoint sets.

Example 2.27

In the experiment discussed in Example 2.25, find the probability of the event W, that the second
ball is white.

The events By = {(b, b), (b, w)} and W; = {(w, b), (w, w)} form a partition of the sam-
ple space, so applying Eq. (2.29) we have

P[W,] = P[W,|B{]P[By] + P[W,|W;]P[W;]

It is interesting to note that this is the same as the probability of selecting a white ball in the first
draw. The result makes sense because we are computing the probability of a white ball in the sec-
ond draw under the assumption that we have no knowledge of the outcome of the first draw.

Example 2.28

A manufacturing process produces a mix of “good” memory chips and “bad” memory chips. The
lifetime of good chips follows the exponential law introduced in Example 2.13, with a rate of fail-
ure «. The lifetime of bad chips also follows the exponential law, but the rate of failure is 1000«.
Suppose that the fraction of good chipsis 1 — p and of bad chips, p. Find the probability that a
randomly selected chip is still functioning after ¢ seconds.

Let C be the event “chip still functioning after ¢ seconds,” and let G be the event “chip is
good,” and B the event “chip is bad.” By the theorem on total probability we have

P[C] = P[C|G]P[G] + P[C|B]P[B]
= P[CIG](1 - p) + P[C|B]p
— (1 _ p)e*at + pe*l(]()ﬂutt’

where we used the fact that P[C|G] = ¢™* and P[C|B] = ¢ 100,
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Bayes’ Rule

Let By, B,, ..., B, be a partition of a sample space S. Suppose that event A occurs; what
is the probability of event B;? By the definition of conditional probability we have

pigja) <~ FLANBL __PLAIBIPLE; (2.30)
j P S pralsaps,)
k=1

where we used the theorem on total probability to replace P[A]. Equation (2.30) is
called Bayes’ rule.

Bayes’ rule is often applied in the following situation. We have some random ex-
periment in which the events of interest form a partition. The “a priori probabilities” of
these events, P[B,], are the probabilities of the events before the experiment is per-
formed. Now suppose that the experiment is performed, and we are informed that
event A occurred; the “a posteriori probabilities” are the probabilities of the events in
the partition, P[Bj|A}, given this additional information. The following two examples
illustrate this situation.

Example 2.29 Binary Communication System

In the binary communication system in Example 2.26, find which input is more probable given

that the receiver has output a 1. Assume that, a priori, the input is equally likely to be 0 or 1.
Let A, be the event that the input was k,k = 0, 1, then Ay and A are a partition of the sample

space of input-output pairs. Let B; be the event “receiver output was a 1.” The probability of B; is

P[B,] = P[Bi|A¢]P[Ao] + P[Bi|A]P[A;]

G)ofl)-}

Applying Bayes’ rule, we obtain the a posteriori probabilities

P[B;|Ay]P[A €
P[Ay|B,] = [ 1P[2}11[ 0] _ £ _ .
P[Bl|AlJP[A1] (1—-e)2

P[A|B,] = PIB/] =17 (1-e).

Thus, if ¢ is less than 1/2, then input 1 is more likely than input 0 when a 1 is observed at the out-
put of the channel.

Example 2.30 Quality Control

Consider the memory chips discussed in Example 2.28. Recall that a fraction p of the chips are
bad and tend to fail much more quickly than good chips. Suppose that in order to “weed out”
the bad chips, every chip is tested for ¢ seconds prior to leaving the factory. The chips that fail
are discarded and the remaining chips are sent out to customers. Find the value of ¢ for which
99% of the chips sent out to customers are good.
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Let C be the event “chip still functioning after ¢ seconds,” and let G be the event “chip is
good,” and B be the event “chip is bad.” The problem requires that we find the value of ¢ for
which

P[G|C] = .99.
We find P[G|C] by applying Bayes’ rule:
P[CIG]P[G]
P[C|G]P[G] + P[C|B]P[B]

(1= p)e™
(1 _ p)e—m + pe—al()()()t

P[G|C] =

1
)
—a1000¢
e
1+- 2

(1—ple™

The above equation can then be solved for #:

1 (99p)
t = In| —— ).
999 "\1 — p

For example, if 1/a = 20,000 hours and p = .10, then ¢ = 48 hours.

INDEPENDENCE OF EVENTS

If knowledge of the occurrence of an event B does not alter the probability of some
other event A, then it would be natural to say that event A is independent of B. In

terms of probabilities this situation occurs when

P[ANB]
P[A] = P[A|B] = ———
P[B]

The above equation has the problem that the right-hand side is not defined when
P[B] = 0.
We will define two events A and B to be independent if

P[ANB] = P[A]P[B]. (2.31)
Equation (2.31) then implies both
P[A|B] = P[A] (2.32a)
and
P[B|A] = P[B] (2.32b)

Note also that Eq. (2.32a) implies Eq. (2.31) when P[B] # 0 and Eq. (2.32b) implies
Eq. (2.31) when P[A] # 0.
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Example 2.31

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls,
numbered 3 and 4. Let the events A, B, and C be defined as follows:

A= {(1,b),(2,b)}, “black ball selected”;
B = {(2,b), (4, w)}, “even-numbered ball selected”; and

C = {(3,w), (4, w)}, “number of ball is greater than 2.”

Are events A and B independent? Are events A and C independent?
First, consider events A and B. The probabilities required by Eq. (2.31) are

P[A] = P[B] = %
and
P[ANB] = P[{(2,b)}] = %
Thus
P[ANB] = % = P[A]P[B],

and the events A and B are independent. Equation (2.32b) gives more insight into the meaning
of independence:

P[ANB] PI{(2,b)}] 14 1
PLAIB] = —rp = Pl{@b). hw)}] 12 2
py PAI__PHOD.CHN  _n

P[S]  P[{(L,b),(2,b), B, w), (4 w)}] 1~

These two equations imply that P[A] = P[A|B] because the proportion of outcomes in S that
lead to the occurrence of A is equal to the proportion of outcomes in B that lead to A. Thus knowl-
edge of the occurrence of B does not alter the probability of the occurrence of A.

Events A and C are not independent since PPJANC] = P[] = 0so

P[A|C] = 0 # P[A] = 5.

In fact, A and C are mutually exclusive since A N C = J, so the occurrence of C implies that A
has definitely not occurred.

In general if two events have nonzero probability and are mutually exclusive,
then they cannot be independent. For suppose they were independent and mutually
exclusive; then

0 = P[ANB] = P[A]P[B],

which implies that at least one of the events must have zero probability.
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Example 2.32

Two numbers x and y are selected at random between zero and one. Let the events A, B, and C
be defined as follows:

A= {x> 05}, B = {y > 05}, and C = {x > y}.

Are the events A and B independent? Are A and C independent?

Figure 2.13 shows the regions of the unit square that correspond to the above events.
Using Eq. (2.32a), we have

P[ANB] 114 1
Pl[AIB]=————=—-—-=—-=P[A
[A15] P[B] 172 2 (4],

so events A and B are independent. Again we have that the “proportion” of outcomes in § lead-
ing to A is equal to the “proportion” in B that lead to A.

Using Eq. (2.32b), we have

PlANC] 38 3 1

P[A|C] ZQZf:fif

P[C] 172 4 2

so events A and C are not independent. Indeed from Fig. 2.13(b) we can see that knowledge of
the fact that x is greater than y increases the probability that x is greater than 0.5.

= P[A],

What conditions should three events A, B, and C satisfy in order for them to be
independent? First, they should be pairwise independent, that is,

P[ANB] = P[A]P[B], P[[ANC] = P[A]P[C],and P[BNC] = P[B]P[C].

y

1

1
2

0 1 1

2
(a) Events A and B are independent.

y
1

o 1 1

2
(b) Events A and C are not independent.

FIGURE 2.13
Examples of independent and
nonindependent events.
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In addition, knowledge of the joint occurrence of any two, say A and B, should not af-
fect the probability of the third, that is,

P[C|ANB] = P[C].
In order for this to hold, we must have

P[ANBNC]
P[C|ADB] = W = P[C]
This in turn implies that we must have
P[ANBNC] = P[ANBJP[C] = P[A]P[B]P[C],

where we have used the fact that A and B are pairwise independent. Thus we conclude
that three events A, B, and C are independent if the probability of the intersection of any
pair or triplet of events is equal to the product of the probabilities of the individual events.

The following example shows that if three events are pairwise independent, it
does not necessarily follow that PlAN BN C] = P[A]P[B]P[C].

Example 2.33

Consider the experiment discussed in Example 2.32 where two numbers are selected at random
from the unit interval. Let the events B, D, and F be defined as follows:

1 1
= > = = < =
b {y 2}’ P {" 2}
1 1 1 1
= < — < — > — > — 0.
F {x 2andy 2}U{x 2andy 2}

The three events are shown in Fig. 2.14. It can be easily verified that any pair of these events is in-
dependent:

P[BND] = % = P[B]P[D),
P[BNF] = % = P[B]P[F], and
P[DNF] = % = P[D]P[F].

However, the three events are not independent, since BN DN F = J, so

P[BNDNF] = P[@] =0 # P[B|P[D]P[F] = -.

In order for a set of n events to be independent, the probability of an event
should be unchanged when we are given the joint occurrence of any subset of the other
events. This requirement naturally leads to the following definition of independence.
The events Ay, A,,..., A, are said to be independent if fork = 2,..., n,

P[A; MA, N ---NA;]=P[A;]P[A,]...P[A;], (2.33)
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N —

1
2

1 1
@B ={y>3) (6)D = {x <)

| —

8| —

1 1 1 1
= < — ) < — > — > —
() F = {x ) and y 2} {x 2 and y 2}

FIGURE 2.14
Events B, D, and F are pairwise independent, but the
triplet B, D, F are not independent events.

where 1 = iy < i, < --- < i, = n. For a set of n events we need to verify that the
probabilities of all 2" — n — 1 possible intersections factor in the right way.

The above definition of independence appears quite cumbersome because it re-
quires that so many conditions be verified. However, the most common application of
the independence concept is in making the assumption that the events of separate ex-
periments are independent. We refer to such experiments as independent experiments.
For example, it is common to assume that the outcome of a coin toss is independent of
the outcomes of all prior and all subsequent coin tosses.

Example 2.34

Suppose a fair coin is tossed three times and we observe the resulting sequence of heads and
tails. Find the probability of the elementary events.

The sample space of this experiment is S = {HHH, HHT, HTH, THH, TTH, THT,
HTT, TTT}. The assumption that the coin is fair means that the outcomes of a single toss are
equiprobable, that is, PI[H] = P[T] = 1/2. If we assume that the outcomes of the coin tosses are
independent, then

| =

P[{HHH}] = P[{H}]P[{H}]P[{H}] =

s

P[{HHT}] = P[{H}|P[{H}]P[{T}] =

k)

®©| =
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PL{HTH}] = P[{H})P[{T}]P[{H)] = .
PL{THH}] = P{THPL{PLH)] = 5,
PL{TTH}] = PI{TYIPL(T}IPI{H}] = 4.
PL{THT}] = PL{T}JP{(H}]P[{T}] = .
PL{HTT}] = P{H}JP{{T} ]P[{T}] = g, and
PL{TTT}] = PU{T}P{THIP{T)] = &

Example 2.35 System Reliability

A system consists of a controller and three peripheral units. The system is said to be “up” if the
controller and at least two of the peripherals are functioning. Find the probability that the sys-

tem is up, assuming that all components fail independently.
Define the following events: A is “controller is functioning” and B; is “peripheral i is func-
tioning” where i = 1, 2, 3. The event F, “two or more peripheral units are functioning,” occurs if

all three units are functioning or if exactly two units are functioning. Thus
F = (ByNB,NB5)U (BN B5N B;)
U (Bf{N B,N B3) U (BN B,N By).
Note that the events in the above union are mutually exclusive. Thus
P[F] = P[B|P[B,)P[BS] + P[B,|P(BSP[B]
+ P[B{]P[B,]P[B;] + P[B:]P[B,]P[B;]
=3(1—-a)a+ (1 -a)
where we have assumed that each peripheral fails with probability a, so that P[B;] = 1 — a and

P[B{] = a.
The event “system is up” is then A N F. If we assume that the controller fails with proba-

bility p, then
P[“systemup”] = PIANF] = P[A]P[F]
= (1 - p)P[F]
(1-p){3(1 —a)la+ (1-a)l}

Let a = 10%, then all three peripherals are functioning (1 — a)® = 72.9% of the time and
two are functioning and one is “down” 3(1 — a)%a = 24.3% of the time. Thus two or more
peripherals are functioning 97.2% of the time. Suppose that the controller is not very reliable,
say p = 20%, then the system is up only 77.8% of the time, mostly because of controller
failures.

Suppose a second identical controller with p = 20% is added to the system, and that the
system is “up” if at least one of the controllers is functioning and if two or more of the peripher-
als are functioning. In Problem 2.94, you are asked to show that at least one of the controllers is
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functioning 96% of the time, and that the system is up 93.3% of the time. This is an increase of
16% over the system with a single controller.

SEQUENTIAL EXPERIMENTS

Many random experiments can be viewed as sequential experiments that consist of a
sequence of simpler subexperiments. These subexperiments may or may not be inde-
pendent. In this section we discuss methods for obtaining the probabilities of events in
sequential experiments.

Sequences of Independent Experiments

Suppose that a random experiment consists of performing experiments £y, E,, ..., E,,.
The outcome of this experiment will then be an n-tuple s = (s1,...,s,), where s, is the
outcome of the kth subexperiment. The sample space of the sequential experiment is
defined as the set that contains the above n-tuples and is denoted by the Cartesian
product of the individual sample spaces §; X §, X -+ X §,.

We can usually determine, because of physical considerations, when the subexper-
iments are independent, in the sense that the outcome of any given subexperiment can-
not affect the outcomes of the other subexperiments. Let A, A,,..., A, be events such
that A, concerns only the outcome of the kth subexperiment. If the subexperiments are
independent, then it is reasonable to assume that the above events A, A,,..., A, are
independent. Thus

P[A,N AN --- N A,] = P[A]P[A,]...P[A,]. (2.34)

This expression allows us to compute all probabilities of events of the sequential ex-
periment.

Example 2.36

Suppose that 10 numbers are selected at random from the interval [0, 1]. Find the probability
that the first 5 numbers are less than 1/4 and the last 5 numbers are greater than 1/2. Let
X1, X2,..., X1 be the sequence of 10 numbers, then the events of interest are

1

Ak:{xk<z} fork=1,...,5
1

A = xk>5 fork = 6,...,10.

If we assume that each selection of a number is independent of the other selections, then

P[A,NA,N --- N Ayy] = P[A]P[A,]...P[Ay]
-(G)

We will now derive several important models for experiments that consist of se-
quences of independent subexperiments.
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2.6.2  The Binomial Probability Law

A Bernoulli trial involves performing an experiment once and noting whether a partic-
ular event A occurs. The outcome of the Bernoulli trial is said to be a “success” if A oc-
curs and a “failure” otherwise. In this section we are interested in finding the
probability of k successes in n independent repetitions of a Bernoulli trial.

We can view the outcome of a single Bernoulli trial as the outcome of a toss of a coin
for which the probability of heads (success) is p = P[ A]. The probability of k successes in
n Bernoulli trials is then equal to the probability of k£ heads in # tosses of the coin.

Example 2.37

Suppose that a coin is tossed three times. If we assume that the fosses are independent and the
probability of heads is p, then the probability for the sequences of heads and tails is

P[{HHH}] = P[{H}]P[{H}]P[{H}] = p’

P[{HHT}] = P[{H}]P[{H}]P[{T}] = p*(1 - p),
P{HTH}] = P[{H}]P[{T}]P[{H}] = p*(1 - p),
P{THH}] = P[{T}]P[{H}]P[{H}] = p’(1 - p),
P{TTH}] = P[{T}]P[{T}]P[{H}] = p(1 — p)?,
P{THT}] = P[{T}]P[{H}]P[{T}] = p(1 — p)?,
P{HTT}] = P[{H}]P[{T}]P[{T}] = p(1 — p), and

P{TTT}] = P{T}P[{T}]P[{T}] = (1 - p)}

where we used the fact that the tosses are independent. Let k be the number of heads in three
trials, then

P[k = 0] = P[{TTT}] = (1 - p)’,

P[k = 1] = P[{TTH, THT, HTT}] = 3p(1 — p)?%,
P[k = 2] = P[{HHT,HTH, THH}] = 3p*(1 — p), and
P[k = 3] = P[{HHH}] = p’.

The result in Example 2.37 is the n = 3 case of the binomial probability law.

Theorem

Let k be the number of successes in # independent Bernoulli trials, then the probabilities of k are
given by the binomial probability law:

pak) = <Z>pk(1 — Pk for  k=0,...,n, (2.35)
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where p,(k) is the probability of k successes in 7 trials, and

n n!
<k> Tk (n - k) (2:36)

is the binomial coefficient.

The term n! in Eq. (2.36) is called n factorial and is defined by n! = n(n — 1) ...
(2)(1). By definition 0! is equal to 1.

We now prove the above theorem. Following Example 2.34 we see that each of
the sequences with k successes and n — k failures has the same probability, namely
pX(1 — p)" k. Let N,(k) be the number of distinct sequences that have k successes
and n — k failures, then

pa(k) = Ny(k)p*(1 = p)*™* (2.37)

The expression N, (k) is the number of ways of picking k positions out of » for the suc-
cesses. It can be shown that’

N, (k) = <Z> (2.38)

The theorem follows by substituting Eq. (2.38) into Eq. (2.37).

Example 2.38

Verify that Eq. (2.35) gives the probabilities found in Example 2.37.
In Example 2.37, let “toss results in heads” correspond to a “success,” then

31
p3(0) = 55, P"(1 = p)* = (1 = p)’,

3' 1 2 2
py(l) = TP (1 = p)=3p(1 - p),

31
ps(2) = 5 p°(1 = p)' = 3p°(1 = p),and

3!
ps(3) = 55, "0 = )" = P,

which are in agreement with our previous results.

You were introduced to the binomial coefficient in an introductory calculus
course when the binomial theorem was discussed:

(a + b)" = i(Z)akb"". (2.39a)
k=0

See Example 2.21.
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Ifweleta = b = 1, then

2 = E<k> — SN,
k=0 k=0

which is in agreement with the fact that there are 2" distinct possible sequences of suc-
cesses and failures in 7 trials. f weleta = pandb = 1 — pin Eq.(2.39a), we then obtain

n

1= E(,’Z)#‘(l =Py = S pulh), (2:39)
=0 =0
which confirms that the probabilities of the binomial probabilities sum to 1.

The term n! grows very quickly with 7, so numerical problems are encountered for
relatively small values of # if one attempts to compute p,(k) directly using Eq. (2.35).
The following recursive formula avoids the direct evaluation of n! and thus extends the
range of n for which p, (k) can be computed before encountering numerical difficulties:

(n—k)p

pulk +1) = mpn(

k). (2.40)

Later in the book, we present two approximations for the binomial probabilities for
the case when n is large.

Example 2.39

Let k be the number of active (nonsilent) speakers in a group of eight noninteracting (i.e., inde-
pendent) speakers. Suppose that a speaker is active with probability 1/3. Find the probability that
the number of active speakers is greater than six.

Fori=1,...,8, let A; denote the event “ith speaker is active.” The number of active
speakers is then the number of successes in eight Bernoulli trials with p = 1/3. Thus the proba-
bility that more than six speakers are active is

Plk = 7] + Plk = §] = @@7@ ’ @@8

=.00244 + .00015 = .00259.

Example 2.40 Error Correction Coding

A communication system transmits binary information over a channel that introduces random
bit errors with probability ¢ = 107>, The transmitter transmits each information bit three times,
and a decoder takes a majority vote of the received bits to decide on what the transmitted bit
was. Find the probability that the receiver will make an incorrect decision.

The receiver can correct a single error, but it will make the wrong decision if the channel
introduces two or more errors. If we view each transmission as a Bernoulli trial in which a “suc-
cess” corresponds to the introduction of an error, then the probability of two or more errors in
three Bernoulli trials is

Plk=2] = <z>(.001)2(.999) + @)(.001)3 = 3(1079).
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The Multinomial Probability Law

The binomial probability law can be generalized to the case where we note the oc-
currence of more than one event. Let By, B,,..., By, be a partition of the sample
space S of some random experiment and let P[B;] = p;. The events are mutually ex-
clusive, so

prtppt+py=1L1

Suppose that n independent repetitions of the experiment are performed. Let k;
be the number of times event B; occurs, then the vector (ky, ks, ..., ky) specifies the
number of times each of the events B; occurs. The probability of the vector (ky, ..., k)
satisfies the multinomial probability law:

n! ky
Pl(ky, kas. .. k)] o phipke . phi, (2.41)

kil ky!...
where k; + k, + -+ + kjy; = n. The binomial probability law is the M = 2 case of the
multinomial probability law. The derivation of the multinomial probabilities is identi-
cal to that of the binomial probabilities. We only need to note that the number of dif-
ferent sequences with kq, k,, ..., k,; instances of the events By, B,, ..., By, is given by
the multinomial coefficient in Eq. (2.26).

Example 2.41

A dart is thrown nine times at a target consisting of three areas. Each throw has a probability of
.2,.3,and .5 of landing in areas 1, 2, and 3, respectively. Find the probability that the dart lands
exactly three times in each of the areas.

This experiment consists of nine independent repetitions of a subexperiment that has
three possible outcomes. The probability for the number of occurrences of each outcome is given
by the multinomial probabilities with parameters n = 9 and p; = .2, p, = .3,and p3 = .5:

9!

P[(3,3,3)] = 33031 (2)3(:3)3(.5)% = .04536.

Example 2.42

Suppose we pick 10 telephone numbers at random from a telephone book and note the last digit in
each of the numbers. What is the probability that we obtain each of the integers from 0 to 9 only once?

The probabilities for the number of occurrences of the integers is given by the multinomial
probabilities with parameters M = 10, n = 10, and p; = 1/10 if we assume that the 10 integers in
the range 0 to 9 are equiprobable. The probability of obtaining each integer once in 10 draws is then

10!

m(.l)w =~ 3.6(1074).

The Geometric Probability Law

Consider a sequential experiment in which we repeat independent Bernoulli trials
until the occurrence of the first success. Let the outcome of this experiment be m, the
number of trials carried out until the occurrence of the first success. The sample space
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for this experiment is the set of positive integers. The probability, p(m), that m trials are
required is found by noting that this can only happen if the first m — 1 trials result in
failures and the mth trial in success.® The probability of this event is

p(m) = P[ASAS...AS 1A =1 —p)™lp m=1,2,..., (242a)

where A; is the event “success in ith trial.” The probability assignment specified by
Eq. (2.42a) is called the geometric probability law.
The probabilities in Eq. (2.42a) sum to 1:

o0 o0 3 1
2 pm)y=p2q"t=pr— =1 (2.42b)
m=1 m=1 q

where ¢ = 1 — p, and where we have used the formula for the summation of a geometric
series. The probability that more than K trials are required before a success occurs has a
simple form:

P{m> K} =p > q"'=ps*“>q

m=K+1 j=0
1
= K —_—
Pa
= gk, (2.43)

Example 2.43 Error Control by Retransmission

Computer A sends a message to computer B over an unreliable radio link. The message is encoded
so that B can detect when errors have been introduced into the message during transmission. If B
detects an error, it requests A to retransmit it. If the probability of a message transmission error is
g = .1, what is the probability that a message needs to be transmitted more than two times?

Each transmission of a message is a Bernoulli trial with probability of success p = 1 — gq.
The Bernoulli trials are repeated until the first success (error-free transmission). The probability
that more than two transmissions are required is given by Eq. (2.43):

Plm >2]=¢*=107%

Sequences of Dependent Experiments

In this section we consider a sequence or “chain” of subexperiments in which the out-
come of a given subexperiment determines which subexperiment is performed next.
We first give a simple example of such an experiment and show how diagrams can be
used to specify the sample space.

Example 2.44

A sequential experiment involves repeatedly drawing a ball from one of two urns, noting the
number on the ball, and replacing the ball in its urn. Urn 0 contains a ball with the number 1
and two balls with the number 0, and urn 1 contains five balls with the number 1 and one ball

See Example 2.11 in Section 2.2 for a relative frequency interpretation of how the geometric probability law
comes about.
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with the number 0. The urn from which the first draw is made is selected at random by flipping
a fair coin. Urn 0 is used if the outcome is heads and urn 1 if the outcome is tails. Thereafter the
urn used in a subexperiment corresponds to the number on the ball selected in the previous
subexperiment.

The sample space of this experiment consists of sequences of Os and 1s. Each possible se-
quence corresponds to a path through the “trellis” diagram shown in Fig. 2.15(a). The nodes in
the diagram denote the urn used in the nth subexperiment, and the labels in the branches denote
the outcome of a subexperiment. Thus the path 0011 corresponds to the sequence: The coin toss
was heads so the first draw was from urn 0; the outcome of the first draw was 0, so the second
draw was from urn 0; the outcome of the second draw was 1, so the third draw was from urn 1;
and the outcome from the third draw was 1, so the fourth draw is from urn 1.

Now suppose that we want to compute the probability of a particular sequence of
outcomes, say sy, 1, 5. Denote this probability by P[{sp} N {s1} N {s,}]. Let A = {55}
and B = {5y} N {s;}, thensince P[A N B] = P[ A|B]P[B] we have

P[{so} N {s1} N {s:}] = P[{s2}{so} N {s1}P[{s0} N {s1}]
= P[{s:}[{so} O {s}IP[{s1} [{so} IP[{s0}].  (244)

Now note that in the above urn example the probability P[{s,}{so} N -+ N {s,-1}]
depends only on {s,_;} since the most recent outcome determines which subexperi-
ment is performed:

P[{s.}{so} N -+ N {s,-1}] = P[{s,}{s,-1}]. (2.45)

(a) Each sequence of outcomes corresponds
to a path through this trellis diagram.

2
3

W
W

(0)

(b) The probability of a sequence of outcomes is the
product of the probabilities along the associated path.

FIGURE 2.15
Trellis diagram for a Markov chain.
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Therefore for the sequence of interest we have that

P[{so} N {s1:} N {s:}] = P[{s2}{s1 }]P[{s1}[ {50} IP[{s0}]- (2.46)

Sequential experiments that satisfy Eq. (2.45) are called Markov chains. For these
experiments, the probability of a sequence sy, sy, .., §, is given by

P05 815+ 8] = PLsulsu-11P[sn-1l54-2] ... P[s1ls0]P[s0] (2.47)

where we have simplified notation by omitting braces. Thus the probability of the se-
quence s, ..., s, is given by the product of the probability of the first outcome s, and
the probabilities of all subsequent transitions, s, to sy, §; to s,, and so on. Chapter 11
deals with Markov chains.

Example 2.45

Find the probability of the sequence 0011 for the urn experiment introduced in Example 2.44.

Recall that urn 0 contains two balls with label 0 and one ball with label 1, and that urn 1
contains five balls with label 1 and one ball with label 0. We can readily compute the probabilities
of sequences of outcomes by labeling the branches in the trellis diagram with the probability of
the corresponding transition as shown in Fig. 2.15(b). Thus the probability of the sequence 0011 is
given by

P[0011] = P[1]1]P[1|0]P[0]0]P[0],

where the transition probabilities are given by

1 2

P[1]0] = 3 and  P[0|0] = 3
1

P[11] = % and P[0]1] = 3

and the initial probabilities are given by

If we substitute these values into the expression for P[0011], we obtain
S5V\/1\/2)\/1 5

POOIL] =Nzl 5 ) ==

oo - ()E)E)E) - 5

The two-urn experiment in Examples 2.44 and 2.45 is the simplest example of the
Markov chain models that are discussed in Chapter 11. The two-urn experiment dis-
cussed here is used to model situations in which there are only two outcomes, and in
which the outcomes tend to occur in bursts. For example, the two-urn model has been
used to model the “bursty” behavior of the voice packets generated by a single speak-
er where bursts of active packets are separated by relatively long periods of silence.
The model has also been used for the sequence of black and white dots that result from
scanning a black and white image line by line.
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A COMPUTER METHOD FOR SYNTHESIZING RANDOMNESS: RANDOM NUMBER
GENERATORS

This section introduces the basic method for generating sequences of “random” num-
bers using a computer. Any computer simulation of a system that involves randomness
must include a method for generating sequences of random numbers. These random
numbers must satisfy long-term average properties of the processes they are simulating.
In this section we focus on the problem of generating random numbers that are “uni-
formly distributed” in the interval [0, 1]. In the next chapter we will show how these ran-
dom numbers can be used to generate numbers with arbitrary probability laws.

The first problem we must confront in generating a random number in the inter-
val [0, 1] is the fact that there are an uncountably infinite number of points in the in-
terval, but the computer is limited to representing numbers with finite precision only.
We must therefore be content with generating equiprobable numbers from some finite
set,say {0,1,...,M — 1} or {1,2,..., M}. By dividing these numbers by M, we obtain
numbers in the unit interval. These numbers can be made increasingly dense in the unit
interval by making M very large.

The next step involves finding a mechanism for generating random numbers. The
direct approach involves performing random experiments. For example, we can gener-
ate integers in the range 0 to 2" — 1 by flipping a fair coin m times and replacing the
sequence of heads and tails by Os and 1s to obtain the binary representation of an inte-
ger. Another example would involve drawing a ball from an urn containing balls num-
bered 1 to M. Computer simulations involve the generation of long sequences of
random numbers. If we were to use the above mechanisms to generate random num-
bers, we would have to perform the experiments a large number of times and store the
outcomes in computer storage for access by the simulation program. It is clear that this
approach is cumbersome and quickly becomes impractical.

Pseudo-Random Number Generation

The preferred approach for the computer generation of random numbers involves the
use of recursive formulas that can be implemented easily and quickly. These pseudo-
random number generators produce a sequence of numbers that appear to be random
but that in fact repeat after a very long period. The currently preferred pseudo-random
number generator is the so-called Mersenne Twister, which is based on a matrix linear
recurrence over a binary field. This algorithm can yield sequences with an extremely
long period of 27 — 1. The Mersenne Twister generates 32-bit integers, so
M = 23 — 1 in terms of our previous discussion. We obtain a sequence of numbers in
the unit interval by dividing the 32-bit integers by 2°%. The sequence of such numbers
should be equally distributed over unit cubes of very high dimensionality. The
Mersenne Twister has been shown to meet this condition up to 632-dimensionality. In
addition, the algorithm is fast and efficient in terms of storage.

Software implementations of the Mersenne Twister are widely available and incor-
porated into numerical packages such as MATLAB® and Octave.” Both MATLAB and
Octave provide a means to generate random numbers from the unit interval using the
"MATLAB® and Octave are interactive computer programs for numerical computations involving matrices.

MATLAB® is a commercial product sold by The Mathworks, Inc. Octave is a free, open-source program that is
mostly compatible with MATLAB in terms of computation. Long [9] provides an introduction to Octave.
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rand command. The rand (n, m) operator returns an # row by m column matrix with
elements that are random numbers from the interval [0, 1). This operator is the starting
point for generating all types of random numbers.

Example 2.46 Generation of Numbers from the Unit Interval

First, generate 6 numbers from the unit interval. Next, generate 10,000 numbers from the unit in-
terval. Plot the histogram and empirical distribution function for the sequence of 10,000 numbers.
The following command results in the generation of six numbers from the unit interval.

>rand (1, 6)
ans =
Columns 1 through 6:
0.642667 0.147811 0.317465 0.512824 0.710823 0.406724

The following set of commands will generate 10000 numbers and produce the histogram
shown in Fig. 2.16.
>X-rand(10000,1) ;

o©

Return result in a 10,000-element column vector X.

>K=0.005:0.01;0.995;

oe

Produce column vector K consisting of the mid points
for 100 bins of width 0.01 in the unit interval.

o°

>Hist (X,K) % Produce the desired histogram in Fig 2.16.

o0

Plot the proportion of elements in the array X less
% than or equal to k, where k is an element of K.

>plot (K, empirical_cdf (K, X))

The empirical cdf is shown in Fig. 2.17. It is evident that the array of random numbers is uni-
formly distributed in the unit interval.

140

120 — M —
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FIGURE 2.16
Histogram resulting from experiment to generate 10,000 numbers in the unit interval.
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FIGURE 2.17
Empirical cdf of experiment that generates 10,000 numbers.

Simulation of Random Experiments

MATLAB® and Octave provide functions that are very useful in carrying out numer-
ical evaluation of probabilities involving the most common distributions. Functions
are also provided for the generation of random numbers with specific probability dis-
tributions. In this section we consider Bernoulli trials and binomial distributions. In
Chapter 3 we consider experiments with discrete sample spaces.

Example 2.47 Bernoulli Trials and Binomial Probabilities

First, generate the outcomes of eight Bernoulli trials. Next, generate the outcomes of 100 repeti-
tions of a random experiment that counts the number of successes in 16 Bernoulli trials with
probability of success /5. Plot the histogram of the outcomes in the 100 experiments and compare
to the binomial probabilities with n = 16 and p = 1/2.

The following command will generate the outcomes of eight Bernoulli trials, as shown by
the answer that follows.

>X=rand(1,8)<0.5; % Generate 1 row of Bernoulli trials with p = 0.5
X =
01100011

If the number produced by rand for a given Bernoulli trial is less than p = 0.5, then the outcome
of the Bernoulli trial is 1.



70

*2.8

Chapter 2 Basic Concepts of Probability Theory

Next we show the set of commands to generate the outcomes of 100 repetitions of random
experiments where each involves 16 Bernoulli trials.

>X=rand (100,16)<0.5; % Generate 100 rows of 16 Bernoulli trials with
p = 05.

oe

Add the results of each row to obtain the number of
successes in each experiment. Y contains the 100

o°

>Y=sum (X, 2) ;

o

% outcomes.
>K=0:16;
>Z=empirical_ pdf (K,Y)); % Find the relative frequencies of the outcomes in Y.
>Bar (K, Z) % Produce a bar graph of the relative frequencies.
>hold on % Retains the graph for next command.
>stem (K, binomial pdf (K,16,0.5)) % Plot the binomial probabilities along

% with the corresponding relative frequencies.

Figure 2.18 shows that there is good agreement between the relative frequencies and
the binomial probabilities.

FINE POINTS: EVENT CLASSES®

If the sample space S is discrete, then the event class can consist of all subsets of S.
There are situations where we may wish or are compelled to let the event class F be a
smaller class of subsets of S. In these situations, only the subsets that belong to this
class are considered events. In this section we explain how these situations arise.

Let C be the class of events of interest in a random experiment. It is reasonable to
expect that any set operation on events in C will produce a set that is also an event in C.
We can then ask any question regarding events of the random experiment, express it
using set operations, and obtain an event that is in C. Mathematically, we require that C
be a field.

A collection of sets F is called a field if it satisfies the following conditions:

() DeF (2.48a)
(ii) f AcF and Be F,then AUBe F (2.48b)
(iii) if Ae F then A°c F. (2.48¢)

Using DeMorgan’s rule we can show that (ii) and (iii) imply that if Ae F and
Be F,then AN Be F. Conditions (ii) and (iii) then imply that any finite union or in-
tersection of events in F will result in an event that is also in F.

Example 2.48

Let S = {T, H}. Find the field generated by set operations on the class consisting of elementary
eventsof S:C = {{H}, {T}}.

8The “Fine Points” sections elaborate on concepts and distinctions that are not required in an introductory
course. The material in these sections is not necessarily more mathematical, but rather is not usually covered
in a first course in probability.
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FIGURE 2.18
Relative frequencies from 100 binomial experiments and corresponding binomial probabilities.

Let F be the class generated by C. First note that {H} U {T} = {H, T} = S, which implies
that S is in F. Next we find that S¢ = (J which implies that J € F. Any other set operations will
not yield events that are not already in F. Therefore

F ={<, {H}, {T}, {H,T}} = S.

Note that we have generated the power set of S and shown that it is a field.

The above example can be generalized to any finite or countably infinite set S.
We can generate the power set S by taking all possible unions of elementary events
and their complements, and S forms a field. Note that in Example 2.1, this includes the
random experiments E, E,, E3, E4, and Es. Classical probability deals with finite sam-
ple spaces and so taking the class of events of interest as the power set is sufficient to pro-
ceed to the final step in specifying a probability model, namely, to provide a rule for
assigning probabilities to events.

The following example shows that in some situations the field F of events of inter-
est need not include all subsets of the sample space S. In this case only those subsets of S
that are in F are considered valid events. For this reason, we will restrict the use of the term
“event” to sets that are in the field F that is associated with a given random experiment.

Example 2.49 Lisa and Homer's Urn Experiment

An urn contains three white balls. One ball has a red dot, another ball has a green dot, and the
third ball has a teal dot. The experiment consists of selecting a ball at random and noting the
color of the ball.
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When Lisa does the experiment, she has sample space S; = {r, g, t}, and her power set
has 23 = 8 events:

Se =1, {r}, {g}, {t}, {r, e}, {r. t}, {g. t}, {r, g, t} }.

When Homer does the experiment, he has a smaller sample space S = {R, G} because
Homer cannot tell green from teal! Homer’s power set has 4 events:

Sn = {0, {R}, {G}, {R, G} }.

Homer does not understand what the problem is. He can deal with any union, intersection, or
complement of events in Sy,.

The problem of course is that Lisa is interested in sets that include questions about teal.
Homer’s class of events S3, cannot handle these questions. Lisa figures out what’s happened as
follows. She notes that Homer has partitioned Lisa’s sample space S; as follows (see Fig. 2.19b):

Ay ={r} and A, = {gt}.

Each event in Homer’s experiment is related to an equivalent event in Lisa’s experiment.
Every union, complement, or intersection in Homer’s event class corresponds to the union, com-
plement, or intersection of the corresponding A,’s in the partition. For example, the event “the
outcome is R or G” leads to the following:

{R} U {G} correspondsto A; U A, = {r, g, t}.

©
FIGURE 2.19
(a) Homer's mapping; (b) Partition of Lisa's sample space;
(c) Partitioning of a sample space.
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You can try any combination of unions, intersections, and complements of events in Homer’s
experiment and the corresponding operations on A; and/or A, will result in events in the field:

F = {2, {r}, {r, g}, {r, &, 1} }.

The field F does not contain all of the events in Lisa’s power set S.. The field F suffices to ad-
dress events that only involve the outcomes in Sy . Questions that involve distinguishing be-
tween teal and green lead to subsets of S; , such as {r, t}, that are not events in F and hence are
outside the scope of the experiment.

Lisa explains it all to Homer, and, predictably, his response is “D’oh!”

The sets in the field F that specify the events of interest are said to be
measurable. Any subset of S that is not in F is not measurable. In the above exam-
ple, the set {r, t} is not measurable with respect to F. The situation in the above ex-
ample occurs very frequently in practice, where a decision is made to restrict the
scope of questions about a random experiment. Indeed this is part of the modeling
process!

In the general case, the sample space S in the original random experiment is divided
into mutually exclusive events Ay, ..., A,, where A;N A; = Jfori # jand

S:A]UAQU“‘UA,[,

as shown in Fig. 2.19(c). The collection of events Ay, ..., A, are said to form a partition
of S. When the experiment is performed, we observe which event in the partition oc-
curs and not the specific outcome . All questions (events) that involve unions, inter-
sections, or complements of the events in the partition can be answered from this
observation. The events in the partition are like elementary events. We can obtain the
field F generated by the events in the partition by taking unions of all distinct combi-
nations of the Aq,..., A, and their complements. In this case, the subsets of S that are
not in F are not measurable and thus are not considered to be events.

Example 2.50

In Experiment E; a coin is tossed three times and the sequence of heads and tails is recorded.
The sample space is S; = {TTT, TTH, THT, HTT, HHT, HTH, THH, HHH} and the corre-

sponding power set Ss has 28 = 256 events:
S; = {J, {TTT}, {TTH}, ..., {HHH}, {TTT, TTH}, ..., {THH, HHH}, ..., S;}.

In Experiment Ej4 the coin is tossed three times but only the number of heads is recorded.
The sample space is S, = {0, 1,2, 3} and the corresponding power set S, has 2% = 16 events:

g, = 1910}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3},
47 142,33, {0,1,2},{0,1,3},{0,2,3} {1,2,3}, S, '
Experiment E, divides the sample space S; into the following partition:
Ag = {TTT}, A, = {TTH, THT, HTT},
A, = {THH, HTH, HHT}, A; = {HHH}.
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All the events in Sy correspond to unions, intersections, and complements of Ag, Ay, A,, and
Aj.The field F generated by unions, intersections, and complements of these four events has 16
events and addresses all questions associated with Experiment E,.

We see that the event space is greatly simplified and reduced in size by restricting the
events of interest to those that only involve the total number of heads and not details about the
sequence of heads and tails. The simplification is even more marked as we increase the number
of tosses. For example if we extend E; to 100 coin tosses, then S5 has 2! outcomes, a huge num-
ber, whereas S, has only 101 outcomes.

Now suppose that § is countably infinite. For example in Experiment Eq we have
S = {1,2,...} and we might be interested in the condition “number of transmissions
is greater than 10.” This condition corresponds to the set {10,11,12,...}, which is a
countable union of elementary sets. It is clear that for events in our class of interest, we
should now require that a countable union of events should also be an event, that is:

G) Ter (2.49a)

(i) if A, Ay, ... e F then | JAre F (2.49b)
k=1

(iii) if A F then A'e F. (2.49¢)

A class of sets F that satisfies Egs. (2.49a)—(2.49c¢) is called a sigma field. As before, equa-
tions (ii) and (iii) and DeMorgan’s rule imply that countable intersections of events
Miei Ay are also in F.

Next consider the case where the sample space S is not countable, as in the
unit interval in the real line in Experiment E5, or the unit square in the real plane in
E1,. (See Figs.2.1(a) and (c).) The probability that the outcome of the experiment is
exactly a single point in Sy, is clearly zero. But this result is not very useful. Instead,
we can say that the probability of the event “the outcome (x, y) satisfies x > y” is
1/2, by noting that half of Sy, satisfies the condition of the event. Similarly, the prob-
ability of any event that corresponds to a rectangle within Sy, is simply the area of
the rectangle. Taking the set of events that are rectangles within S, we can build a
field of events by forming countable unions, intersections, and complements. From
your previous experience using integrals to calculate areas in the plane, you know
that we can approximate any reasonable shape, i.e., event, by taking the union of a
sequence of increasingly fine rectangles as shown in Fig. 2.20(a). Clearly there is a
strong relationship between calculating integrals, measuring areas, and assigning
probabilities to events.

We can finally explain (qualitatively) why we cannot allow all subsets of S to be
events when the sample space is uncountably infinite. In essence, there are subsets that
are so irregular (see Fig. 2.20b) that it is impossible to define integrals to measure
them. We say that these subsets are not measurable. Advanced math is required to
show this and we will not deal with this any further. The good news is that we can build
a sigma field from the countable unions, intersections, and complements of intervals in
R, or rectangles in R? that have well-behaved integrals and to which we can assign
probabilities. This is familiar territory. In the remainder of this text, we will refer to
these sigma fields over R and R? as the Borel fields.
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W

A

0 1 0 1
@ (b)

FIGURE 2.20
If A C B, then P(A) = P(B).

FINE POINTS: PROBABILITIES OF SEQUENCES OF EVENTS

In this optional section, we discuss the Borel field in more detail and show how se-
quences of intervals can generate many events of practical interest. We then present a re-
sult on the continuity of the probability function for a sequence of events. We show how
this result is applied to find the probability of the limit of a sequence of Borel events.

The Borel Field of Events
Let S be the real line R. Consider events that are semi-infinite intervals of the real line:
(=00,b] = {x: =00 < x = b}.

We are interested in the Borel field B, which is the sigma field generated by countable
unions, countable intersections and complements of events of the form (—o0, b]. We
will show that events of the following form are also in B:

(a,b), [a, b], (a,b], [a, D), [a, 20), (a, ), (=00, b), {b}.
Since (—00, b] e B, then its complement is in 3:
(-0, b]¢ = (b, ) eB.
The following intersection must then be in B:
(a,00)N (—00,b] = (a,b] for a <b.

We claim for now that (—00, b) e B. Then the following complements and intersections
are also in :

(=00,b) = [b, ) and (a, ) N (—00,b) = (a,b) fora < b,
[a, 0) N (—00,b] = [a,b] and [a, ) N (=00, b) = [a,b) fora < b,
and [b, 0c0) N (=00, b] = {b}.
Furthermore, B contains all complements, countable unions, and intersections of events
of the above forms. Note in particular that B contains all singleton sets (elementary

events) {b} and therefore all the events for discrete and countable sample spaces of
real numbers.
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Let’s prove the above claim that (—00, b) e . By definition, all events of the form
(—00, b] e B. Consider the sequence of events A, = (—00,b — 1/n] = {x: —00 < x =
b — 1/n}. Note that the A, are an increasing sequence, thatis, A, C A, ;1. All A, € B, so
their countable union is also in B by Eq. (2.49b):

UAn = U{x: —00 < x =b— 1/n} = (—00,b).
n=1 n=1

We claim that this countable union is equal to (—00, b). To show equality of the two
rightmost sets, first assume that x € U 2021 A, We can find a sufficiently large index n
so that x < b — 1/n < b (that is, x is strictly less than b), which implies that
x e (=00, b). Thus we have shown that U,—; A, C (=00, b).

Now assume that x e (—00, b), then x < b. We can therefore find an integer
no such that x <b — 1/ny < b, so xe A, and so x eU,~ 1A, . Thus (—00,b)
C U2, A,. We conclude that U,~ A, = (—00, b). Therefore (—0c0, b) € B.

Continuity of Probability

Axiom III' provides the key property that allows us to assign probabilities to events
through the addition of the probabilities of mutually exclusive events. In this section
we present two consequences of the Axiom III' that are very useful in finding the
probabilities of sequences of events.

Let Ay, A,,... be a sequence of events from a sigma field, such that,

A CAC...CA,...

The sequence is said to be an increasing sequence of events. For example, the sequence
of intervals [a,b — 1/n] with a < b — 1 is an increasing sequence. The sequence
(—n, a] is also increasing. We define the limit of an increasing sequence as the union of
all the events in the sequence:

lim A, = (JA,.
n—0o0 n=1

The union contains all elements of all events in the sequence and no other elements.
Note that the countable union of events is also in the sigma field.
We say that the sequence Aq, A,,... is a decreasing sequence of events if

A DA,D...DA,...

For example, the sequence of intervals (¢ — 1/n, a + 1/n) is a decreasing sequence, as
is the sequence (—090, a + 1/n]. We define the limit of a decreasing sequence as the in-
tersection of all the events in the sequence:

lim A, = (A,
n=1

n—0o0
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The intersection contains all elements that are in all the events of the sequence and no
other elements. If all the events in the sequence are in a sigma field, then the countable
intersection will also be in the sigma field.

Corollary 8 Continuity of Probability Function

Let Ay, A,,... be an increasing or decreasing sequences of events in F, then:
lim P[A,] = P[lim A,]. (2.50)
n—00 n—00

We first show how the continuity result is applied in problems that involve events from the
Borel field.

Example 2.51

Find an expression for the probabilities of the following sequences of events from the Borel
field: [a,b — 1/n], (—n,a], (a — 1/n,a + 1/n), (—00,a + 1/n].

limP[{x:a=x=b—1n}]=Pllim{x:a=x=>b—1n}]=P[{x:a=x<b}]

[

lim P[{x:—n<x=ga}]=Pllim{x:—n<x=a}]=P[{x:—00 < x =a}]

lim P[{x:a —1Un<x<a+1n}]=P[lim{x:a—1Un<x<a+ 1ln}]=P{x=a}]
[

lim P[{x: -0 < x =g+ 1/n}] = P[lim {x: —00 < x < a + 1/n}]

n—00

= P[{x:—00 < x = a}].

To prove the continuity property for an increasing sequence of events, form the
following sequence of mutually exclusive events:

Bl:A],B2:A2_A],...,Bn:An_An_l,.... (2513)

The event B, contains the set of outcomes in A, not already present in A, A,,... A,
as illustrated in Fig. 2.21, so it is easy to show that B; N By, = (J and that

| lBj = | IAj forn=1,2,... (2.51b)
=1 j=1
as well as
j=1 j=1

Since the sequence is expanding, we also have that:

A, =UJA; (2.51d)
j=1
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FIGURE 2.21
Increasing sequence of events.

The proof of continuity applies Axiom III" to Eq (2.51c¢):

[o¢]

PUa) = lUs) = 31

=1
We express the summation as a limit and apply Axiom II:

n

iP[B] = lim EP = lim P[UB;].

n—)()o n—oo i=1

i=
Finally we use Egs. (2.51b) and (2.51d):

lim P[UB] = lim P[UA] = lim P[A,)].

n—o00 i n—0o00 h n—oo

This proves continuity for increasing sequences:

lim P[A [UA } m A,].

n—0o0 OO

For decreasing sequences, we note that the sequence of complements of the de-
creasing sequences is an increasing sequence. We therefore apply the continuity result
to the complement of the decreasing sequence A ,,:

P[UAS] = lim P[AS). (2.52a)
=1 n—00
Next we apply DeMorgan’s rule:

o] c 0 o]
<UA§> = (A5 = N4
j=1 j=1 j=1
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and Corollary 1 to obtain:

1P = U]

We now use Eq. (2.52a):

1 - P[ﬁAj] = P[GA;‘] = lim P[A5] = lim(1 - P[A,])
j=1 =1 oo

n—>00

which gives the desired result:

SUMMARY

P[N4;] = lim [A,]. (2.52b)

A probability model is specified by identifying the sample space S, the event class
of interest, and an initial probability assignment, a “probability law,” from which
the probability of all events can be computed.

The sample space § specifies the set of all possible outcomes. If it has a finite or
countable number of elements, S is discrete; S is continuous otherwise.

Events are subsets of S that result from specifying conditions that are of interest
in the particular experiment. When S is discrete, events consist of the union of el-
ementary events. When § is continuous, events consist of the union or intersec-
tion of intervals in the real line.

The axioms of probability specify a set of properties that must be satisfied by the
probabilities of events. The corollaries that follow from the axioms provide rules
for computing the probabilities of events in terms of the probabilities of other re-
lated events.

An initial probability assignment that specifies the probability of certain events
must be determined as part of the modeling. If S is discrete, it suffices to specify
the probabilities of the elementary events. If S is continuous, it suffices to specify
the probabilities of intervals or of semi-infinite intervals.

Combinatorial formulas are used to evaluate probabilities in experiments that
have an equiprobable, finite number of outcomes.

A conditional probability quantifies the effect of partial knowledge about the
outcome of an experiment on the probabilities of events. It is particularly useful
in sequential experiments where the outcomes of subexperiments constitute the
“partial knowledge.”

Bayes’ rule gives the a posteriori probability of an event given that another event
has been observed. It can be used to synthesize decision rules that attempt to de-
termine the most probable “cause” in light of an observation.

Two events are independent if knowledge of the occurrence of one does not alter
the probability of the other. Two experiments are independent if all of their re-
spective events are independent. The notion of independence is useful for com-
puting probabilities in experiments that involve noninteracting subexperiments.
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Many experiments can be viewed as consisting of a sequence of independent
subexperiments. In this chapter we presented the binomial, the multinomial, and
the geometric probability laws as models that arise in this context.

A Markov chain consists of a sequence of subexperiments in which the outcome
of a subexperiment determines which subexperiment is performed next. The
probability of a sequence of outcomes in a Markov chain is given by the product
of the probability of the first outcome and the probabilities of all subsequent
transitions.

Computer simulation models use recursive equations to generate sequences of
pseudo-random numbers.

CHECKLIST OF IMPORTANT TERMS

Axioms of Probability Independent experiments
Bayes’ rule Initial probability assignment
Bernoulli trial Markov chain

Binomial coefficient Mutually exclusive events
Binomial theorem Null event

Certain event Outcome

Conditional probability Partition

Continuous sample space Probability law

Discrete sample space Sample space

Elementary event Set operations

Event
Event class

Theorem on total probability
Tree diagram

Independent events
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Section 2.1: Specifying Random Experiments

2.1.

2.2

2.3.

24.

2.5.

The (loose) minute hand in a clock is spun hard and the hour at which the hand comes to
rest is noted.

(a) What is the sample space?

(b) Find the sets corresponding to the events: A = “hand is in first 4 hours”; B = “hand
is between 2nd and 8th hours inclusive”; and D = “hand is in an odd hour.”

(¢) Findtheeventss ANBND, AANB,AU (BN D), (AUB)ND".

A die is tossed twice and the number of dots facing up in each toss is counted and noted
in the order of occurrence.

(a) Find the sample space.

(b) Find the set A corresponding to the event “number of dots in first toss is not less than
number of dots in second toss.”

(¢) Find the set B corresponding to the event “number of dots in first toss is 6.”

(d) Does A imply B or does B imply A?

(e) Find A N B¢ and describe this event in words.

(f) Let C correspond to the event “number of dots in dice differs by 2.” Find A N C.

Two dice are tossed and the magnitude of the difference in the number of dots facing up

in the two dice is noted.

(a) Find the sample space.

(b) Find the set A corresponding to the event “magnitude of difference is 3.”

(¢) Express each of the elementary events in this experiment as the union of elementary
events from Problem 2.2.

A binary communication system transmits a signal X that is either a +2 voltage signal
or a —2 voltage signal. A malicious channel reduces the magnitude of the received
signal by the number of heads it counts in two tosses of a coin. Let Y be the resulting
signal.

(a) Find the sample space.

(b) Find the set of outcomes corresponding to the event “transmitted signal was defi-
nitely +2.”

(¢) Describe in words the event corresponding to the outcome Y = 0.
A desk drawer contains six pens, four of which are dry.

(a) The pens are selected at random one by one until a good pen is found. The sequence
of test results is noted. What is the sample space?
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2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.
2.13.

2.14.

2.15.

Basic Concepts of Probability Theory

(b) Suppose that only the number, and not the sequence, of pens tested in part a is noted.
Specify the sample space.

(¢) Suppose that the pens are selected one by one and tested until both good pens have
been identified, and the sequence of test results is noted. What is the sample space?

(d) Specify the sample space in part c if only the number of pens tested is noted.

Three friends (Al, Bob, and Chris) put their names in a hat and each draws a name from
the hat. (Assume Al picks first, then Bob, then Chris.)

(a) Find the sample space.

(b) Find the sets A, B, and C that correspond to the events “Al draws his name,” “Bob
draws his name,” and “Chris draws his name.”

(¢) Find the set corresponding to the event, “no one draws his own name.”

(d) Find the set corresponding to the event, “everyone draws his own name.”

(e) Find the set corresponding to the event, “one or more draws his own name.”

Let M be the number of message transmissions in Experiment Ej.

(a) What is the set A corresponding to the event “M is even”?

(b) What is the set B corresponding to the event “M is a multiple of 3”?

(c¢) What is the set C corresponding to the event “6 or fewer transmissions are re-
quired”?

(d) Find the sets AN B, A — B, AN BNC and describe the corresponding events in
words.

A number U is selected at random from the unit interval. Let the events A and B be:
A = “U differs from 1/2 by more than 1/4” and B = “1 — U is less than 1/2.” Find the
events AN B, AANB, AUB.

The sample space of an experiment is the real line. Let the events A and B correspond to
the following subsets of the real line: A = (=00, r] and B = (—00, 5], where r =< s. Find
an expression for the event C = (7, s] in terms of A and B. Show that B = AU C and
ANC =@.

Use Venn diagrams to verify the set identities given in Egs. (2.2) and (2.3). You will need
to use different colors or different shadings to denote the various regions clearly.

Show that:

(a) If event A implies B, and B implies C, then A implies C.

(b) If event A implies B, then B implies A°.

Show thatif AUB = Aand ANB = Athen A = B.

Let A and B be events. Find an expression for the event “exactly one of the events A and
B occurs.” Draw a Venn diagram for this event.

Let A, B, and C be events. Find expressions for the following events:
(a) Exactly one of the three events occurs.

(b) Exactly two of the events occur.

(¢) One or more of the events occur.

(d) Two or more of the events occur.

(e) None of the events occur.

Figure P2.1 shows three systems of three components, C;, C,, and C;. Figure P2.1(a) is a
“series” system in which the system is functioning only if all three components are func-
tioning. Figure 2.1(b) is a “parallel” system in which the system is functioning as long as
at least one of the three components is functioning. Figure 2.1(c) is a “two-out-of-three”
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system in which the system is functioning as long as at least two components are func-
tioning. Let A be the event “component k is functioning.” For each of the three system
configurations, express the event “system is functioning” in terms of the events Aj.

C C ° C,
— ( o C, |—eo C; |—e C, C, ° Cs
C3 C2 L 4 C3

(a) Series system (b) Parallel system (c) Two-out-of-three system

FIGURE P2.1

2.16. A system has two key subsystems. The system is “up” if both of its subsystems are func-
tioning. Triple redundant systems are configured to provide high reliability. The overall
system is operational as long as one of three systems is “up.” Let A, correspond to the
event “unit k in system j is functioning,” for j = 1,2,3and k = 1, 2.

(a) Write an expression for the event “overall system is up.”

(b) Explain why the above problem is equivalent to the problem of having a connection
in the network of switches shown in Fig. P2.2.

A App

oo oo

Az Ap

FIGURE P2.2

2.17. In a specified 6-AM-to-6-AM 24-hour period, a student wakes up at time #; and goes to

sleep at some later time ;.

(a) Find the sample space and sketch it on the x-y plane if the outcome of this experi-
ment consists of the pair (¢, 1,).

(b) Specity the set A and sketch the region on the plane corresponding to the event “stu-
dent is asleep at noon.”

(¢) Specify the set B and sketch the region on the plane corresponding to the event “stu-
dent sleeps through breakfast (7-9 am).”

(d) Sketch the region corresponding to A N B and describe the corresponding event in
words.
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2.18.

2.19.

2.20.
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A road crosses a railroad track at the top of a steep hill. The train cannot stop for oncoming

cars and cars, cannot see the train until it is too late. Suppose a train begins crossing the road

at time ¢, and that the car begins crossing the track at time #,, where 0 <ty < Tand0<t, < T

(a) Find the sample space of this experiment.

(b) Suppose that it takes the train d; seconds to cross the road and it takes the car d, sec-
onds to cross the track. Find the set that corresponds to a collision taking place.

(¢) Find the set that corresponds to a collision is missed by 1 second or less.

A random experiment has sample space S = {—1,0, +1}.

(a) Find all the subsets of S.

(b) The outcome of a random experiment consists of pairs of outcomes from S where the
elements of the pair cannot be equal. Find the sample space S’ of this experiment.
How many subsets does S have?

(a) A coin is tossed twice and the sequence of heads and tails is noted. Let S be the sam-
ple space of this experiment. Find all subsets of S.

(b) A coin is tossed twice and the number of heads is noted. Let S? be the sample space
of this experiment. Find all subsets of S'.

(¢) Consider parts a and b if the coin is tossed 10 times. How many subsets do S and
S’ have? How many bits are needed to assign a binary number to each possible
subset?

Section 2.2: The Axioms of Probability

2.21.

2.22,

2.23.

2.24.

2.25.

2.26.

2.27.

A die is tossed and the number of dots facing up is noted.

(a) Find the probability of the elementary events under the assumption that all faces of
the die are equally likely to be facing up after a toss.

(b) Find the probability of the events: A = {more than 3 dots}; B = {odd number
of dots}.

(¢) Find the probability of AU B, AN B, A".

In Problem 2.2, a die is tossed twice and the number of dots facing up in each toss is
counted and noted in the order of occurrence.

(a) Find the probabilities of the elementary events.

(b) Find the probabilities of events A, B, C, AN B¢, and A N C defined in Problem 2.2.

A random experiment has sample space S = {a, b, c, d}. Suppose that P[{c,d}] = 3/8,
P[{b,c}] = 6/8, and P[{d}] = 1/8, P[{c,d}] = 3/8. Use the axioms of probability to
find the probabilities of the elementary events.
Find the probabilities of the following events in terms of P[A], P[B],and P[A N B]:
(a) A occurs and B does not occur; B occurs and A does not occur.
(b) Exactly one of A or B occurs.
(¢) Neither A nor B occur.
Let the events A and B have P[A] = x, P[B] = y, and P[AU B] = z. Use Venn dia-
grams to find P[A N B], P[A° N B°], P[A°U B°], P[AN B°], P[A°U B].
Show that
P[AUBUC] = P[A] + P[B] + P[C] — P[ANB] — P[ANC] — P[BNC]
+ PIANBNC].
Use the argument from Problem 2.26 to prove Corollary 6 by induction.
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2.30.

2.31.

2.32.

2.33.

2.34.

2.35.
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A hexadecimal character consists of a group of three bits. Let A; be the event “ith bitin a
characterisa 1.”

(a) Find the probabilities for the following events: A;, A;MN A3, A;N A, N Az and
A1 U A, U A;. Assume that the values of bits are determined by tosses of a fair coin.

(b) Repeat part a if the coin is biased.

Let M be the number of message transmissions in Problem 2.7. Find the probabilities of
the events A, B,C,C‘, ANB, A — B, AN BN C. Assume the probability of successful
transmission is 1/2.

Use Corollary 7 to prove the following:
(a) PIJAUBUC] = P[A] + P[B] + P[C].

®) P[OAJ = S PA.
k=1 =l

© P[ﬁAkJ =1 - 3p[ag)
k=1 k=1

The second expression is called the union bound.

Let p be the probability that a single character appears incorrectly in this book. Use the
union bound for the probability of there being any errors in a page with n characters.

A die is tossed and the number of dots facing up is noted.

(a) Find the probability of the elementary events if faces with an even number of dots
are twice as likely to come up as faces with an odd number.

(b) Repeat parts b and c of Problem 2.21.

Consider Problem 2.1 where the minute hand in a clock is spun. Suppose that we now
note the minute at which the hand comes to rest.

(a) Suppose that the minute hand is very loose so the hand is equally likely to come to
rest anywhere in the clock. What are the probabilities of the elementary events?

(b) Now suppose that the minute hand is somewhat sticky and so the hand is 1/2 as like-
ly to land in the second minute than in the first, 1/3 as likely to land in the third
minute as in the first, and so on. What are the probabilities of the elementary events?

(¢) Now suppose that the minute hand is very sticky and so the hand is 1/2 as likely to
land in the second minute than in the first, 1/2 as likely to land in the third minute as
in the second, and so on. What are the probabilities of the elementary events?

(d) Compare the probabilities that the hand lands in the last minute in parts a, b, and c.
A number x is selected at random in the interval [—1,2]. Let the events A = {x < 0},
B ={|x— 05| <05},and C = {x > 0.75}.

(a) Find the probabilities of A, B, AN B,and ANC.

(b) Find the probabilities of AU B, AUC, and AU B U C, first, by directly evaluating
the sets and then their probabilities, and second, by using the appropriate axioms or
corollaries.

A number x is selected at random in the interval [ —1, 2]. Numbers from the subinterval
[0, 2] occur half as frequently as those from [ -1, 0).

(a) Find the probability assignment for an interval completely within [—1, 0); complete-
ly within [0, 2]; and partly in each of the above intervals.

(b) Repeat Problem 2.34 with this probability assignment.
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2.36.

2.37.

2.38.

Basic Concepts of Probability Theory

The lifetime of a device behaves according to the probability law P[(t, c0)] = 1/tfort > 1.
Let A be the event “lifetime is greater than 4,” and B the event “lifetime is greater than 8.”

(a) Find the probability of AN B, and AU B.
(b) Find the probability of the event “lifetime is greater than 6 but less than or equal to 12.”

Consider an experiment for which the sample space is the real line. A probability law as-
signs probabilities to subsets of the form (—o0, r].

(a) Show that we must have P[(—00,r]] = P[(—00,s]] whenr < s.

(b) Find an expression for P[(r, s]] in terms of P[(—00, r]] and P[(—09, s]]
(¢) Find an expression for P[(s, 00)].

Two numbers (x, y) are selected at random from the interval [0, 1].

(a) Find the probability that the pair of numbers are inside the unit circle.
(b) Find the probability that y > 2x.

*Section 2.3: Computing Probabilities Using Counting Methods

2.39.

2.40.

2.41.

2.42.

2.43.

2.44.

2.45.

2.46.

2.417.

The combination to a lock is given by three numbers from the set {0, 1,...,59}. Find the
number of combinations possible.

How many seven-digit telephone numbers are possible if the first number is not allowed
tobeOor1?

A pair of dice is tossed, a coin is flipped twice, and a card is selected at random from a
deck of 52 distinct cards. Find the number of possible outcomes.

A lock has two buttons: a “0” button and a “1” button. To open a door you need to push
the buttons according to a preset 8-bit sequence. How many sequences are there? Sup-
pose you press an arbitrary 8-bit sequence; what is the probability that the door opens? If
the first try does not succeed in opening the door, you try another number; what is the
probability of success?

A Web site requires that users create a password with the following specifications:

e Length of 8 to 10 characters

* Includes at least one special character {!, @,#, $, %,", &, *,(,), +,=, {, }, |, <, >,

o[ 147}

¢ No spaces

e May contain numbers (0-9), lower and upper case letters (a—z, A-Z)

¢ [s case-sensitive.

How many passwords are there? How long would it take to try all passwords if a pass-

word can be tested in 1 microsecond?

A multiple choice test has 10 questions with 3 choices each. How many ways are there to

answer the test? What is the probability that two papers have the same answers?

A student has five different t-shirts and three pairs of jeans (“brand new,” “broken in,”

and “perfect”).

(a) How many days can the student dress without repeating the combination of jeans
and t-shirt?

(b) How many days can the student dress without repeating the combination of jeans
and t-shirt and without wearing the same t-shirt on two consecutive days?

Ordering a “deluxe” pizza means you have four choices from 15 available toppings. How

many combinations are possible if toppings can be repeated? If they cannot be repeated?

Assume that the order in which the toppings are selected does not matter.

A lecture room has 60 seats. In how many ways can 45 students occupy the seats in the

room?
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2.60.
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List all possible permutations of two distinct objects; three distinct objects; four distinct

objects. Verify that the number is n!.

A toddler pulls three volumes of an encyclopedia from a bookshelf and, after being scold-

ed, places them back in random order. What is the probability that the books are in the

correct order?

Five balls are placed at random in five buckets. What is the probability that each bucket

has a ball?

List all possible combinations of two objects from two distinct objects; three distinct ob-

jects; four distinct objects. Verify that the number is given by the binomial coefficient.

A dinner party is attended by four men and four women. How many unique ways can the

eight people sit around the table? How many unique ways can the people sit around the

table with men and women alternating seats?

A hot dog vendor provides onions, relish, mustard, ketchup, Dijon ketchup, and hot pep-

pers for your hot dog. How many variations of hot dogs are possible using one condi-

ment? Two condiments? None, some, or all of the condiments?

A lot of 100 items contains k defective items. M items are chosen at random and tested.

(a) What is the probability that m are found defective? This is called the hypergeometric
distribution.

(b) A lotis accepted if 1 or fewer of the M items are defective. What is the probability
that the lot is accepted?

A park has N raccoons of which eight were previously captured and tagged. Suppose that

20 raccoons are captured. Find the probability that four of these are found to be tagged.

Denote this probability, which depends on N, by p(N). Find the value of N that maximizes

this probability. Hint: Compare the ratio p(N)/p(N — 1) to unity.

A lot of 50 items has 40 good items and 10 bad items.

(a) Suppose we test five samples from the lot, with replacement. Let X be the number of
defective items in the sample. Find P[ X = k].

(b) Suppose we test five samples from the lot, without replacement. Let Y be the number
of defective items in the sample. Find P[Y = k].

How many distinct permutations are there of four red balls, two white balls, and three

black balls?

A hockey team has 6 forwards, 4 defensemen, and 2 goalies. At any time, 3 forwards, 2 de-

fensemen, and 1 goalie can be on the ice. How many combinations of players can a coach

put on the ice?

Find the probability that in a class of 28 students exactly four were born in each of the

seven days of the week.
n\ n
k n—k

Show that

In this problem we derive the multinomial coefficient. Suppose we partition a set of » dis-

tinct objects into J subsets By, B, ..., B; of size kq,..., k;, respectively, where k; = 0,

andkl + k2 + ... + k] = n.

(a) Let N; denote the number of possible outcomes when the ith subset is selected.
Show that

n n—k1 l’l_kl_ _kaZ
N, = N, = ..,N;j_ = .
' <k1>’ ’ ( ka > T ( Ky



88

Chapter 2

Basic Concepts of Probability Theory

(b) Show that the number of partitions is then:

n!

NN Nyt =

Section 2.4: Conditional Probability

2.62.

2.63.
2.64.
2.65.
2.66.

2.67.
2.68.

2.69.

2.70.

2.71.

2.72.

2.73.

2.74.

2.75.
2.76.

A die is tossed twice and the number of dots facing up is counted and noted in the order
of occurrence. Let A be the event “number of dots in first toss is not less than number of
dots in second toss,” and let B be the event “number of dots in first toss is 6.” Find P[ A| B]
and P[B|A].
Use conditional probabilities and tree diagrams to find the probabilities for the elemen-
tary events in the random experiments defined in parts a to d of Problem 2.5.
In Problem 2.6 (name in hat), find P[BN C|A] and P[C|A N B].
In Problem 2.29 (message transmissions), find P[B| A] and P[ A|B].
In Problem 2.8 (unit interval), find P[B|A] and P[ A|B].
In Problem 2.36 (device lifetime), find P[B| A] and P[ A|B].
In Problem 2.33, let A = {hand rests in last 10 minutes} and B = {hand rests in last
5 minutes}. Find P[B| A] for parts a, b, and c.
A number x is selected at random in the interval [—1,2]. Let the events A = {x < 0},
B = {|lx — 05| < 05},and C = {x > 0.75}. Find P[A|B], P[B|C], P[A|C¢], P[BIC"].
In Problem 2.36, let A be the event “lifetime is greater than #,” and B the event “lifetime
is greater than 2¢.” Find P[B| A]. Does the answer depend on t? Comment.
Find the probability that two or more students in a class of 20 students have the same
birthday. Hint: Use Corollary 1. How big should the class be so that the probability that
two or more students have the same birthday is 1/2?
A cryptographic hash takes a message as input and produces a fixed-length string as out-
put, called the digital fingerprint. A brute force attack involves computing the hash for a
large number of messages until a pair of distinct messages with the same hash is found.
Find the number of attempts required so that the probability of obtaining a match is 1/2.
How many attempts are required to find a matching pair if the digital fingerprint is 64 bits
long? 128 bits long?
(a) Find P[A|B)ift ANB = J;if AC B;if AD B.
(b) Show that if P[A|B] > P[A], then P[B|A] > P[B].
Show that P[ A|B] satisfies the axioms of probability.

) 0= P[AIB] =1

(i) P[SIB] =1

(i) If ANC = &, then PPAUC|B] = P[A|B] + P[C|B].

Show that lAN BN C] = P[A|BNC]P[B|C]P[C].
In each lot of 100 items, two items are tested, and the lot is rejected if either of the tested
items is found defective.
(a) Find the probability that a lot with k defective items is accepted.
(b) Suppose that when the production process malfunctions, 50 out of 100 items are de-

fective. In order to identify when the process is malfunctioning, how many items

should be tested so that the probability that one or more items are found defective is
at least 99%?
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2.77. A nonsymmetric binary communications channel is shown in Fig. P2.3. Assume the input

2.78.

2.79.

2.80.

2.81.

is “0” with probability p and “1” with probability 1 — p.
(a) Find the probability that the output is 0.

(b) Find the probability that the input was 0 given that the output is 1. Find the
probability that the input is 1 given that the output is 1. Which input is more
probable?

Input Output

FIGURE P2.3

The transmitter in Problem 2.4 is equally likely to send X = +2 as X = —2. The mali-
cious channel counts the number of heads in two tosses of a fair coin to decide by how
much to reduce the magnitude of the input to produce the output Y.

(a) Use a tree diagram to find the set of possible input-output pairs.
(b) Find the probabilities of the input-output pairs.

(¢) Find the probabilities of the output values.

(d) Find the probability that the input was X = +2 given that Y = k.

One of two coins is selected at random and tossed three times. The first coin comes up

heads with probability p; and the second coin with probability p, = 2/3 > p; = 1/3.

(a) What is the probability that the number of heads is k?

(b) Find the probability that coin 1 was tossed given that k£ heads were observed, for
k=0,1,2,3.

(¢) In part b, which coin is more probable when k heads have been observed?

(d) Generalize the solution in part b to the case where the selected coin is tossed m times.
In particular, find a threshold value 7 such that when k > T heads are observed, coin
1 is more probable, and when k < T are observed, coin 2 is more probable.

(e) Suppose that p, = 1 (that is, coin 2 is two-headed) and 0 < p; < 1. What is the
probability that we do not determine with certainty whether the coin is 1 or 2?

A computer manufacturer uses chips from three sources. Chips from sources A, B, and C

are defective with probabilities .005, .001, and .010, respectively. If a randomly selected

chip is found to be defective, find the probability that the manufacturer was A; that the

manufacturer was C. Assume that the proportions of chips from A, B, and C are 0.5, 0.1,

and 0.4, respectively.

A ternary communication system is shown in Fig. P2.4. Suppose that input symbols 0, 1,

and 2 occur with probability 1/3 respectively.

(a) Find the probabilities of the output symbols.

(b) Suppose that a 1 is observed at the output. What is the probability that the input was
0?71?2?
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Input

FIGURE P2.4

Section 2.5: Independence of Events

2.82.

2.83.

2.84.

2.85.

2.86.
2.87.

2.88.

2.89.
2.90.

2.91.

2.92.

2.93.

2.94.

Let S = {1,2,3,4} and A = {1,2}, B = {1,3},C = {1, 4}. Assume the outcomes are
equiprobable. Are A, B, and C independent events?

Let U be selected at random from the unit interval. Let A = {0 <U < 1/2},
B = {1/4 <U < 3/4},and C = {1/2 < U < 1}. Are any of these events independent?
Alice and Mary practice free throws at the basketball court after school. Alice makes free
throws with probability p, and Mary makes them with probability p,,. Find the probabil-
ity of the following outcomes when Alice and Mary each take one shot: Alice scores a
basket; Either Alice or Mary scores a basket; both score; both miss.

Show that if A and B are independent events, then the pairs A and B¢, A° and B, and A°
and B¢ are also independent.

Show that events A and B are independent if P[A|B] = P[A|B].

Let A, B, and C be events with probabilities P[A], P[B], and P[C].

(a) Find P[AU B]if A and B are independent.

(b) Find P[AU B]if A and B are mutually exclusive.

(¢) Find PIAUBUC]if A, B, and C are independent.

(d) Find PlAU BUC]if A, B, and C are pairwise mutually exclusive.

An experiment consists of picking one of two urns at random and then selecting a ball
from the urn and noting its color (black or white). Let A be the event “urn 1 is selected”
and B the event “a black ball is observed.” Under what conditions are A and B inde-
pendent?

Find the probabilities in Problem 2.14 assuming that events A, B, and C are independent.
Find the probabilities that the three types of systems are “up” in Problem 2.15. As-
sume that all units in the system fail independently and that a type k unit fails with
probability py.

Find the probabilities that the system is “up” in Problem 2.16. Assume that all units in the
system fail independently and that a type k unit fails with probability p, .

A random experiment is repeated a large number of times and the occurrence of events
A and B is noted. How would you test whether events A and B are independent?
Consider a very long sequence of hexadecimal characters. How would you test whether
the relative frequencies of the four bits in the hex characters are consistent with indepen-
dent tosses of coin?

Compute the probability of the system in Example 2.35 being “up” when a second con-
troller is added to the system.
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In the binary communication system in Example 2.26, find the value of ¢ for which the
input of the channel is independent of the output of the channel. Can such a channel be
used to transmit information?

In the ternary communication system in Problem 2.81, is there a choice of & for which the
input of the channel is independent of the output of the channel?

Section 2.6: Sequential Experiments

2.97. A block of 100 bits is transmitted over a binary communication channel with probability

2.98.

2.99.

2.100.

2.101.

2.102.

2.103.

of bit error p = 1072

(a) If the block has 1 or fewer errors then the receiver accepts the block. Find the prob-
ability that the block is accepted.

(b) If the block has more than 1 error, then the block is retransmitted. Find the probabil-
ity that M retransmissions are required.

A fraction p of items from a certain production line is defective.

(a) What is the probability that there is more than one defective item in a batch of n
items?

(b) During normal production p = 107 but when production malfunctions p = 107%.
Find the size of a batch that should be tested so that if any items are found defective
we are 99% sure that there is a production malfunction.

A student needs eight chips of a certain type to build a circuit. It is known that 5% of
these chips are defective. How many chips should he buy for there to be a greater than
90% probability of having enough chips for the circuit?

Each of n terminals broadcasts a message in a given time slot with probability p.

(a) Find the probability that exactly one terminal transmits so the message is received by
all terminals without collision.

(b) Find the value of p that maximizes the probability of successful transmission in part a.

(¢) Find the asymptotic value of the probability of successful transmission as n becomes
large.

A system contains eight chips. The lifetime of ezzch chip has a Weibull probability law:
with parameters A and k = 2: P[(t, 00)] = ¢~ )" for t = 0. Find the probability that at
least two chips are functioning after 2/A seconds.

A machine makes errors in a certain operation with probability p. There are two types of

errors. The fraction of errors that are type 1 is «, and type 2is 1 — a.

(a) What is the probability of k errors in n operations?

(b) What is the probability of k; type 1 errors in n operations?

(¢) What is the probability of k, type 2 errors in n operations?

(d) What is the joint probability of k; and k, type 1 and 2 errors, respectively, in n opera-
tions?

Three types of packets arrive at a router port. Ten percent of the packets are “expedited

forwarding (EF),” 30 percent are “assured forwarding (AF),” and 60 percent are “best ef-

fort (BE).”

(a) Find the probability that k of N packets are not expedited forwarding.

(b) Suppose that packets arrive one at a time. Find the probability that k packets are
received before an expedited forwarding packet arrives.

(¢) Find the probability that out of 20 packets, 4 are EF packets, 6 are AF packets,and 10
are BE.
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2.104. A run-length coder segments a binary information sequence into strings that consist of
either a “run” of k “zeros” punctuated by a “one”,for k = 0,...,m — 1, or a string of m
“zeros.” The m = 3 case is:

String  Run-length k&

1 0
01 1
001 2
000 3

Suppose that the information is produced by a sequence of Bernoulli trials with
P[“one”] = P[success] = p.

(a) Find the probability of run-length k in the m = 3 case.

(b) Find the probability of run-length k for general m.

2.105. The amount of time cars are parked in a parking lot follows a geometric probability law
with p = 1/2. The charge for parking in the lot is $1 for each half-hour or less.

(a) Find the probability that a car pays k dollars.

(b) Suppose that there is a maximum charge of $6. Find the probability that a car pays k
dollars.

2.106. A biased coin is tossed repeatedly until heads has come up three times. Find the proba-
bility that k tosses are required. Hint: Show that {“k tosses are required”} = AN B,
where A = {“kth toss is heads”} and B = {“2 heads occurs in k — 1 tosses”}.

2.107. An urn initially contains two black balls and two white balls. The following experiment is
repeated indefinitely: A ball is drawn from the urn; if the color of the ball is the same as
the majority of balls remaining in the urn, then the ball is put back in the urn. Otherwise
the ball is left out.

(a) Draw the trellis diagram for this experiment and label the branches by the transition
probabilities.

(b) Find the probabilities for all sequences of outcomes of length 2 and length 3.

(¢) Find the probability that the urn contains no black balls after three draws; no white
balls after three draws.

(d) Find the probability that the urn contains two black balls after n trials; two white
balls after n trials.

2.108. In Example 2.45,let py(n) and p;(n) be the probabilities that urn 0 or urn 1 is used in the
nth subexperiment.

(a) Find py(1) and p;(1).

(b) Express py(n + 1) and p;(n + 1) in terms of py(n) and p;(n).

(¢) Evaluate py(n) and py(n) forn = 2,3, 4.

(d) Find the solution to the recursion in part b with the initial conditions given in part a.
(e) What are the urn probabilities as n approaches infinity?

*Section 2.7: Synthesizing Randomness: Number Generators

2.109. An urn experiment is to be used to simulate a random experiment with sample
space S = {1,2,3,4,5} and probabilities p; = 1/3, p, = 1/5, p; = 1/4, p, = 1/7, and
ps=1—(p; + p, + p3 + py). How many balls should the urn contain? Generalize
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the result to show that an urn experiment can be used to simulate any random ex-
periment with finite sample space and with probabilities given by rational numbers.

Suppose we are interested in using tosses of a fair coin to simulate a random experiment
in which there are six equally likely outcomes, where S = {0, 1, 2, 3, 4, 5}. The following
version of the “rejection method” is proposed:

1. Toss a fair coin three times and obtain a binary number by identifying heads with
zero and tails with one.

2. If the outcome of the coin tosses in step 1 is the binary representation for a num-
ber in S, output the number. Otherwise, return to step 1.

(a) Find the probability that a number is produced in step 2.
(b) Show that the numbers that are produced in step 2 are equiprobable.

(¢) Generalize the above algorithm to show how coin tossing can be used to simulate
any random urn experiment.

Use the rand function in Octave to generate 1000 pairs of numbers in the unit square.
Plot an x-y scattergram to confirm that the resulting points are uniformly distributed in
the unit square.

Apply the rejection method introduced above to generate points that are uniformly dis-
tributed in the x > y portion of the unit square. Use the rand function to generate a pair
of numbers in the unit square. If x > y, accept the number. If not, select another pair.
Plot an x-y scattergram for the pair of accepted numbers and confirm that the resulting
points are uniformly distributed in the x > y region of the unit square.

The sample mean-squared value of the numerical outcomes X (1), X(2),... X(n) of a se-
ries of n repetitions of an experiment is defined by

(X%, = L3 x2()).

(a) What would you expect this expression to converge to as the number of repetitions n
becomes very large?

(b) Find a recursion formula for (X?), similar to the one found in Problem 1.9.

The sample variance is defined as the mean-squared value of the variation of the samples
about the sample mean

V), = SUXG) - (X))

Note that the (X), also depends on the sample values. (It is customary to replace the n in
the denominator with n — 1 for technical reasons that will be discussed in Chapter 8. For
now we will use the above definition.)

(a) Show that the sample variance satisfies the following expression:
<V2>n = <X2>n - <X>%

(b) Show that the sample variance satisfies the following recursion formula:

v, = (1= Do+ 2= Doxon - 0,07

n n
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Suppose you have a program to generate a sequence of numbers U, that is uniformly dis-
tributed in [0, 1]. Let Y,, = aU, + B.
(a) Find « and B so that Y, is uniformly distributed in the interval [q, b].

(b) Leta = —5and b = 15. Use Octave to generate Y, and to compute the sample mean
and sample variance in 1000 repetitions. Compare the sample mean and sample vari-
ance to (a + b)/2 and (b — a)*/12, respectively.

Use Octave to simulate 100 repetitions of the random experiment where a coin is tossed
16 times and the number of heads is counted.

(a) Confirm that your results are similar to those in Figure 2.18.
(b) Rerun the experiment with p = 0.25 and p = 0.75. Are the results as expected?

*Section 2.8: Fine Points: Event Classes

2.117.

2.118.

2.119.

In Example 2.49, Homer maps the outcomes from Lisa’s sample space S; = {r, g, t} into
a smaller sample space S;; = {R,G}:f(r) = R, f(g) = G, and f(t) = G.
Define the inverse image events as follows:

f{R}) = A1 = {r} and ['({G}) = A, = {g.t}.

Let A and B be events in Homer’s sample space.

(a) Show that f(AUB) = f{(A)Uf(B).

(b) Show that f{(ANB) = f1(A)NfB).

(¢c) Show that f71(A%) = f1(A)".

(d) Show that the results in parts a, b, and c hold for a general mapping f from a sample
space Sto aset.S'.

Let f be a mapping from a sample space S to a finite set S' = {y;, ¥»,..., Vu}-

(a) Show that the set of inverse images A; = f~'({y,}) forms a partition of S.

(b) Show that any event B of S’ can be related to a union of A ’s.

Let A be any subset of S. Show that the class of sets {J, A, A°, S} is a field.

*Section 2.9: Fine Points: Probabilities of Sequences of Events

2.120.

2.121.

2.122.

2.123.
2.124.

Find the countable union of the following sequences of events:

(@) A,=[a+ 1/n,b— 1/n].

(M) B, = (—n,b — 1/n].

(© C,=[a+ 1n,b).

Find the countable intersection of the following sequences of events:
(@ A, = (a—1/nb + 1/n).

(b) B, =[a,b + 1/n).

(© C,=(a— 1n,b].

(a) Show that the Borel field can be generated from the complements and countable
intersections and unions of open sets (a, b).

(b) Suggest other classes of sets that can generate the Borel field.
Find expressions for the probabilities of the events in Problem 2.120.
Find expressions for the probabilities of the events in Problem 2.121.
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Problems Requiring Cumulative Knowledge

2.125.

2.126.

2.127.

2.128.

Compare the binomial probability law and the hypergeometric law introduced in Prob-
lem 2.54 as follows.

(a) Suppose a lot has 20 items of which five are defective. A batch of ten items is tested
without replacement. Find the probability that k are found defective for k = 0,.. ., 10.
Compare this to the binomial probabilities with » = 10 and p = 5/20 = .25.

(b) Repeat but with a lot of 1000 items of which 250 are defective. A batch of ten items is
tested without replacement. Find the probability that k are found defective for
k =0,...,10. Compare this to the binomial probabilities with » = 10 and p = 5/20
= .25.

Suppose that in Example 2.43, computer A sends each message to computer B simulta-

neously over two unreliable radio links. Computer B can detect when errors have oc-

curred in either link. Let the probability of message transmission error in link 1 and link

2 be g, and g, respectively. Computer B requests retransmissions until it receives an

error-free message on either link.

(a) Find the probability that more than k transmissions are required.

(b) Find the probability that in the last transmission, the message on link 2 is received
free of errors.

In order for a circuit board to work, seven identical chips must be in working order. To
improve reliability, an additional chip is included in the board, and the design allows it to
replace any of the seven other chips when they fail.

(a) Find the probability p, that the board is working in terms of the probability p that an
individual chip is working.

(b) Suppose that n circuit boards are operated in parallel, and that we require a 99.9%
probability that at least one board is working. How many boards are needed?

Consider a well-shuffled deck of cards consisting of 52 distinct cards, of which four are

aces and four are kings.

(a) Find the probability of obtaining an ace in the first draw.

(b) Draw a card from the deck and look at it. What is the probability of obtaining an
ace in the second draw? Does the answer change if you had not observed the first
draw?

(¢) Suppose we draw seven cards from the deck. What is the probability that the seven
cards include three aces? What is the probability that the seven cards include two
kings? What is the probability that the seven cards include three aces and/or two
kings?

(d) Suppose that the entire deck of cards is distributed equally among four players. What
is the probability that each player gets an ace?
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In most random experiments we are interested in a numerical attribute of the outcome
of the experiment. A random variable is defined as a function that assigns a numerical
value to the outcome of the experiment. In this chapter we introduce the concept of a
random variable and methods for calculating probabilities of events involving a ran-
dom variable. We focus on the simplest case, that of discrete random variables, and in-
troduce the probability mass function. We define the expected value of a random
variable and relate it to our intuitive notion of an average. We also introduce the con-
ditional probability mass function for the case where we are given partial information
about the random variable. These concepts and their extension in Chapter 4 provide us
with the tools to evaluate the probabilities and averages of interest in the design of sys-
tems involving randomness.

Throughout the chapter we introduce important random variables and discuss
typical applications where they arise. We also present methods for generating random
variables. These methods are used in computer simulation models that predict the be-
havior and performance of complex modern systems.

THE NOTION OF A RANDOM VARIABLE

The outcome of a random experiment need not be a number. However, we are usually
interested not in the outcome itself, but rather in some measurement or numerical at-
tribute of the outcome. For example, in # tosses of a coin, we may be interested in the
total number of heads and not in the specific order in which heads and tails occur. In a
randomly selected Web document, we may be interested only in the length of the doc-
ument. In each of these examples, a measurement assigns a numerical value to the out-
come of the random experiment. Since the outcomes are random, the results of the
measurements will also be random. Hence it makes sense to talk about the probabili-
ties of the resulting numerical values. The concept of a random variable formalizes this
notion.

A random variable X is a function that assigns a real number, X ({), to each out-
come ¢ in the sample space of a random experiment. Recall that a function is simply a
rule for assigning a numerical value to each element of a set, as shown pictorially in
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FIGURE 3.1

A random variable assigns a number X(¢) to each outcome ¢ in the
sample space S of a random experiment.

Fig. 3.1. The specification of a measurement on the outcome of a random experiment
defines a function on the sample space, and hence a random variable. The sample space
S is the domain of the random variable, and the set Sy of all values taken on by X is the
range of the random variable. Thus Sy is a subset of the set of all real numbers. We will
use the following notation: capital letters denote random variables, e.g., X or Y, and
lower case letters denote possible values of the random variables, e.g., x or y.

Example 3.1 Coin Tosses

A coin is tossed three times and the sequence of heads and tails is noted. The sample space for this
experiment is S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. Let X be the number of
heads in the three tosses. X assigns each outcome ¢ in S a number from the set Sy = {0, 1,2, 3}.
The table below lists the eight outcomes of S and the corresponding values of X.

g HHH HHT HTH THH HTT THT TTH TTT

X(¢): 3 2 2 2 1 1 1 0

X is then a random variable taking on values in the set Sy = {0, 1, 2, 3}.

Example 3.2 A Betting Game

A player pays $1.50 to play the following game: A coin is tossed three times and the number of
heads X is counted. The player receives $1 if X = 2 and $8 if X = 3, but nothing otherwise. Let
Y be the reward to the player. Y is a function of the random variable X and its outcomes can be
related back to the sample space of the underlying random experiment as follows:

& HHH HHT HTH THH HTT THT TTH TTT
X(2): 3 2 2 2 1 1 1 0
Y(£): 8 1 1 1 0 0 0 0

Y is then a random variable taking on values in the set Sy = {0, 1, 8}.
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The above example shows that a function of a random variable produces another
random variable.

For random variables, the function or rule that assigns values to each outcome is
fixed and deterministic, as, for example, in the rule “count the total number of dots fac-
ing up in the toss of two dice.” The randomness in the experiment is complete as soon
as the toss is done. The process of counting the dots facing up is deterministic. There-
fore the distribution of the values of a random variable X is determined by the proba-
bilities of the outcomes ¢ in the random experiment. In other words, the randomness in
the observed values of X is induced by the underlying random experiment, and we
should therefore be able to compute the probabilities of the observed values of X in
terms of the probabilities of the underlying outcomes.

Example 3.3 Coin Tosses and Betting

Let X be the number of heads in three independent tosses of a fair coin. Find the probability of
the event { X = 2}. Find the probability that the player in Example 3.2 wins $8.
Note that X () = 2 if and only if ¢ is in {HHT, HTH, THH}. Therefore

P[X =2] = P[{HHT, HTH, HHT}]
P[{HHT}] + P[{HTH}] + P[{HHT}]
= 3.

The event {Y = 8} occurs if and only if the outcome ¢ is HHH, therefore
P[Y = 8] = P[{HHH}] = 1/8.

Example 3.3 illustrates a general technique for finding the probabilities of events
involving the random variable X. Let the underlying random experiment have sample
space S and event class F. To find the probability of a subset B of R,e.g., B = {x;}, we
need to find the outcomes in S that are mapped to B, that is,

A={{:X()eB) (3.1)

as shown in Fig. 3.2. If event A occurs then X (¢) e B, so event B occurs. Conversely, if
event B occurs, then the value X (¢) implies that { is in A, so event A occurs. Thus the
probability that X is in B is given by:

P[X eB] = P[A] = P[{{: X({)eBY}). (3.2)
S
real
I 1 line
B
FIGURE 3.2

P[XinB] = P[{inA]
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We refer to A and B as equivalent events.

In some random experiments the outcome ¢ is already the numerical value we
are interested in. In such cases we simply let X ({) = £, that is, the identity function, to
obtain a random variable.

Fine Point: Formal Definition of a Random Variable

In going from Eq. (3.1) to Eq. (3.2) we actually need to check that the event A is in F,
because only events in F have probabilities assigned to them. The formal definition of
a random variable in Chapter 4 will explicitly state this requirement.

If the event class F consists of all subsets of S, then the set A will always be in F,
and any function from § to R will be a random variable. However, if the event class F
does not consist of all subsets of S, then some functions from S to R may not be random
variables, as illustrated by the following example.

Example 3.4 A Function That Is Not a Random Variable

This example shows why the definition of a random variable requires that we check that the set
A isin F. An urn contains three balls. One ball is electronically coded with a label 00. Another
ball is coded with 01, and the third ball has a 10 label. The sample space for this experiment is
S = {00, 01, 10}. Let the event class F consist of all unions, intersections, and complements of
the events A; = {00, 10} and A, = {01}. In this event class, the outcome 00 cannot be distin-
guished from the outcome 10. For example, this could result from a faulty label reader that can-
not distinguish between 00 and 10. The event class has four events F = {&, {00, 10}, {01},
{00,01,10}}. Let the probability assignment for the events in F be P[{00,10}] = 2/3 and
P[{01}] = 1/3.

Consider the following function X from § to R: X(00) = 0, X(01) = 1, X(10)= 2. To
find the probability of {X = 0}, we need the probability of {{: X({) = 0}= {00}. However,
{00} is not in the class F, and so X is not a random variable because we cannot determine the
probability that X = 0.

DISCRETE RANDOM VARIABLES AND PROBABILITY MASS FUNCTION

A discrete random variable X is defined as a random variable that assumes values from
a countable set, thatis, Sy = {x{, x,, x3,... }. A discrete random variable is said to be
finite if its range is finite, that is, Sy = {x{, x,,..., x,,}. We are interested in finding the
probabilities of events involving a discrete random variable X. Since the sample space S y
is discrete, we only need to obtain the probabilities for the events A, = {{: X({) = x;}
in the underlying random experiment. The probabilities of all events involving X can be
found from the probabilities of the A, ’s.

The probability mass function (pmf) of a discrete random variable X is de-
fined as:

px(x) = P[X = x] =P[{{: X({) = x}] for x areal number. (3.3)

Note that py(x) is a function of x over the real line, and that px(x) can be nonzero
only at the values x1, x;, x3,.... For x; in Sy, we have py(x;) = P[Ay].
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FIGURE 3.3
Partition of sample space S associated with a discrete random variable.

The events Aq, A,,... form a partition of S as illustrated in Fig. 3.3. To see this,
we first show that the events are disjoint. Let j # k, then

ANA={:X(¢) =xjand X({) = x4} =T

since each ¢ is mapped into one and only one value in Sy . Next we show that § is the
union of the A;’s. Every ¢ in S is mapped into some x, so that every { belongs to an
event Ay in the partition. Therefore:

S=A1UA2U

All events involving the random variable X can be expressed as the union of
events A,’s. For example, suppose we are interested in the event X in B = {x,, x5},
then

P[X in B] = P[{{: X({) = x2} U{{: X(£) = x5} ]
= P[AyU As] = P[A,] + P[As]
= px(2) + px(5).

The pmf py(x) satisfies three properties that provide all the information re-
quired to calculate probabilities for events involving the discrete random variable X:

(i) px(x) = Oforall x (3.4a)
() > px(x) = Dpx(x) = 2 PA] =1 (3.4b)
xeSy all k all k
(iii) P[X in B] = > px(x) where B C Sy. (3.4¢)
xeB

Property (i) is true because the pmf values are defined as a probability, py(x) =
P[X= x]. Property (ii) follows because the events A, = {X = x;} form a partition
of S. Note that the summations in Egs. (3.4b) and (3.4c) will have a finite or infinite
number of terms depending on whether the random variable is finite or not. Next con-
sider property (iii). Any event B involving X is the union of elementary events, so by
Axiom III" we have:

P[XinB] = PLUJ{& X)) =x}] = DP[X =x]= D px(x)

xeB xeB xeB
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The pmf of X gives us the probabilities for all the elementary events from Sy.
The probability of any subset of Sy is obtained from the sum of the corresponding ele-
mentary events. In fact we have everything required to specify a probability law for the
outcomes in Sy. If we are only interested in events concerning X, then we can forget
about the underlying random experiment and its associated probability law and just
work with Sy and the pmf of X.

Example 3.5 Coin Tosses and Binomial Random Variable

Let X be the number of heads in three independent tosses of a coin. Find the pmf of X.
Proceeding as in Example 3.3, we find:

po=P[X =0] = P[{TTT}] = (1 - p)’,

p1 = P[X =1] = P[{HTT}] + P[{THT}] + P[{TTH}] = 3(1 — p)°p,
p, = P[X =2] = P[{HHT}] + P[{HTH}] + P[{THH}] = 3(1 - p)p’,
ps = P[X =3] = P[{HHH}] = p’.

Note that px(0) + px(1) + px(2) + px(3) = 1.

Example 3.6 A Betting Game

A player receives $1 if the number of heads in three coin tosses is 2, $8 if the number is 3, but
nothing otherwise. Find the pmf of the reward Y.

py(0) = P[{ e {TTT, TTH, THT, HTT}] = 4/8 = 1/2
py(1) = P[{ e {THH, HTH, HHT}] = 3/8
py(8) = P[{e {HHH}] = 1/8.

Note that py(0) + py(1) + py(8) = 1.

Figures 3.4(a) and (b) show the graph of py(x) versus x for the random variables
in Examples 3.5 and 3.6, respectively. In general, the graph of the pmf of a discrete ran-
dom variable has vertical arrows of height py(x;) at the values x; in Sy . We may view
the total probability as one unit of mass and px(x) as the amount of probability mass
that is placed at each of the discrete points x;, x,,.... The relative values of pmf at dif-
ferent points give an indication of the relative likelihoods of occurrence.

Example 3.7 Random Number Generator

A random number generator produces an integer number X that is equally likely to be any ele-
ment in the set Sy = {0,1,2,..., M — 1}. Find the pmf of X.
For each k in Sy, we have py(k) = 1/M. Note that

We call X the uniform random variable in the set {0,1,..., M — 1}.
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FIGURE 3.4
(a) Graph of pmf in three coin tosses; (b) Graph of pmf in betting game.

Example 3.8 Bernoulli Random Variable

Let A be an event of interest in some random experiment, e.g., a device is not defective. We
say that a “success” occurs if A occurs when we perform the experiment. The Bernoulli ran-
dom variable 14 is equal to 1 if A occurs and zero otherwise, and is given by the indicator
function for A:

_JO if {notin A
Ia(e) = {1 if in A. (3.52)

Find the pmf of /4.
1,4(¢) is a finite discrete random variable with values from S; = {0, 1}, with pmf:

pi(0) = P[{{:feA}]=1~p
pi(1) = P[{{: e A}] = p. (3.5b)
We call 1, the Bernoulli random variable. Note that p;(1) + p;(2) = 1.

Example 3.9 Message Transmissions

Let X be the number of times a message needs to be transmitted until it arrives correctly at its
destination. Find the pmf of X. Find the probability that X is an even number.

X is a discrete random variable taking on values from Sy = {1,2,3,...}. The event
{X = k} occurs if the underlying experiment finds £ — 1 consecutive erroneous transmissions



Section 3.2  Discrete Random Variables and Probability Mass Function 103

(“failures”) followed by a error-free one (“success”):
px(k) =P[X =k]=P[00...01] = (1 — p)Ip=¢g"1p k=1,2,.... (3.6)

We call X the geometric random variable, and we say that X is geometrically distributed. In
Eq. (2.42b), we saw that the sum of the geometric probabilities is 1.

1
1-¢*> 1+¢q

P[X iseven] = kleX(2k) = kaquk_l =p

Example 3.10 Transmission Errors

A binary communications channel introduces a bit error in a transmission with probability p. Let
X be the number of errors in # independent transmissions. Find the pmf of X. Find the probabil-
ity of one or fewer errors.

X takes on values in the set Sy = {0, 1,..., n}. Each transmission results in a “0” if there is
no error and a “1” if there is an error, P[“1”] = pand P[“0”] = 1 — p. The probability of k errors
in n bit transmissions is given by the probability of an error pattern that has k 1'sand n — k 0’s:

px(k) = P[X = k] = (Z);;k(l — Pk k=0,1,...,n (3.7)

We call X the binomial random variable, with parameters n and p. In Eq. (2.39b), we saw that the
sum of the binomial probabilities is 1.

PIX =1] = <Z>PO(1 -p) 0+ (’f)pl(l = p) == p)+nap(l - pyt

Finally, let’s consider the relationship between relative frequencies and the pmf
px(x). Suppose we perform n independent repetitions to obtain n observations of
the discrete random variable X. Let N,(n) be the number of times the event X = x;
occurs and let fi(n) = Ni(n)/n be the corresponding relative frequency. As n be-
comes large we expect that fi(n) — px(x;). Therefore the graph of relative frequen-
cies should approach the graph of the pmf. Figure 3.5(a) shows the graph of relative
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FIGURE 3.5
(a) Relative frequencies and corresponding uniform pmf; (b) Relative frequencies and corresponding geometric pmf.
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frequencies for 1000 repetitions of an experiment that generates a uniform random
variable from the set {0, 1,..., 7} and the corresponding pmf. Figure 3.5(b) shows the
graph of relative frequencies and pmf for a geometric random variable with p = 1/2
and n = 1000 repetitions. In both cases we see that the graph of relative frequencies
approaches that of the pmf.

EXPECTED VALUE AND MOMENTS OF DISCRETE RANDOM VARIABLE

In order to completely describe the behavior of a discrete random variable, an entire
function, namely py(x), must be given. In some situations we are interested in a few
parameters that summarize the information provided by the pmf. For example, Fig. 3.6
shows the results of many repetitions of an experiment that produces two random vari-
ables. The random variable Y varies about the value 0, whereas the random variable X
varies around the value 5. It is also clear that X is more spread out than Y. In this sec-
tion we introduce parameters that quantify these properties.
The expected value or mean of a discrete random variable X is defined by

my = E[X] = EXPX(X) = ;xkpx(xk). (3.8)

xeSy

The expected value E[X] is defined if the above sum converges absolutely, that is,
E[IX1) = 3 lxlpx(xe) < . (3.9)
k

There are random variables for which Eq. (3.9) does not converge. In such cases, we say
that the expected value does not exist.

AN I S I S S ) SN B
2
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Trial number

FIGURE 3.6

The graphs show 150 repetitions of the experiments yielding X and Y. It is clear
that X is centered about the value 5 while Y is centered about 0. It is also clear that
X is more spread out than Y.
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If we view px(x) as the distribution of mass on the points x;, x,,... in the real
line, then E[X] represents the center of mass of this distribution. For example, in Fig.
3.5(a), we can see that the pmf of a discrete random variable that is uniformly distrib-
uted in {0,..., 7} has a center of mass at 3.5.

Example 3.11 Mean of Bernoulli Random Variable

Find the expected value of the Bernoulli random variable 7.
From Example 3.8, we have

E[14] = 0p;(0) + 1p,(1) = p.

where p is the probability of success in the Bernoulli trial.

Example 3.12 Three Coin Tosses and Binomial Random Variable

Let X be the number of heads in three tosses of a fair coin. Find E[X].
Equation (3.8) and the pmf of X that was found in Example 3.5 gives:

E[X] = éokpx(k) = 0(%) + 1(%) + 2(3) + 3(%) =15

Note that the above is the n = 3, p = 1/2 case of a binomial random variable, which we will see
has E[ X ] = np.

Example 3.13 Mean of a Uniform Discrete Random Variable

Let X be the random number generator in Example 3.7. Find E[X].
From Example 3.5 we have py(j) = /M forj=0,...,M — 1,s0
EX)= Skt o Lot e2s M1y = M-DM _M-1)
A TM M S o2M 2
where we used the factthat1 + 2 + --- + L = (L + 1)L/2. Note thatfor M = 8, E[ X ] = 3.5,
which is consistent with our observation of the center of mass in Fig. 3.5(a).

The use of the term “expected value” does not mean that we expect to observe
E[X] when we perform the experiment that generates X. For example, the expected
value of a Bernoulli trial is p, but its outcomes are always either O or 1.

E[X] corresponds to the “average of X” in a large number of observations of X.
Suppose we perform n independent repetitions of the experiment that generates X,
and we record the observed values as x(1), x(2),..., x(n), where x(j) is the observation
in the jth experiment. Let N, (n) be the number of times x; is observed, and let
fx(n) = Ni(n)/n be the corresponding relative frequency. The arithmetic average, or
sample mean, of the observations, is:

x(1) + x(2) + -+ + x(n)  xNy(n) + x;No(n) + -+ + x; Ni(n) + ---

n n
= xi1fi(n) + xofy(n) + -+ xifi(n) + -

S xifi(n). (3.10)
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The first numerator adds the observations in the order in which they occur, and the sec-
ond numerator counts how many times each x; occurs and then computes the total. As n
becomes large, we expect relative frequencies to approach the probabilities py(x;):

lingofk(n) = px(x;) forall k. (3.11)
Equation (3.10) then implies that:
(X)n = Ek:xkfk(”) - Ek:xkp)((xk) = E[X]. (3.12)

Thus we expect the sample mean to converge to E[X] as n becomes large.

Example 3.14 A Betting Game

A player at a fair pays $1.50 to toss a coin three times. The player receives $1 if the number of
heads is 2, $8 if the number is 3, but nothing otherwise. Find the expected value of the reward Y.
What is the expected value of the gain?

The expected reward is:

E[Y] = 0py(0) + 1py(1)) + 8py(8) = o(%) + 1(%) + 8(%) - (%)

The expected gain is:

1 12 1
ElY -15]|=——-—=—_.
[ ] 8 8 8
Players lose 12.5 cents on average per game, so the house makes a nice profit over the long run.
In Example 3.18 we will see that some engineering designs also “bet” that users will behave a

certain way.

Example 3.15 Mean of a Geometric Random Variable

Let X be the number of bytes in a message, and suppose that X has a geometric distribution with
parameter p. Find the mean of X.
X can take on arbitrarily large values since Sy = {1, 2,...}. The expected value is:

E[X] = kZlkqu’l = pkzlkq"’l.

This expression is readily evaluated by differentiating the series

1 [o 0]
== kZka (3.13)
to obtain
R 61
(1-x)?* = o '
Letting x = g, we obtain
1 1

We see that X has a finite expected value as long as p > 0.
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For certain random variables large values occur sufficiently frequently that the
expected value does not exist, as illustrated by the following example.

Example 3.16 St. Petersburg Paradox

A fair coin is tossed repeatedly until a tail comes up. If X tosses are needed, then the casino
pays the gambler Y = 2% dollars. How much should the gambler be willing to pay to play this
game?

If the gambler plays this game a large number of times, then the payoff should be the ex-
pected value of Y = 2% If the coin is fair, P[X = k] = (1/2)¥ and P[Y = 2] = (1/2)%, so:

00 0 k
E[Y] = >2"py(2") = 22"(1) =1+1+ - = o0,
= = \2

This game does indeed appear to offer the gambler a sweet deal, and so the gambler should be
willing to pay any amount to play the game! The paradox is that a sane person would not pay a
lot to play this game. Problem 3.34 discusses ways to resolve the paradox.

Random variables with unbounded expected value are not uncommon and ap-
pear in models where outcomes that have extremely large values are not that rare. Ex-
amples include the sizes of files in Web transfers, frequencies of words in large bodies
of text, and various financial and economic problems.

Expected Value of Functions of a Random Variable

Let X be a discrete random variable, and let Z = g(X). Since X is discrete, Z = g(X)
will assume a countable set of values of the form g(x;) where x; e Sy. Denote the set
of values assumed by g(X) by {z;, 25, ... }. One way to find the expected value of Z is
to use Eq. (3.8), which requires that we first find the pmf of Z. Another way is to use
the following result:

E[Z] = E[g(X)] = Ek:g(xk)px(xk)- (3.16)

To show Eq. (3.16) group the terms x, that are mapped to each value z;:
;g(xk)px(xk) = Ezj{ (E) PX(xk)} = Dzpz(z) = E[Z].
J Xi:8(Xk) =2 J

The sum inside the braces is the probability of all terms x; for which g(x;) = z;, which
is the probability that Z = z;, that is, p,(z;).

Example 3.17 Square-Law Device

Let X be a noise voltage that is uniformly distributedin Sy = {—3, =1, +1, +3} with px(k) = 1/4
for k in Sy. Find E[Z] where Z = X°.
Using the first approach we find the pmf of Z:

pz(9) = P[X e{=3,+3}] = px(=3) + px(3) = 12
pz(1) = px(—1) + px(1) = 12
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and so

The second approach gives:

E[Z] = E[X?] = D Kk*px(k) = %{(—3)2 + (1) + 1P+ 3% = % =5.
k

Equation 3.16 implies several very useful results. Let Z be the function
Z = ag(X) + bh(X) + ¢
where a, b, and c are real numbers, then:
E[Z] = aE[g(X)] + bE[h(X)] + c. (3.17a)
From Eq. (3.16) we have:
E[Z] = Elag(X) + bh(X) + ¢] = S (ag(x0) + bh(x) + ¢)px(xi)
= aZg (xk)Px(x) + bzh xi)px(x) + CEPX Xk)

= aE[g(X)] + bE[h(X)] + c.

Equation (3.17a), by setting a, b, and/or ¢ to 0 or 1,implies the following expressions:

E[g(X) + h(X)] = E[g(X)] + E[A(X)]. (3.17b)
ElaX] = aE[X]. (3.17¢)
E[X +c]=E[X] +c (3.17d)
Efc] = (3.17e)

Example 3.18 Square-Law Device

The noise voltage X in the previous example is amplified and shifted to obtain Y = 2X + 10,
and then squared to produce Z = Y? = (2X + 10)% Find E[Z].

E[Z] = E[(2X + 10)*] = E[4X? + 40X + 100]
= 4E[X?] + 40E[X] + 100 = 4(5) + 40(0) + 100 = 120.

Example 3.19 Voice Packet Multiplexer

Let X be the number of voice packets containing active speech produced by n = 48 independent
speakers in a 10-millisecond period as discussed in Section 1.4. X is a binomial random variable
with parameter n and probability p = 1/3. Suppose a packet multiplexer transmits up to
M = 20 active packets every 10 ms, and any excess active packets are discarded. Let Z be the
number of packets discarded. Find E[Z].
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The number of packets discarded every 10 ms is the following function of X:

0 fX =M
X-M it X > M.

E[Z] = kigio(k - 20)(?)(;)k(§)48k ~ 0.182.

Every 10 ms E[ X ] = np = 16 active packets are produced on average, so the fraction of active
packets discarded is 0.182/16 = 1.1%, which users will tolerate. This example shows that engi-
neered systems also play “betting” games where favorable statistics are exploited to use re-
sources efficiently. In this example, the multiplexer transmits 20 packets per period instead of 48
for a reduction of 28/48 = 58%.

Z=(X—M)+%{

Variance of a Random Variable

The expected value E[X], by itself, provides us with limited information about X. For ex-
ample, if we know that E[ X ] = 0, then it could be that X is zero all the time. However,
it is also possible that X can take on extremely large positive and negative values. We
are therefore interested not only in the mean of a random variable, but also in the ex-
tent of the random variable’s variation about its mean. Let the deviation of the random
variable X about its mean be X — E[X ], which can take on positive and negative val-
ues. Since we are interested in the magnitude of the variations only, it is convenient to
work with the square of the deviation, which is always positive, D(X) = (X — E[X])*.
The expected value is a constant, so we will denote it by my = E[ X ]. The variance of
the random variable X is defined as the expected value of D:

0% = VAR[X] = E[(X — my)’]

ES: (x — my)*px(x) ;(xk — my)*px(xg). (3.18)

The standard deviation of the random variable X is defined by:
ox = STD[X] = VAR[ X ]!~ (3.19)

By taking the square root of the variance we obtain a quantity with the same units as X.
An alternative expression for the variance can be obtained as follows:

VAR[X] = E[(X — my)?] = E[X? — 2mxyX + m%k]
= E[X?] — 2myE[X] + mk
= E[X?] — m%. (3.20)

E[X?]is called the second moment of X. The nth moment of X is defined as E[ X"].
Equations (3.17¢), (3.17d), and (3.17¢) imply the following useful expressions for
the variance.Let Y = X + c, then

VAR[X + ¢] = E[(X + ¢ — (E[X] + ¢)])?]
= E[(X — E[X])?] = VAR[X]. (3.21)
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Adding a constant to a random variable does not affect the variance. Let Z = cX,
then:

VAR[cX] = E[(cX — cE[X])?] = E[c*(X — E[X])?] = ¢ VAR[X]. (3.22)

Scaling a random variable by ¢ scales the variance by ¢ and the standard deviation by |c|.
Now let X = ¢, arandom variable that is equal to a constant with probability 1, then

VAR[X] = E[(X — ¢)*] = E[0] = 0. (3.23)

A constant random variable has zero variance.

Example 3.20 Three Coin Tosses

Let X be the number of heads in three tosses of a fair coin. Find VAR[X].

1 3 3 1
=0l<)+ 2(7) + 2(7) + 2(7) =
E[X?] 0(8>18 2(5)+3g)=3 and
VAR[X] = E[X?] — m% =3 — 152 = 0.75.

Recall that thisisan n = 3, p = 1/2 binomial random variable. We see later that variance for the
binomial random variable is npgq.

Example 3.21 Variance of Bernoulli Random Variable

Find the variance of the Bernoulli random variable /.
E[I%] = 0p;(0) + 1’p;(1) = p andso

VAR[I4] = p — p* = p(1 — p) = pq. (324)

Example 3.22 Variance of Geometric Random Variable

Find the variance of the geometric random variable.
Differentiate the term (1 — x?)”! in Eq. (3.14) to obtain

2 o0
m = kgok(k - 1)xk72.

Let x = ¢ and multiply both sides by pg to obtain:

2pq <
= k(k —1)g**
(- qp P

= ik(k - 1)pg"™' = E[X’] - E[X].

So the second moment is

E[X*= ——S+EX]=—5+
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and the variance is

VAR[X] = E[X?] - E[X]* = _l_a

CONDITIONAL PROBABILITY MASS FUNCTION

In many situations we have partial information about a random variable X or about
the outcome of its underlying random experiment. We are interested in how this infor-
mation changes the probability of events involving the random variable. The condi-
tional probability mass function addresses this question for discrete random variables.

Conditional Probability Mass Function

Let X be a discrete random variable with pmf py(x), and let C be an event that has
nonzero probability, P[C] > 0. See Fig. 3.7. The conditional probability mass function
of X is defined by the conditional probability:

px(x|C) = P[X = x|C]  for x areal number. (3.25)
Applying the definition of conditional probability we have:
P{X =x}NC]
P[C]

px(x[C) = (3.26)

The above expression has a nice intuitive interpretation: The conditional probability of the
event { X = x;} is given by the probabilities of outcomes ¢ for which both X ({) = x; and
{ are in C,normalized by P[C].

The conditional pmf satisfies Egs. (3.4a) — (3.4¢). Consider Eq. (3.4b). The set of
events A, = {X = x,} is a partition of S, so

C =J(A,NC), and
3

PH{X = x}NC]

2 px(x|C) = EPX(xk|C) = E

xeSy all k all k P[C]
1 P[C]
=——NpP[A,NC]=——=1.
pictay AN )= e
S

X)) =x;

Ay /—\~

Xk

FIGURE 3.7
Conditional pmf of X given event C.
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Similarly we can show that:

P[X in B|C] = Y px(x|C) where B C Sy.
xeB

Example 3.23 A Random Clock

The minute hand in a clock is spun and the outcome ¢ is the minute where the hand comes to
rest. Let X be the hour where the hand comes to rest. Find the pmf of X. Find the conditional
pmf of X given B = {first 4 hours}; given D = {1 < ¢ = 11}.

We assume that the hand is equally likely to rest at any of the minutes in the range
S =1{1,2,...,60}, so P[{ = k] = 1/60 for k in S. X takes on values from Sy = {1,2,...,12}
and it is easy to show that py(j) = 1/12 forjin Sy. Since B = {1,2,3,4}:

P{X =j}NB] P[Xe{j}N{1,2,3,4}]

px(jlB) = P[B] - P[X e{1,2,3,4}]
PIX=jl 1 .
_ T—Z lf]E{1,2,3a4}
0 otherwise.

The event B above involves X only. The event D, however, is stated in terms of the out-
comes in the underlying experiment (i.e., minutes not hours), so the probability of the intersec-
tion has to be expressed accordingly:

P{X =j}ND] P[:X({)=jand{e{2,...,11}]

px(jlD) = P[D] = Plte{2,..., 11}]

P[¢e{2,3,4,5}] 4

10/60 10 forj =1
P[(e{6,7,8,9,10}] 5

= =— forj=2
10/60 10

Plze{11}] 1 o

1060 10 oty = 2

Most of the time the event C is defined in terms of X, for example C = {X > 10}
orC = {a = X = b}. For x; in Sy, we have the following general result:

px(xk) ifx,eC
px(x4lC) = P[C] g (3.27)
0 lf Xk & C

The above expression is determined entirely by the pmf of X.

Example 3.24 Residual Waiting Times

Let X be the time required to transmit a message, where X is a uniform random variable with
Sy = {1,2,..., L}. Suppose that a message has already been transmitting for m time units, find
the probability that the remaining transmission time is j time units.
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Wearegiven C = {X > m},soform + 1 =m + j = L:
P[X =m + j]

= = form+1=m+j=1L. (3.28)
m

X is equally likely to be any of the remaining L — m possible values. As m increases, 1/(L — m)
increases implying that the end of the message transmission becomes increasingly likely.

Many random experiments have natural ways of partitioning the sample space S
into the union of disjoint events By, Bs, ..., B,. Let px(x|B;) be the conditional pmf of
X given event B;. The theorem on total probability allows us to find the pmf of X in
terms of the conditional pmf’s:

n

px(x) = ;pX(xlBi)P[Bi]' (3.29)

Example 3.25 Device Lifetimes

A production line yields two types of devices. Type 1 devices occur with probability & and work
for a relatively short time that is geometrically distributed with parameter r. Type 2 devices work
much longer, occur with probability 1 — «, and have a lifetime that is geometrically distributed
with parameter s. Let X be the lifetime of an arbitrary device. Find the pmf of X.

The random experiment that generates X involves selecting a device type and then ob-
serving its lifetime. We can partition the sets of outcomes in this experiment into event By, con-
sisting of those outcomes in which the device is type 1, and B,, consisting of those outcomes in
which the device is type 2. The conditional pmf’s of X given the device type are:

pxig,(k) = (1 — r)< 1y fork =1,2,...
and
pxig,(k) = (1 — s)F s fork =1,2,....
We obtain the pmf of X from Eq. (3.29):
px(k) = px(k|B1)P[B,] + px(k|B,)P[B;]

=1 -rlra+ (1 -5l -a) fork=12,....

Conditional Expected Value

Let X be a discrete random variable, and suppose that we know that event B has oc-
curred. The conditional expected value of X given B is defined as:

myp = E[X|B] = > xpx(x|B) = ;kaX(XUB) (3.30)

xeSy
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where we apply the absolute convergence requirement on the summation. The conditional
variance of X given B is defined as:

o]

E[(X — myjp)*|B] = 2 — myp)*px (x| B)

VAR[X|B]

E[X?|B] — mks-

Note that the variation is measured with respect to 7 x|, not my.
Let By B,,..., B, be the partition of S, and let p x(x|B;) be the conditional pmf of X
given event B;. E[X] can be calculated from the conditional expected values E[ X | B]:

E[X] = iE[XIBi]P[Bi]. (3.31a)
i=1

By the theorem on total probability we have:

;kpx(xk) = ;k{ iPX(XdBi)P[Bi]}

E[X]

N

i=1 i=1

i{;kpx(xUBi)}P[Bi] = EE[X|B,']P[BI'],

where we first express py(xy) in terms of the conditional pmf’s, and we then change
the order of summation. Using the same approach we can also show

- 3 E[g(x)|BIPI5) (31b)

Example 3.26 Device Lifetimes

Find the mean and variance for the devices in Example 3.25.
The conditional mean and second moment of each device type is that of a geometric ran-
dom variable with the corresponding parameter:

myp, = Ur E[X?By] = (1 + r)ir?
myig, = 1s  E[X?|B,] = (1 + s)/s™.
The mean and the second moment of X are then:
my = mypa + myjp(l —a)=ar+ (1 - a)ls
E[X?] = E[X?|Bi]a + E[X}B,]J(1 — a) = a(1 + r)ir* + (1 — a)(1 + s5)/s%

Finally, the variance of X is:

VAR[X] = E[X?] — m?y = a(l j r) N (I-a)(1+s) (a . (1 - a))Z.

r s2 r s

Note that we do not use the conditional variances to find VAR[Y] because Eq.
(3.31b) does not apply to conditional variances. (See Problem 3.40.) However, the
equation does apply to the conditional second moments.
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IMPORTANT DISCRETE RANDOM VARIABLES

Certain random variables arise in many diverse, unrelated applications. The pervasive-
ness of these random variables is due to the fact that they model fundamental mecha-
nisms that underlie random behavior. In this section we present the most important of
the discrete random variables and discuss how they arise and how they are interrelat-
ed. Table 3.1 summarizes the basic properties of the discrete random variables dis-
cussed in this section. By the end of this chapter, most of these properties presented in
the table will have been introduced.

TABLE 3.1 Discrete random variables

Bernoulli Random Variable

Sy = {0,1}
p=q=1-p p=p 0=p=1l
E[X]=p VAR[X]=p(l-p) Gx(z)=(q+ pz)

Remarks: The Bernoulli random variable is the value of the indicator function /4 for some event A; X = 1
if A occurs and 0 otherwise.

Binomial Random Variable

Sy ={0.1,....n}

n —
pr = <k>pk(1 -p)"t  k=01,...,n

E[X]=np VAR[X]=np(l—-p) Gx(z)=(q+ p2)"

Remarks: X is the number of successes in n Bernoulli trials and hence the sum of »n independent, identically
distributed Bernoulli random variables.

Geometric Random Variable

First Version: Sy = {0,1,2,...}

pe=p1l—-p* k=01,...

1-p 1-p p
=—— VAR[X]=—; Gx(z)

ElX =
[X] ; o

Remarks: X is the number of failures before the first success in a sequence of independent Bernoulli trials.
The geometric random variable is the only discrete random variable with the memoryless property.

Second Version: Sy = {1,2,...}

p=p1—pFt k=12

1-p Pz
Gy(z) =
= x(2) 1- gz

E[X']== VAR[X'] =

p
Remarks: X' = X + 1is the number of trials until the first success in a sequence of independent Bernoulli
trials.

(Continued)



116

Chapter 3 Discrete Random Variables

TABLE 3.1 Continued

Negative Binomial Random Variable

Sy = {r,r + 1,...} where ris a positive integer

-1
e = (’:_ 1>p'(1 T k=rr+,

r r(l — r
ELX] =" VAR[X]= % Gy(z) = (1 fiﬂ)

Remarks: X is the number of trials until the rth success in a sequence of independent Bernoulli trials.

Poisson Random Variable

pr=-—¢€e¢ k=0,1,... anda >0

E[X]=a VAR[X]=a Gy(z) =D

Remarks: X is the number of events that occur in one time unit when the time between events is exponen-
tially distributed with mean 1/a.

Uniform Random Variable

Sy ={1,2,....L}
k=12..,L

L+1 12 -1 z1-7"
- VAR[X] =" =77,

Remarks: The uniform random variable occurs whenever outcomes are equally likely. It plays a key role in
the generation of random numbers.

Zipf Random Variable

Sy = {1,2,..., L} where L is a positive integer
i1

Dr = o k k =1,2,..., L where ¢, is given by Eq. (3.45)
L L(L+1 12

E[X]=-" VAR[X]= ML+l) =
cr 2c;. i

Remarks: The Zipf random variable has the property that a few outcomes occur frequently but most out-
comes occur rarely.

Discrete random variables arise mostly in applications where counting is in-
volved. We begin with the Bernoulli random variable as a model for a single coin toss.
By counting the outcomes of multiple coin tosses we obtain the binomial, geometric,
and Poisson random variables.
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The Bernoulli Random Variable

Let A be an event related to the outcomes of some random experiment. The Bernoulli
random variable /4 (defined in Example 3.8) equals one if the event A occurs, and zero
otherwise. I 4 is a discrete random variable since it assigns a number to each outcome
of S. It is a discrete random variable with range = {0, 1}, and its pmf is

pi(0)=1—-p and  p(1) = p, (3.32)

where P[A] = p.
In Example 3.11 we found the mean of 14:

my = E[14] = p.

The sample mean in n independent Bernoulli trials is simply the relative frequency of
successes and converges to p as n increases:

(L), = ONy(n) + 1N (n) _

In Example 3.21 we found the variance of 14:
o7 = VAR[14] = p(1 = p) = pq.

The variance is quadratic in p, with value zero at p = 0 and p = 1 and maximum at
p = 1/2. This agrees with intuition since values of p close to 0 or to 1 imply a prepon-
derance of successes or failures and hence less variability in the observed values. The
maximum variability occurs when p = 1/2 which corresponds to the case that is most
difficult to predict.

Every Bernoulli trial, regardless of the event A, is equivalent to the tossing of a
biased coin with probability of heads p. In this sense, coin tossing can be viewed as rep-
resentative of a fundamental mechanism for generating randomness, and the Bernoul-
li random variable is the model associated with it.

n fi(n) = p.

The Binomial Random Variable

Suppose that a random experiment is repeated n independent times. Let X be the num-
ber of times a certain event A occurs in these 7 trials. X is then a random variable with
range Sy = {0, 1,..., n}. For example, X could be the number of heads in n tosses of
a coin. If we let [; be the indicator function for the event A in the jth trial, then

X:II+12+...+In,

that is, X is the sum of the Bernoulli random variables associated with each of the » in-
dependent trials.
In Section 2.6, we found that X has probabilities that depend on n and p:

P[X = k] = px(k) = (Z)pk(l - p)" % fork=0,...,n (3.33)

X is called the binomial random variable. Figure 3.8 shows the pdf of X for n = 24 and
p = 2and p = .5. Note that P[ X = k] is maximum at k., = [(n + 1)p], where [x]
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FIGURE 3.8
Probability mass functions of binomial random variable (a) p = 0.2; (b) p = 0.5.

denotes the largest integer that is smaller than or equal to x. When (n + 1)p is an inte-
ger, then the maximum is achieved at k,,, and k,,x — 1. (See Problem 3.50.)
The factorial terms grow large very quickly and cause overflow problems in the

calculation of Z . We can use Eq. (2.40) for the ratio of successive terms in the

pmf allows us to calculate py(k + 1) in terms of py(k) and delays the onset of
overflows:
px(k) k+11-p

where py(0) = (1 — p)™. (3.34)

The binomial random variable arises in applications where there are two types of
objects (i.e., heads/tails, correct/erroneous bits, good/defective items, active/silent speak-
ers), and we are interested in the number of type 1 objects in a randomly selected batch
of size n, where the type of each object is independent of the types of the other objects in
the batch. Examples involving the binomial random variable were given in Section 2.6.

Example 3.27 Mean of a Binomial Random Variable
The expected value of X is:

n

E[X] = Skpx(b) = ik@pk(l = Bk )

(n—=1)!
= npzﬁp Y1 - py*
_ pzﬁpi(l — p)" T = mp (3.35)
j= 0] n—1- 1)' ’

where the first line uses the fact that the k = 0 term in the sum is zero, the second line cancels out
the k and factors np outside the summation, and the last line uses the fact that the summation is
equal to one since it adds all the terms in a binomial pmf with parameters » — 1 and p.
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The expected value E[ X ]| = np agrees with our intuition since we expect a fraction p of
the outcomes to result in success.

Example 3.28 Variance of a Binomial Random Variable

To find E[ X?] below, we remove the k = 0 term and then let k' = k — 1:

n! Kk _

E[X?] = Ekzk, P P = p)yt = ;kmpk(l - p)k

n—1 -1 L
-y k'+1>< o=y

k'=0

A S
k'=0

=np{(n —1)p + 1} = np(np + q).

In the third line we see that the first sum is the mean of a binomial random variable with para-
meters (n — 1) and p, and hence equal to (n — 1) p. The second sum is the sum of the binomial
probabilities and hence equal to 1.

We obtain the variance as follows:

ok = E[X?] — E[X] = np(np + q) — (np)’ = npq = np(1 — p).

We see that the variance of the binomial is n times the variance of a Bernoulli random variable.
We observe that values of p close to 0 or to 1 imply smaller variance, and that the maximum vari-
ability is when p = 1/2.

Example 3.29 Redundant Systems

A system uses triple redundancy for reliability: Three microprocessors are installed and the sys-
tem is designed so that it operates as long as one microprocessor is still functional. Suppose that
the probability that a microprocessor is still active after ¢ seconds is p = ¢~*'. Find the probabil-
ity that the system is still operating after ¢ seconds.

Let X be the number of microprocessors that are functional at time ¢. X is a binomial ran-
dom variable with parameter n = 3 and p. Therefore:

PIX=1]=1-P[X =0]=1-(1—e™M?.

The Geometric Random Variable

The geometric random variable arises when we count the number M of independent
Bernoulli trials until the first occurrence of a success. M is called the geometric random
variable and it takes on values from the set {1, 2,... }. In Section 2.6, we found that the
pmf of M is given by

PIM =k]=pylk)=0-p*'p k=12,..., (3.36)

where p = P[A] is the probability of “success” in each Bernoulli trial. Figure 3.5(b)
shows the geometric pmf for p = 1/2. Note that P[M = k] decays geometrically with k,
and that the ratio of consecutive terms is py,(k+1)/ppy (k) = (1—p) = q. As p increas-
es, the pmf decays more rapidly.



120

3.54

Chapter 3 Discrete Random Variables

The probability that M =< k can be written in closed form:

k k-1 k

. . —_ q
PIM =k]= quf = qu’ =p— =1- q~. (3.37)
I = 1-q

Sometimes we are interested in M’ = M — 1, the number of failures before a success
occurs. We also refer to M’ as a geometric random variable. Its pmf is:

PIM'=k]l=PM=k+1]=0-pp k=0,1,2,.... (3.38)
In Examples 3.15 and 3.22, we found the mean and variance of the geometric ran-
dom variable:
l-p

p2

my = E[M] = 1/p VAR[M] =

We see that the mean and variance increase as p, the success probability, decreases.
The geometric random variable is the only discrete random variable that satisfies
the memoryless property:

PIM=k+jlM>j]=PM=k] foralljk > 1.

(See Problems 3.54 and 3.55.) The above expression states that if a success has not oc-
curred in the first j trials, then the probability of having to perform at least k more tri-
als is the same as the probability of initially having to perform at least k trials. Thus,
each time a failure occurs, the system “forgets” and begins anew as if it were perform-
ing the first trial.

The geometric random variable arises in applications where one is interested in
the time (i.e., number of trials) that elapses between the occurrence of events in a se-
quence of independent experiments, as in Examples 2.11 and 2.43. Examples where the
modified geometric random variable M arises are: number of customers awaiting ser-
vice in a queueing system; number of white dots between successive black dots in a
scan of a black-and-white document.

The Poisson Random Variable

In many applications, we are interested in counting the number of occurrences of an
event in a certain time period or in a certain region in space. The Poisson random vari-
able arises in situations where the events occur “completely at random” in time or
space. For example, the Poisson random variable arises in counts of emissions from ra-
dioactive substances, in counts of demands for telephone connections, and in counts of
defects in a semiconductor chip.

The pmf for the Poisson random variable is given by

ak

:Ee

where a is the average number of event occurrences in a specified time interval or region
in space. Figure 3.9 shows the Poisson pmf for several values of . Fora < 1, P[N = k]
is maximum at k = 0; for @« > 1, P[N = k]is maximum at [«]; if « is a positive integer,
the P[N = k]ismaximumatk = aandatk = a — 1.

P[N = k] = pw(k) “ fork =0,1,2,..., (3.39)
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The pmf of the Poisson random variable sums to one, since

0ok ok

at _ _ a -
Efeaze“ — = %" =1,
&0 k! “=o k!

where we used the fact that the second summation is the infinite series expansion for e“.
It is easy to show that the mean and variance of a Poisson random variable is
given by:

E[N]=a and o% = VAR[N] =«

Example 3.30 Queries at a Call Center

The number N of queries arriving in ¢ seconds at a call center is a Poisson random variable with
a = At where A is the average arrival rate in queries/second. Assume that the arrival rate is four
queries per minute. Find the probability of the following events: (a) more than 4 queries in 10
seconds; (b) fewer than 5 queries in 2 minutes.
The arrival rate in queries/second is A = 4 queries/60 sec = 1/15 queries/sec. In part a, the
time interval is 10 seconds, so we have a Poisson random variable with « = (1/15 queries/sec) *
10 seconds = 10/15 queries. The probability of interest is evaluated numerically:
4 (2/3)F
P[N>4]=1—-P[N=4]=1- ET"’% = 6.33(107%).
=0 K
In part b, the time interval of interest is + = 120 seconds, so « = 1/15%120 seconds = 8. The
probability of interest is:

8 k
( k? e 8 =0.10.

5
P[N£5]=k20

Example 3.31 Arrivals at a Packet Multiplexer

The number N of packet arrivals in ¢ seconds at a multiplexer is a Poisson random variable with
a = At where A is the average arrival rate in packets/second. Find the probability that there are
no packet arrivals in ¢ seconds.

01 =% n— A

P[N—O]—ae =™

This equation has an interesting interpretation. Let Z be the time until the first packet ar-

rival. Suppose we ask, “What is the probability that X > ¢, that is, the next arrival occurs ¢ or

more seconds later?” Note that {N = 0} implies {Z > ¢} and vice versa,so P[Z > t] = ¢ ™.
The probability of no arrival decreases exponentially with .

Note that we can also show that
n—1 ()\t)k

PIN(t)=n] =1-P[N(t) <n]=1- 3

—At
=0 k!

One of the applications of the Poisson probabilities in Eq. (3.39) is to approxi-
mate the binomial probabilities in the case where p is very small and n is very large,
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that is, where the event A of interest is very rare but the number of Bernoulli trials is
very large. We show that if « = np is fixed, then as n becomes large:

n ot
pe=\ pr(1 = p)rk = Fe_“ fork =0,1,.... (3.40)

Equation (3.40) is obtained by taking the limit n — oo in the expression for p,, while
keeping a = np fixed. First, consider the probability that no events occur in # trials:

po=(1-p)= <1 - Z) —e ® asn—> 00, (3.41)

where the limit in the last expression is a well known result from calculus. Consider the
ratio of successive binomial probabilities:

Pea1 (n—k)p (1 — k/n)a

Dk (k+1)gq (k+1)(1 - aln)

2  sn— oo
k+1 )
Thus the limiting probabilities satisfy
k
a o o o a
po = () @) (o= e G42)

Thus the Poisson pmf can be used to approximate the binomial pmf for large n and
small p, using « = np.

Example 3.32 Errors in Optical Transmission

An optical communication system transmits information at a rate of 10° bits/second. The proba-
bility of a bit error in the optical communication system is 10~°. Find the probability of five or
more errors in 1 second.

Each bit transmission corresponds to a Bernoulli trial with a “success” corresponding to a
bit error in transmission. The probability of k errors in # = 10° transmissions (1 second) is then
given by the binomial probability with n = 10° and p = 10~°. The Poisson approximation uses
a = np =10°(107°) = 1. Thus

4k

P[N=5]=1-P[N<5]=1- > ——¢*

e
I
=
&

1 1 1 1
— 1 _ 1 -
=1—-ce {1+1!+ !+3!+4!}—.00366.

The Poisson random variable appears in numerous physical situations because
many models are very large in scale and involve very rare events. For example, the
Poisson pmf gives an accurate prediction for the relative frequencies of the number of
particles emitted by a radioactive mass during a fixed time period. This correspon-
dence can be explained as follows. A radioactive mass is composed of a large number
of atoms, say 7. In a fixed time interval each atom has a very small probability p of dis-
integrating and emitting a radioactive particle. If atoms disintegrate independently of
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00D,

T

FIGURE 3.10
Event occurrences in n subintervals of [0, T].

other atoms, then the number of emissions in a time interval can be viewed as the num-
ber of successes in n trials. For example, one microgram of radium contains about
n = 10'° atoms, and the probability that a single atom will disintegrate during a one-
millisecond time interval is p = 10! [Rozanov, p. 58]. Thus it is an understatement to
say that the conditions for the approximation in Eq. (3.40) hold: » is so large and p so
small that one could argue that the limit # — o0 has been carried out and that the num-
ber of emissions is exactly a Poisson random variable.

The Poisson random variable also comes up in situations where we can imagine a
sequence of Bernoulli trials taking place in time or space. Suppose we count the num-
ber of event occurrences in a T-second interval. Divide the time interval into a very
large number, n, of subintervals as shown in Fig. 3.10. A pulse in a subinterval indicates
the occurrence of an event. Each subinterval can be viewed as one in a sequence of in-
dependent Bernoulli trials if the following conditions hold: (1) At most one event can
occur in a subinterval, that is, the probability of more than one event occurrence is neg-
ligible; (2) the outcomes in different subintervals are independent; and (3) the proba-
bility of an event occurrence in a subinterval is p = a/n, where « is the average
number of events observed in a 1-second interval. The number N of events in 1 second
is a binomial random variable with parameters n and p = a/n. Thus as n — 00, N be-
comes a Poisson random variable with parameter «. In Chapter 9 we will revisit this re-
sult when we discuss the Poisson random process.

The Uniform Random Variable

The discrete uniform random variable Y takes on values in a set of consecutive inte-
gers Sy = {j + 1,...,j + L} with equal probability:

py(k) =— for ke{j+1,...,j+ L} (3.43)

This humble random variable occurs whenever outcomes are equally likely, e.g., toss of
a fair coin or a fair die, spinning of an arrow in a wheel divided into equal segments, se-
lection of numbers from an urn. It is easy to show that the mean and variance are:

L2 -1
12

and VAR[Y]

Example 3.33 Discrete Uniform Random Variable in Unit Interval

Let X be a uniform random variable in Sy = {0,1,..., L — 1}. We define the discrete uniform
random variable in the unit interval by

1 2 3
U—Z SO SU—{O,L,L,L,...,l—L}.
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U has pmf:

k 1
— | == fork =0,2,...,L — 1.
PU( L) I
The pmf of U puts equal probability mass 1/L on equally spaced points x; = k/L in the unit in-
terval. The probability of a subinterval of the unit interval is equal to the number of points in the
subinterval multiplied by 1/L. As L becomes very large, this probability is essentially the length
of the subinterval.

The Zipf Random Variable

The Zipf random variable is named for George Zipf who observed that the frequen-
cy of words in a large body of text is proportional to their rank. Suppose that words
are ranked from most frequent, to next most frequent, and so on. Let X be the rank
of a word, then Sy = {1,2,..., L} where L is the number of distinct words. The pmf
of Xis:
11
px(k) = —— fork =1,2,..., L. (3.44)
Cr, k
where ¢; is a normalization constant. The second word has 1/2 the frequency of occur-
rence as the first, the third word has 1/3 the frequency of the first, and so on. The nor-
malization constant c; is given by the sum:
L
1 1 1
=Y-=1+-+=+ ..+
= 2 23

345
2 (3.45)

=

The constant ¢; occurs frequently in calculus and is called the Lth harmonic
mean and increases approximately as InL. For example, for L = 100, ¢; = 5.187378
and ¢; — In(L) = 0.582207. It can be shown that as L — o0, ¢; — InL —0.57721....

The mean of X is given by:

L . 51 L

E[X]= Yjpx(j)) = Dj—=—. (3.46)
j=1 j=1 €L] L

The second moment and variance of X are:

L 1 1 L L(L+1)

EIX?] = =N ="
[X?] ]Zlf o CL];] 2,

and

L(L+1) 2

VAR[X] = . (3.47)

2CL C

The Zipf and related random variables have gained prominence with the
growth of the Internet where they have been found in a variety of measurement
studies involving Web page sizes, Web access behavior, and Web page interconnectiv-
ity. These random variables had previously been found extensively in studies on the
distribution of wealth and, not surprisingly, are now found in Internet video rentals
and book sales.
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Zipf distribution and its long tail.
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FIGURE 3.12
Lorenz curve for Zipf random variable with L = 100.

Example 3.34 Rare Events and Long Tails

The Zipf random variable X has the property that a few outcomes (words) occur frequently but
most outcomes occur rarely. Find the probability of words with rank higher than m.

1 41 Cn

PIX>m]l=1-PX=m]=1-—>-=1-—"

Crij=1] L

We call P[X > m] the probability of the tail of the distribution of X. Figure 3.11 shows

the P[X > m] with L = 100 which has E[X] = 100/c;oy = 19.28. Figure 3.12 also shows

P[Y > m] for a geometric random variable with the same mean, that is, 1/p = 19.28. It can be

seen that P[Y > m] for the geometric random variable drops off much more quickly than

P[X > m]. The Zipf distribution is said to have a “long tail” because rare events are more like-

ly to occur than in traditional probability models.

form = L. (3.48)

Example 3.35 80/20 Rule and the Lorenz Curve

Let X correspond to a level of wealth and px(k) be the proportion of a population that has
wealth k. Suppose that X is a Zipf random variable. Thus py(1) is the proportion of the popula-
tion with wealth 1, py(2) the proportion with wealth 2, and so on. The long tail of the Zipf dis-
tribution suggests that very rich individuals are not very rare. We frequently hear statements
such as “20% of the population owns 80% of the wealth.” The Lorenz curve plots the proportion
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of wealth owned by the poorest fraction x of the population, as the x varies from 0 to 1. Find the
Lorenz curve for L = 100.
For kin {1,2,..., L}, the fraction of the population with wealth & or less is:
1 &1 ¢
F=PX=kl=—3-=" (3.49)
cLj=1] CL

The proportion of wealth owned by the population that has wealth & or less is:

k k 1
>irx() *2 =
j=1 = _k
W, = = —. (3.50)
Lo 1&41 L
EIPX(l) *El*
i=1 Cri=1 1

The denominator in the above expression is the total wealth of the entire population. The Lorenz
curve consists of the plot of points (Fj, W) which is shown in Fig. 3.12 for L = 100. In the graph the
70% poorest proportion of the population own only 20% of the total wealth, or conversely, the 30%
wealthiest fraction of the population owns 80% of the wealth. See Problem 3.75 for a discussion of
what the Lorenz curve should look like in the cases of extreme fairness and extreme unfairness.

The explosive growth in the Internet has led to systems of huge scale. For proba-
bility models this growth has implied random variables that can attain very large val-
ues. Measurement studies have revealed many instances of random variables with long
tail distributions.

If we try to let L approach infinity in Eq. (3.45), ¢; grows without bound since the
series does not converge. However, if we make the pmf proportional to (1/k)® then the
series converges as long as @ > 1. We define the Zipf or zeta random variable with
range {1,2,3,...} to have pmf:

11

Pz(k) = ;aﬁ fork = 1,2,..., (351)
where z, is a normalization constant given by the zeta function which is defined by:
1 1
=1+ + o+ .. fora > 1. 3.52
]21] 2& 30[ ( )

The convergence of the above series is discussed in standard calculus books.
The mean of Z is given by:

L
] = Efpz
j=1

where the sum of the sequence 1/j~! converges only if @ — 1 > 1, that is, @ > 2. We
can similarly show that the second moment (and hence the variance) exists only if « > 3.

L

— 2 = fora > 2,
]71 Za/ Zaj:1] Za

GENERATION OF DISCRETE RANDOM VARIABLES

Suppose we wish to generate the outcomes of a random experiment that has sam-
ple space § = {ay, a,,...,a,} with probability of elementary events p; = P[{a;}].
We divide the unit interval into n subintervals. The jth subinterval has length p; and
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FIGURE 3.13
Generating a binomial random variable withn = 5, p = 1/2.

corresponds to outcome a;. Each trial of the experiment first uses rand to obtain a
number U in the unit interval. The outcome of the experiment is a; if U is in the jth
subinterval. Figure 3.13 shows the portioning of the unit interval according to the
pmfof ann =5, p = 0.5 binomial random variable.

The Octave function discrete rnd implements the above method and can be
used to generate random numbers with desired probabilities. Functions to generate
random numbers with common distributions are also available. For example,
poisson_rnd (lambda, r, c) can be used to generate an array of Poisson-distributed
random numbers with rate lambda.

Example 3.36 Generation of Tosses of a Die

Use discrete_rnd to generate 20 samples of a toss of a die.

>V=1:6; % Define Sy = {1,2,3,4,5,6}.

>p=[1/6, 1/6, 1/6, 1/6, 1/6, 1/6]; % Set all the pmf values for X to 1/6.
>discrete_rnd (20, V, P) % Generate 20 samples from Sy with pmf P.
ans =

6 2 2 6 5 2 6 1 3 6 3 1 6 3 4 2 5 3 41

Example 3.37 Generation of Poisson Random Variable
Use the built-in function to generate 20 samples of a Poisson random variable with « = 2.

> Poisson_rnd (2,1,20) % Generate a 1 X 20 array of samples of a Poisson
% random variable with o = 2.

ans =
4 302 3 2 1 21 401 22 3 401 3
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The problems at the end of the chapter elaborate on the rich set of experiments
that can be simulated using these basic capabilities of MATLAB or Octave. In the re-
mainder of this book, we will use Octave in examples because it is freely available.

SUMMARY

¢ A random variable is a function that assigns a real number to each outcome of a
random experiment. A random variable is defined if the outcome of a random ex-
periment is a number, or if a numerical attribute of an outcome is of interest.

¢ The notion of an equivalent event enables us to derive the probabilities of events
involving a random variable in terms of the probabilities of events involving the
underlying outcomes.

¢ A random variable is discrete if it assumes values from some countable set. The
probability mass function is sufficient to calculate the probability of all events
involving a discrete random variable.

e The probability of events involving discrete random variable X can be expressed
as the sum of the probability mass function py(x).

e If X is a random variable, then Y = g(X) is also a random variable.

e The mean, variance, and moments of a discrete random variable summarize some
of the information about the random variable X. These parameters are useful in
practice because they are easier to measure and estimate than the pmf.

¢ The conditional pmf allows us to calculate the probability of events given partial
information about the random variable X.

e There are a number of methods for generating discrete random variables with
prescribed pmf’s in terms of a random variable that is uniformly distributed in
the unit interval.

CHECKLIST OF IMPORTANT TERMS

Discrete random variable Probability mass function
Equivalent event Random variable
Expected value of X Standard deviation of X
Function of a random variable Variance of X

nth moment of X

ANNOTATED REFERENCES

Reference [1] is the standard reference for electrical engineers for the material on ran-
dom variables. Reference [2] discusses some of the finer points regarding the concepts
of a random variable at a level accessible to students of this course. Reference [3] is a
classic text, rich in detailed examples. Reference [4] presents detailed discussions of the
various methods for generating random numbers with specified distributions. Refer-
ence [5] is entirely focused on discrete random variables.

1. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic
Processes, 4th ed., McGraw-Hill, New York, 2002.

2. K. L. Chung, Elementary Probability Theory, Springer-Verlag, New York, 1974.

3. W.Feller, An Introduction to Probability Theory and Its Applications, Wiley, New
York, 1968.
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Section 3.1: The Notion of a Random Variable

3.1.

3.2

3.3.

3.4.

3.5.

Let X be the maximum of the number of heads obtained when Carlos and Michael each
flip a fair coin twice.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to Sy, the range of X.
(¢) Find the probabilities for the various values of X.

A die is tossed and the random variable X is defined as the number of full pairs of dots in
the face showing up.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to Sy, the range of X.

(¢) Find the probabilities for the various values of X.

(d) Repeat parts a, b, and c, if Y is the number of full or partial pairs of dots in the face
showing up.

(e) Explain why P[X = 0] and P[Y = 0] are not equal.

The loose minute hand of a clock is spun hard. The coordinates (x, y) of the point where

the tip of the hand comes to rest is noted. Z is defined as the sgn function of the product

of x and y, where sgn(¢) is 1if t > 0,0if ¢t = 0, and —1if ¢ < 0.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its events.

(b) Show the mapping from S to Sy, the range of X.

(¢) Find the probabilities for the various values of X.

A data source generates hexadecimal characters. Let X be the integer value correspond-
ing to a hex character. Suppose that the four binary digits in the character are indepen-
dent and each is equally likely to be 0 or 1.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to Sy, the range of X.

(¢) Find the probabilities for the various values of X.

(d) Let Y be the integer value of a hex character but suppose that the most significant bit
is three times as likely to be a “0” as a “1”. Find the probabilities for the values of Y.

Two transmitters send messages through bursts of radio signals to an antenna. During

each time slot each transmitter sends a message with probability 1/2. Simultaneous trans-

missions result in loss of the messages. Let X be the number of time slots until the first

message gets through.
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3.7.

3.8.

3.9.

3.10.
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(a) Describe the underlying sample space S of this random experiment and specify the
probabilities of its elementary events.

(b) Show the mapping from S to Sy, the range of X.

(¢) Find the probabilities for the various values of X.

An information source produces binary triplets {000, 111, 010, 101, 001, 110, 100, 011}
with corresponding probabilities {1/4, 1/4,1/8, 1/8, 1/16, 1/16, 1/16, 1/16}. A binary code
assigns a codeword of length —log, p, to triplet k. Let X be the length of the string as-
signed to the output of the information source.

(a) Show the mapping from S to Sy, the range of X.

(b) Find the probabilities for the various values of X.

An urn contains 9 $1 bills and one $50 bill. Let the random variable X be the total
amount that results when two bills are drawn from the urn without replacement.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to Sy, the range of X.
(¢) Find the probabilities for the various values of X.

An urn contains 9 $1 bills and one $50 bill. Let the random variable X be the total
amount that results when two bills are drawn from the urn with replacement.

(a) Describe the underlying space S of this random experiment and specify the proba-
bilities of its elementary events.

(b) Show the mapping from S to Sy, the range of X.

(¢) Find the probabilities for the various values of X.

A coin is tossed n times. Let the random variable Y be the difference between the num-
ber of heads and the number of tails in the 7 tosses of a coin. Assume P[heads] = p.

(a) Describe the sample space of S.

(b) Find the probability of the event {Y = 0}.

(¢) Find the probabilities for the other values of Y.

An m-bit password is required to access a system. A hacker systematically works through
all possible m-bit patterns. Let X be the number of patterns tested until the correct pass-
word is found.

(a) Describe the sample space of S.
(b) Show the mapping from S to Sy, the range of X.
(¢) Find the probabilities for the various values of X.

Section 3.2: Discrete Random Variables and Probability Mass Function

3.11.

3.12.

Let X be the maximum of the coin tosses in Problem 3.1.

(a) Compare the pmf of X with the pmf of Y, the number of heads in two tosses of a fair
coin. Explain the difference.

(b) Suppose that Carlos uses a coin with probability of heads p = 3/4. Find the pmf
of X.

Consider an information source that produces binary pairs that we designate as

Sx = {1,2,3,4}. Find and plot the pmf in the following cases:

(@) pr = pi/kforallkin Sy.

(b) pii1 = pl2fork = 2,3,4.
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3.13.

3.14.
3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

Discrete Random Variables

(©) prsr = p2Ffor k = 2,3, 4.

(d) Can the random variables in parts a, b, and c be extended to take on values in the set
{1,2,...}? If yes, specify the pmf of the resulting random variables. If no, explain
why not.

Let X be a random variable with pmf p, = clik*fork =1,2,....

(a) Estimate the value of ¢ numerically. Note that the series converges.

(b) Find P[X > 4].

(¢) Find P[6 = X = 8].

Compare P[X = 8] and P[Y = 8] for outputs of the data source in Problem 3.4.

In Problem 3.5 suppose that terminal 1 transmits with probability 1/2 in a given time slot,

but terminal 2 transmits with probability p.

(a) Find the pmf for the number of transmissions X until a message gets through.

(b) Given a successful transmission, find the probability that terminal 2 transmitted.

(a) In Problem 3.7 what is the probability that the amount drawn from the urn is more
than $2? More than $50?

(b) Repeat part a for Problem 3.8.

A modem transmits a +2 voltage signal into a channel. The channel adds to this signal a

noise term that is drawn from the set {0, —1, —2, —3} with respective probabilities

{4/10, 3/10, 2/10, 1/10}.

(a) Find the pmf of the output Y of the channel.

(b) What is the probability that the output of the channel is equal to the input of the
channel?

(c¢) What is the probability that the output of the channel is positive?

A computer reserves a path in a network for 10 minutes. To extend the reservation the com-

puter must successfully send a “refresh” message before the expiry time. However, mes-

sages are lost with probability 1/2. Suppose that it takes 10 seconds to send a refresh

request and receive an acknowledgment. When should the computer start sending refresh

messages in order to have a 99% chance of successfully extending the reservation time?

A modem transmits over an error-prone channel, so it repeats every “0” or “1” bit trans-

mission five times. We call each such group of five bits a “codeword.” The channel

changes an input bit to its complement with probability p = 1/10 and it does so indepen-

dently of its treatment of other input bits. The modem receiver takes a majority vote of

the five received bits to estimate the input signal. Find the probability that the receiver

makes the wrong decision.

Two dice are tossed and we let X be the difference in the number of dots facing up.

(a) Find and plot the pmf of X.

(b) Find the probability that | X| < k for all k.

Section 3.3: Expected Value and Moments of Discrete Random Variable

3.21.

3.22.

3.23.

(a) In Problem 3.11, compare E[Y] to E[X] where X is the maximum of coin tosses.

(b) Compare VAR[X] and VAR[Y].

Find the expected value and variance of the output of the information sources in Problem
3.12, parts a, b, and c.

(a) Find E[X] for the hex integers in Problem 3.4.

(b) Find VAR[X].
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3.25.

3.26.

3.27.
3.28.
3.29.
3.30.

3.31.

3.32.

3.33.

3.34.
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Find the mean codeword length in Problem 3.6. How can this average be interpreted in a
very large number of encodings of binary triplets?

(a) Find the mean and variance of the amount drawn from the urn in Problem 3.7.
(b) Find the mean and variance of the amount drawn from the urn in Problem 3.8.

Find E[Y] and VAR[Y] for the difference between the number of heads and tails in Problem
3.9.In a large number of repetitions of this random experiment, what is the meaning of E[Y]?

Find E[X] and VAR[X] in Problem 3.13.
Find the expected value and variance of the modem signal in Problem 3.17.
Find the mean and variance of the time that it takes to renew the reservation in Problem 3.18.

The modem in Problem 3.19 transmits 1000 5-bit codewords. What is the average number
of codewords in error? If the modem transmits 1000 bits individually without repetition,
what is the average number of bits in error? Explain how error rate is traded off against
transmission speed.

(a) Suppose a fair coin is tossed » times. Each coin toss costs d dollars and the reward in
obtaining X heads is aX? + bX. Find the expected value of the net reward.

(b) Suppose that the reward in obtaining X heads is a”, where a > 0. Find the expected
value of the reward.

Let g(X) = 14, where A = {X > 10}.

(a) Find E[g (X)] for X as in Problem 3.12a with Sy = {1,2,...,15}.
(b) Repeat part a for X as in Problem 3.12b with Sy = {1,2,...,15}.
(¢) Repeat part a for X as in Problem 3.12c with Sy = {1,2,...,15}.
Let g(X) = (X — 10)* (see Example 3.19).

(a) Find E[X] for X as in Problem 3.12a with Sy = {1,2,...,15}.

(b) Repeat part a for X as in Problem 3.12b with Sy = {1,2,...,15}.
(¢) Repeat part a for X as in Problem 3.12c with Sy = {1,2,...,15}.

Consider the St. Petersburg Paradox in Example 3.16. Suppose that the casino has a total
of M = 2" dollars, and so it can only afford a finite number of coin tosses.

(a) How many tosses can the casino afford?
(b) Find the expected payoff to the player.
(¢) How much should a player be willing to pay to play this game?

Section 3.4: Conditional Probability Mass Function

3.35.

3.36.

3.37.

3.38.

(a) In Problem 3.11a, find the conditional pmf of X, the maximum of coin tosses, given
that X > 0.

(b) Find the conditional pmf of X given that Michael got one head in two tosses.
(¢) Find the conditional pmf of X given that Michael got one head in the first toss.
(d) InProblem 3.11b,find the probability that Carlos got the maximum given that X = 2.

Find the conditional pmf for the quaternary information source in Problem 3.12, parts a,
b, and c given that X < 4.

(a) Find the conditional pmf of the hex integer X in Problem 3.4 given that X < 8.
(b) Find the conditional pmf of X given that the first bit is 0.
(¢) Find the conditional pmf of X given that the 4th bit is 0.

(a) Find the conditional pmf of X in Problem 3.5 given that no message gets through in
time slot 1.

(b) Find the conditional pmf of X given that the first transmitter transmitted in time slot 1.



134

Chapter 3

3.39.

3.40.

3.41.

3.42.

3.43.

Discrete Random Variables

(a) Find the conditional expected value of X in Problem 3.5 given that no message gets
through in the first time slot. Show that E[ X | X > 1] = E[X] + 1.

(b) Find the conditional expected value of X in Problem 3.5 given that a message gets
through in the first time slot.

(¢) Find E[X] by using the results of parts a and b.
(d) Find E[ X?] and VAR[X] using the approach in parts b and c.

Explain why Eq. (3.31b) can be used to find E[ X?], but it cannot be used to directly find
VAR[X].

(a) Find the conditional pmf for X in Problem 3.7 given that the first draw produced &
dollars.

(b) Find the conditional expected value corresponding to part a.
(¢) Find E[X] using the results from part b.
(d) Find E[X?] and VAR[X] using the approach in parts b and c.

Find E[Y] and VAR[Y] for the difference between the number of heads and tails in n
tosses in Problem 3.9. Hint: Condition on the number of heads.

(a) In Problem 3.10 find the conditional pmf of X given that the password has not been
found after k tries.

(b) Find the conditional expected value of X given X > k.
(¢) Find E[X] from the results in part b.

Section 3.5: Important Discrete Random Variables

3.44.

3.45.

3.46.

3.47.

Indicate the value of the indicator function for the event A, I4({), for each ¢ in the sam-
ple space S. Find the pmf and expected of 1.

(@ S =1{1,2,3,4,5}and A = {{ > 3}.
() S=1[0,1]and A = {0.3 < ¢ = 0.7}.
© S={{=(xy):0<x<1,0<y<1}and
A={{=(x,):025<x +y <125}
(d) S = (—00,00)and A = {{ > a}.
Let A and B be events for a random experiment with sample space S. Show that the
Bernoulli random variable satisfies the following properties:
(@) Iy=1and Iz = 0.
(b) Iyng = Iqdpand I4yp = I4 + Ip — I41p.
(¢) Find the expected value of the indicator functions in parts a and b.

Heat must be removed from a system according to how fast it is generated. Suppose the
system has eight components each of which is active with probability 0.25, independently
of the others. The design of the heat removal system requires finding the probabilities of
the following events:

(a) None of the systems is active.

(b) Exactly one is active.

(¢) More than four are active.

(d) More than two and fewer than six are active.

Eight numbers are selected at random from the unit interval.

(a) Find the probability that the first four numbers are less than 0.25 and the last four
are greater than 0.25.
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(b) Find the probability that four numbers are less than 0.25 and four are greater than 0.25.

(¢) Find the probability that the first three numbers are less than 0.25, the next two are
between 0.25 and 0.75, and the last three are greater than 0.75.

(d) Find the probability that three numbers are less than 0.25, two are between 0.25 and
0.75, and three are greater than 0.75.

(e) Find the probability that the first four numbers are less than 0.25 and the last four
are greater than 0.75.

(f) Find the probability that four numbers are less than 0.25 and four are greater than 0.75.

(a) Plot the pmf of the binomial random variable with » =4 and n =5, and
p = 0.10, p = 0.5, and p = 0.90.

(b) Use Octave to plot the pmf of the binomial random variable with » = 100 and
p = 0.10, p = 0.5, and p = 0.90.

Let X be a binomial random variable that results from the performance of n Bernoulli

trials with probability of success p.

(a) Suppose that X = 1. Find the probability that the single event occurred in the kth
Bernoulli trial.

(b) Suppose that X = 2. Find the probability that the two events occurred in the jth and
kth Bernoulli trials where j < k.

(¢) Inlight of your answers to parts a and b in what sense are the successes distributed
“completely at random” over the n Bernoulli trials?

Let X be the binomial random variable.

(a) Show that

px(k+1) n—-k p

= — _ n
() K+11—p where px(0) = (1 - p)~.

(b) Show that part a implies that: (1) P[X = k] is maximum at k., = [(n + 1)p],
where [x] denotes the largest integer that is smaller than or equal to x; and (2) when
(n + 1)pis an integer, then the maximum is achieved at kp,, and Kk, — 1.

Consider the expression (@ + b + ¢)".

(a) Use the binomial expansion for (@ + b) and ¢ to obtain an expression for (a + b + ¢)".

(b) Now expand all terms of the form (a + b)* and obtain an expression that in-
volves the multinomial coefficient for M = 3 mutually exclusive events,
Ay, Ay, As.

(¢) Let p; = P[A4], p» = P[A,], p3 = P[A3]. Use the result from part b to show that
the multinomial probabilities add to one.

A sequence of characters is transmitted over a channel that introduces errors with prob-

ability p = 0.01.

(a) What is the pmf of N, the number of error-free characters between erroneous char-
acters?

(b) Whatis E[N]?

(¢) Suppose we want to be 99% sure that at least 1000 characters are received correctly
before a bad one occurs. What is the appropriate value of p?

Let N be a geometric random variable with Sy = {1,2,... }.

(a) Find P[N = k|N = m].

(b) Find the probability that N is odd.
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Let M be a geometric random variable. Show that M satisfies the memoryless property:
PM=z=k+jIM=j+1]=PM=k]forallj k> 1.

Let X be a discrete random variable that assumes only nonnegative integer values and
that satisfies the memoryless property. Show that X must be a geometric random vari-
able. Hint: Find an equation that must be satisfied by g(m) = P[M = m].

An audio player uses a low-quality hard drive. The initial cost of building the player is
$50. The hard drive fails after each month of use with probability 1/12. The cost to repair
the hard drive is $20. If a 1-year warranty is offered, how much should the manufacturer
charge so that the probability of losing money on a player is 1% or less? What is the av-
erage cost per player?

A Christmas fruitcake has Poisson-distributed independent numbers of sultana raisins,
iridescent red cherry bits, and radioactive green cherry bits with respective averages 48,
24, and 12 bits per cake. Suppose you politely accept 1/12 of a slice of the cake.

(a) What is the probability that you get lucky and get no green bits in your slice?

(b) What is the probability that you get really lucky and get no green bits and two or
fewer red bits in your slice?

(c¢) What is the probability that you get extremely lucky and get no green or red bits and
more than five raisins in your slice?

The number of orders waiting to be processed is given by a Poisson random variable with

parameter &« = A/nu, where A is the average number of orders that arrive in a day, u is

the number of orders that can be processed by an employee per day, and # is the number

of employees. Let A = 5 and u = 1. Find the number of employees required so the prob-

ability that more than four orders are waiting is less than 10%. What is the probability

that there are no orders waiting?

The number of page requests that arrive at a Web server is a Poisson random variable

with an average of 6000 requests per minute.

(a) Find the probability that there are no requests in a 100-ms period.

(b) Find the probability that there are between 5 and 10 requests in a 100-ms period.
Use Octave to plot the pmf of the Poisson random variable with « = 0.1, 0.75, 2, 20.
Find the mean and variance of a Poisson random variable.

For the Poisson random variable, show that for @« < 1, P[N = k] is maximum at k = 0,
for @« > 1, P[N = k] is maximum at [«]; and if « is a positive integer, then P[N = k] is
maximum at k = «, and at k = « — 1. Hint: Use the approach of Problem 3.50.
Compare the Poisson approximation and the binomial probabilities for k = 0, 1,2, 3 and
n=10,p = 0.1;n = 20 and p = 0.05; and n = 100 and p = 0.01.

At a given time, the number of households connected to the Internet is a Poisson random
variable with mean 50. Suppose that the transmission bit rate available for the household
is 20 Megabits per second.

(a) Find the probability of the distribution of the transmission bit rate per user.

(b) Find the transmission bit rate that is available to a user with probability 90% or
higher.

(c¢) What is the probability that a user has a share of 1 Megabit per second or higher?

An LCD display has 1000 X 750 pixels. A display is accepted if it has 15 or fewer faulty

pixels. The probability that a pixel is faulty coming out of the production line is 107>, Find

the proportion of displays that are accepted.
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A data center has 10,000 disk drives. Suppose that a disk drive fails in a given day with

probability 107,

(a) Find the probability that there are no failures in a given day.

(b) Find the probability that there are fewer than 10 failures in two days.

(¢) Find the number of spare disk drives that should be available so that all failures in a
day can be replaced with probability 99%.

A binary communication channel has a probability of bit error of 107, Suppose that

transmissions occur in blocks of 10,000 bits. Let N be the number of errors introduced by

the channel in a transmission block.

(a) Find P[N = 0], P[N = 3].

(b) For what value of p will the probability of 1 or more errors in a block be 99%?

Find the mean and variance of the uniform discrete random variable that takes on values

in the set {1, 2,..., L} with equal probability. You will need the following formulas:

n(n + 1) n(n+1)2n + 1)

n n
.:7 .2:
;’l 2 ,;l 6

A voltage X is uniformly distributed in the set {—3,..., 3, 4}.
(a) Find the mean and variance of X.

(b) Find the mean and variance of Y = —2X? + 3.

(¢) Find the mean and variance of W = cos(7X/8).

(d) Find the mean and variance of Z = cos*(wX/8).

Ten news Web sites are ranked in terms of popularity, and the frequency of requests to
these sites are known to follow a Zipf distribution.

(a) What is the probability that a request is for the top-ranked site?

(b) What is the probability that a request is for one of the bottom five sites?
A collection of 1000 words is known to have a Zipf distribution.

(a) What is the probability of the 10 top-ranked words?

(b) What is the probability of the 10 lowest-ranked words?

What is the shape of the log of the Zipf probability vs. the log of the rank?
Plot the mean and variance of the Zipf random variable for L = 1 to L = 100.

An online video store has 10,000 titles. In order to provide fast response, the store caches
the most popular titles. How many titles should be in the cache so that with probability
99% an arriving video request will be in the cache?

(a) Income distribution is perfectly equal if every individual has the same income. What
is the Lorenz curve in this case?

(b) In a perfectly unequal income distribution, one individual has all the income and all
others have none. What is the Lorenz curve in this case?

Let X be a geometric random variable in the set {1, 2,... }.
(a) Find the pmf of X.

(b) Find the Lorenz curve of X. Assume L is infinite.

(¢) Plot the curve for p = 0.1, 0.5, 0.9.

Let X be a zeta random variable with parameter a.

(a) Find an expression for P[ X = k].
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(b) Plot the pmf of X for @ = 1.5,2, and 3.
(¢) Plot P[X = k]fora = 15,2, and 3.

Section 3.6: Generation of Discrete Random Variables
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Octave provides function calls to evaluate the pmf of important discrete random vari-

ables. For example, the function Poisson_pdf(x, lambda) computes the pmf at x for the

Poisson random variable.

(a) Plot the Poisson pmf for A = 0.5, 5, 50, as well as P[X = k]and P[X > k].

(b) Plot the binomial pmf for » = 48 and p = 0.10, 0.30, 0.50, 0.75, as well as P[ X = k]
and P[ X > k].

(¢) Compare the binomial probabilities with the Poisson approximation for n = 100,
p = 0.01.

The discrete_pdf function in Octave makes it possible to specify an arbitrary pmf for a

specified Sy.

(a) Plot the pmf for Zipf random variables with L = 10, 100, 1000, as well as P[ X =< k]
and P[X > k].

(b) Plot the pmf for the reward in the St. Petersburg Paradox for 2 = 20 in Problem 3.34, as
wellas P[X = k]and P[X > k]. (You will need to use a log scale for the values of k.)

Use Octave to plot the Lorenz curve for the Zipf random variables in Problem 3.79a.

Repeat Problem 3.80 for the binomial random variable with » = 100 and p = 0.1, 0.5,

and 0.9.

(a) Use the discrete rnd function in Octave to simulate the urn experiment discussed in
Section 1.3. Compute the relative frequencies of the outcomes in 1000 draws from the urn.

(b) Use the discrete_pdf function in Octave to specify a pmf for a binomial random
variable with n = 5 and p = 0.2. Use discrete_rnd to generate 100 samples and
plot the relative frequencies.

(¢) Use binomial_rnd to generate the 100 samples in part b.

Use the discrete_rnd function to generate 200 samples of the Zipf random vari-

able in Problem 3.79a. Plot the sequence of outcomes as well as the overall relative

frequencies.

Use the discrete_rnd function to generate 200 samples of the St. Petersburg Paradox

random variable in Problem 3.79b. Plot the sequence of outcomes as well as the overall

relative frequencies.

Use Octave to generate 200 pairs of numbers, (X, Y;), in which the components are inde-

pendent, and each component is uniform in the set {1,2,...,9, 10}.

(a) Plot the relative frequencies of the X and Y outcomes.

(b) Plot the relative frequencies of the random variable Z = X + Y. Can you discern
the pmf of Z?

(c) Plot the relative frequencies of W = XY. Can you discern the pmf of Z?

(d) Plot the relative frequencies of V. = X/Y. Is the pmf discernable?

Use Octave function binomial_rnd to generate 200 pairs of numbers, (X;, Y;), in which

the components are independent, and where X; are binomial with parameter

n = 8, p = 0.5 and Y; are binomial with parameter n = 4, p = 0.5.
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(a) Plot the relative frequencies of the X and Y outcomes.
(b) Plot the relative frequencies of the random variable Z = X + Y. Does this corre-
spond to the pmf you would expect? Explain.

Use Octave function Poisson_rnd to generate 200 pairs of numbers, (X;, Y;), in which
the components are independent, and where X; are the number of arrivals to a system in
one second and Y; are the number of arrivals to the system in the next two seconds. As-
sume that the arrival rate is five customers per second.

(a) Plot the relative frequencies of the X and Y outcomes.

(b) Plot the relative frequencies of the random variable Z = X + Y. Does this corre-
spond to the pmf you would expect? Explain.

Problems Requiring Cumulative Knowledge

3.88.

3.89.

3.90.

3.91.

The fraction of defective items in a production line is p. Each item is tested and defective

items are identified correctly with probability a.

(a) Assume nondefective items always pass the test. What is the probability that k items
are tested until a defective item is identified?

(b) Suppose that the identified defective items are removed. What proportion of the
remaining items is defective?

(¢) Now suppose that nondefective items are identified as defective with probability b.
Repeat part b.

A data transmission system uses messages of duration 7 seconds. After each message
transmission, the transmitter stops and waits 7 seconds for a reply from the receiver. The re-
ceiver immediately replies with a message indicating that a message was received correctly.
The transmitter proceeds to send a new message if it receives a reply within 7" seconds; oth-
erwise, it retransmits the previous message. Suppose that messages can be completely gar-
bled while in transit and that this occurs with probability p. Find the maximum possible rate
at which messages can be successfully transmitted from the transmitter to the receiver.

An inspector selects every nth item in a production line for a detailed inspection. Sup-
pose that the time between item arrivals is an exponential random variable with mean 1
minute, and suppose that it takes 2 minutes to inspect an item. Find the smallest value of
n such that with a probability of 90% or more, the inspection is completed before the ar-
rival of the next item that requires inspection.

The number X of photons counted by a receiver in an optical communication system is a
Poisson random variable with rate A; when a signal is present and a Poisson random variable
with rate Ay < A; when a signal is absent. Suppose that a signal is present with probability p.

(a) Find P[signal present| X = k] and P[signal absent| X = k].
(b) The receiver uses the following decision rule:

If P[signal present| X = k] > P[signal absent| X = k], decide signal present;
otherwise, decide signal absent.

Show that this decision rule leads to the following threshold rule:

If X > T, decide signal present; otherwise, decide signal absent.

(¢) What is the probability of error for the above decision rule?
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3.92. A binary information source (e.g.,a document scanner) generates very long strings of 0’s fol-
lowed by occasional 1’s. Suppose that symbols are independent and that p = P[symbol = 0]
is very close to one. Consider the following scheme for encoding the run X of 0’s between
consecutive 1’s:

1. If X = n, express n as a multiple of an integer M = 2" and a remainder r, that is, find
kand rsuchthatn = kM + r,where0 =r < M — 1;

2. The binary codeword for # then consists of a prefix consisting of k 0’s followed by a 1,
and a suffix consisting of the m-bit representation of the remainder r. The decoder can
deduce the value of n from this binary string.

(a) Find the probability that the prefix has k zeros, assuming that p™ = 1/2.
(b) Find the average codeword length when p¥ = 1/2.

(¢) Find the compression ratio, which is defined as the ratio of the average run length
to the average codeword length when p™ = 1/2.



CHAPTER

One Random Variable 4

4.1

In Chapter 3 we introduced the notion of a random variable and we developed meth-
ods for calculating probabilities and averages for the case where the random variable is
discrete. In this chapter we consider the general case where the random variable may
be discrete, continuous, or of mixed type. We introduce the cumulative distribution
function which is used in the formal definition of a random variable, and which can
handle all three types of random variables. We also introduce the probability density
function for continuous random variables. The probabilities of events involving a ran-
dom variable can be expressed as integrals of its probability density function. The ex-
pected value of continuous random variables is also introduced and related to our
intuitive notion of average. We develop a number of methods for calculating probabil-
ities and averages that are the basic tools in the analysis and design of systems that in-
volve randomness.

THE CUMULATIVE DISTRIBUTION FUNCTION

The probability mass function of a discrete random variable was defined in terms of
events of the form {X = b}. The cumulative distribution function is an alternative ap-
proach which uses events of the form {X = b}. The cumulative distribution function
has the advantage that it is not limited to discrete random variables and applies to all
types of random variables. We begin with a formal definition of a random variable.

Definition: Consider a random experiment with sample space S and event
class . A random variable X is a function from the sample space S to R with
the property that the set A, = {{: X({) = b} isin F for every b in R.

The definition simply requires that every set A, have a well defined probability in
the underlying random experiment, and this is not a problem in the cases we will consider.
Why does the definition use sets of the form {{: X({) = b} and not {{: X({) = x,}?
We will see that all events of interest in the real line can be expressed in terms of sets of
the form {{: X ({) = b}.

The cumulative distribution function (cdf) of a random variable X is defined as
the probability of the event { X = x}:

Fx(x) = P[X = x] for —oo < x < 400, 4.1)

141
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that is, it is the probability that the random variable X takes on a value in the set
(=00, x]. In terms of the underlying sample space, the cdf is the probability of the
event {{: X({) = x}. The event {X = x} and its probability vary as x is varied; in
other words, Fy(x) is a function of the variable x.

The cdf is simply a convenient way of specifying the probability of all semi-infi-
nite intervals of the real line of the form (—00, b]. The events of interest when dealing
with numbers are intervals of the real line, and their complements, unions, and inter-
sections. We show below that the probabilities of all of these events can be expressed in
terms of the cdf.

The cdf has the following interpretation in terms of relative frequency. Suppose
that the experiment that yields the outcome ¢, and hence X (¢{), is performed a large
number of times. Fy(b) is then the long-term proportion of times in which X ({) = b.

Before developing the general properties of the cdf, we present examples of the
cdfs for three basic types of random variables.

Example 4.1 Three Coin Tosses

Figure 4.1(a) shows the cdf X, the number of heads in three tosses of a fair coin. From Example 3.1
we know that X takes on only the values 0, 1,2, and 3 with probabilities 1/8,3/8,3/8, and 1/8, respec-
tively, so Fy(x) is simply the sum of the probabilities of the outcomes from {0, 1, 2, 3} that are less
than or equal to x. The resulting cdf is seen to be a nondecreasing staircase function that grows from
0 to 1. The cdf has jumps at the points 0, 1,2, 3 of magnitudes 1/8, 3/8, 3/8, and 1/8, respectively.

Let us take a closer look at one of these discontinuities, say, in the vicinity of
x = 1. For 6 a small positive number, we have

1
Fx(1-68)=P[X =1 - 8] = P{0heads} = 3

so the limit of the cdf as x approaches 1 from the left is 1/8. However,
3 1
+ —

Fx(1) = P[X = 1] = P[0 or 1 heads] = s= o

1
8
and furthermore the limit from the right is

1
Fx(1 +8) = P[X =1+ 6] = P[0or 1 heads] = _.

Fy(x) — Sx)
-
3 3
1 8 T ST 1
1 1
. . 3 8 4 x
0 | ) 3 0 1 2 3
(@ (b
FIGURE 4.1

cdf (a) and pdf (b) of a discrete random variable.
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Thus the cdf is continuous from the right and equal to 1/2 at the point x = 1. Indeed,
we note the magnitude of the jump at the point x = 1 is equal to P[X = 1] = 1/2
— 1/8 = 3/8. Henceforth we will use dots in the graph to indicate the value of the cdf at
the points of discontinuity.

The cdf can be written compactly in terms of the unit step function:

0 for x <0
= 4.2
u(x) {1 for x =0, (4.2)

then

Fx(x) = éu(x) + %u(x -1) + %u(x -2)+ %u(x - 3).

Example 4.2 Uniform Random Variable in the Unit Interval

Spin an arrow attached to the center of a circular board. Let 6 be the final angle of the arrow,
where 0 < 6 = 2. The probability that 6 falls in a subinterval of (0, 27r] is proportional to
the length of the subinterval. The random variable X is defined by X (6) = /2. Find the cdf
of X:

As 6 increases from 0 to 27, X increases from 0 to 1. No outcomes 6 lead to values x = 0, so

Fx(x) = P[X =x]=P[J]=0 forx < 0.
For0 < x = 1,{X = x} occurs when {6 =< 27x} so
Fy(x) = P[X =x]=P[{6 =2mx}]=2mx2m=x 0<x=1 (4.3)
Finally, for x > 1, all outcomes 6 lead to { X (0) = 1 < x}, therefore:
Fy(x) =P X =x]=P0<0=27]=1 forx > 1.

We say that X is a uniform random variable in the unit interval. Figure 4.2(a) shows the cdf
of the general uniform random variable X. We see that Fy(x) is a nondecreasing continuous
function that grows from 0 to 1 as x ranges from its minimum values to its maximum values.

Fy(x) Sx ()
1
PU— b—a
* t X X
a b a b
(@ (b)
FIGURE 4.2

cdf (a) and pdf (b) of a continuous random variable.
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Example 4.3

The waiting time X of a customer at a taxi stand is zero if the customer finds a taxi parked at the
stand, and a uniformly distributed random length of time in the interval [0, 1] (in hours) if no
taxi is found upon arrival. The probability that a taxi is at the stand when the customer arrives is
p. Find the cdf of X.

The cdf is found by applying the theorem on total probability:

Fx(x) = P[X = x] = P[X = x|find taxi]p + P[X = x|no taxi](1 — p).

Note that P[X = x|find taxi] = 1 when x = 0 and 0 otherwise. Furthermore P[ X = x|no taxi]
is given by Eq. (4.3), therefore

0 x <0
Fx(x)=q¢p+ (1 - p)x 0=x=1
1 x > 1.
The cdf, shown in Fig. 4.3(a), combines some of the properties of the cdf in Example 4.1

(discontinuity at 0) and the cdf in Example 4.2 (continuity over intervals). Note that Fx(x) can
be expressed as the sum of a step function with amplitude p and a continuous function of x.

We are now ready to state the basic properties of the cdf. The axioms of probabil-
ity and their corollaries imply that the cdf has the following properties:

(i) 0 = Fy(x) = 1.
(ii) li_)ngoFX(x) = 1.
(i) xgrzlooFX(x) = 0.
(iv) %X(x) is a nondecreasing function of x, that is,if a < b, then Fy(a) =< Fx(b).
) FX(x)( ii)continuous from the right, that is, for & > 0, Fx(b) = ;lll—>mo Fx(b + h)
= Fx(b").

These five properties confirm that, in general, the cdf is a nondecreasing function that
grows from 0 to 1 as x increases from —o0 to 0. We already observed these properties
in Examples 4.1, 4.2, and 4.3. Property (v) implies that at points of discontinuity, the cdf

Fx(x) fx®)
p
l—p
P
I i X | X
0 1 0 1
(@) (b)

FIGURE 4.3

cdf (a) and pdf (b) of a random variable of mixed type.
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is equal to the limit from the right. We observed this property in Examples 4.1 and 4.3.
In Example 4.2 the cdf is continuous for all values of x, that is, the cdf is continuous both
from the right and from the left for all x.

The cdf has the following properties which allow us to calculate the probability of
events involving intervals and single values of X:

(vii) P[X = b] = Fx(b) — Fx(b7).

(viii) P[X > x] =1 — Fyx(x).

Property (vii) states that the probability that X = b is given by the magnitude of the
jump of the cdf at the point b. This implies that if the cdf is continuous at a point b, then
P[X = b] = 0. Properties (vi) and (vii) can be combined to compute the probabilities

of other types of intervals. For example, since {¢ = X =b} = {X =a}U{a < X
= b}, then

Pla= X =b]=P[X =a] + Pla< X = D]
= Fy(a) = Fx(a) + Fx(b) — Fx(a) = Fx(b) — Fy(a"). (44)

If the cdf is continuous at the endpoints of an interval, then the endpoints have zero
probability, and therefore they can be included in, or excluded from, the interval with-
out affecting the probability.

Example 4.4

Let X be the number of heads in three tosses of a fair coin. Use the cdf to find the probability of
theevents A = {1 < X =2},B={05=X <25},andC = {1 = X <2}
From property (vi) and Fig. 4.1 we have

P[1 < X =2]=Fx(2) — Fx(1) =7/8 — 1/2 = 3/8.

The cdf is continuous at x = 0.5 and x = 2.5, so
P[0.5 = X < 25] = Fx(25) — Fx(0.5) = 7/8 — 1/8 = 6/8.
Since {1 = X <2}U{X =2} = {1 = X = 2}, from Eq. (4.4) we have
P{1 = X <2]+ P[X =2] = Fx(2) — Fx(1"),
and using property (vii) for P[ X = 2]:
P{l1 =X <2] = Fx(2) - Fx(1") = P[X = 2] = Fx(2) — Fx(I") = (Fx(2) = Fx(27))
= Fx(27) — Fx(1") = 4/8 — 1/8 = 3/8.

Example 4.5

Let X be the uniform random variable from Example 4.2. Use the cdf to find the probability of
the events {—0.5 < X < 0.25}, {0.3 < X < 0.65},and {|X — 0.4] > 0.2}.
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The cdf of X is continuous at every point so we have:

P[-0.5 < X = 0.25] = Fx(025) — Fx(—0.5) = 025 — 0 = 0.25,

P[03 < X < 0.65] = Fx(0.65) — Fx(0.3) = 0.65 — 0.3 = 0.35,

P[|X —04] >02] = P[{X <02}U{X > 06] = P[X <02] + P[X > 0.6]
= Fx(0.2) + (1 — Fx(0.6)) = 0.2 + 0.4 = 0.6.

We now consider the proof of the properties of the cdf.

¢ Property (i) follows from the fact that the cdf is a probability and hence must sat-
isfy Axiom I and Corollary 2.

¢ To obtain property (iv), we note that the event { X = a} is a subset of { X = b},
and so it must have smaller or equal probability (Corollary 7).

¢ To show property (vi), we note that {X = b} can be expressed as the union of
mutually exclusive events: {X = a} U {a < X = b} = {X = b}, and so by
Axiom I, Fy(a) + Pla < X = b] = Fy(b).

e Property (viii) follows from {X > x} = {X = x}¢and Corollary 1.

While intuitively clear, properties (ii), (iii), (v), and (vii) require more advanced limit-
ing arguments that are discussed at the end of this section.

The Three Types of Random Variables

The random variables in Examples 4.1, 4.2, and 4.3 are typical of the three most basic
types of random variable that we are interested in.

Discrete random variables have a cdf that is a right-continuous, staircase function
of x, with jumps at a countable set of points xg, X1, X;,.... The random variable in
Example 4.1 is a typical example of a discrete random variable. The cdf Fy(x) of a dis-
crete random variable is the sum of the probabilities of the outcomes less than x and
can be written as the weighted sum of unit step functions as in Example 4.1:

Fx(x) = > px(x) = ;Px(xk)u(x = Xg)s (4.5)

X=X

where the pmf py(x;) = P[X = x;] gives the magnitude of the jumps in the cdf. We
see that the pmf can be obtained from the cdf and vice versa.

A continuous random variable is defined as a random variable whose cdf Fy(x)
is continuous everywhere, and which, in addition, is sufficiently smooth that it can be
written as an integral of some nonnegative function f(x):

Fy(x) = [ f()dr. (4.6)

The random variable discussed in Example 4.2 can be written as an integral of the function
shown in Fig. 4.2(b). The continuity of the cdf and property (vii) implies that continuous
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random variables have P[ X = x] = 0 for all x. Every possible outcome has probability
zero! An immediate consequence is that the pmf cannot be used to characterize the proba-
bilities of X. A comparison of Egs. (4.5) and (4.6) suggests how we can proceed to charac-
terize continuous random variables. For discrete random variables, (Eq. 4.5), we calculate
probabilities as summations of probability masses at discrete points. For continuous ran-
dom variables, (Eq. 4.6), we calculate probabilities as integrals of “probability densities”
over intervals of the real line.

A random variable of mixed type is a random variable with a cdf that has jumps
on a countable set of points x;, x1, X,, ..., but that also increases continuously over at
least one interval of values of x. The cdf for these random variables has the form

Fx(x) = pFi(x) + (1 = p)R(x),

where 0 < p < 1, and F;(x) is the cdf of a discrete random variable and F,(x) is the cdf
of a continuous random variable. The random variable in Example 4.3 is of mixed type.

Random variables of mixed type can be viewed as being produced by a two-step
process: A coin is tossed; if the outcome of the toss is heads, a discrete random variable
is generated according to Fi(x); otherwise, a continuous random variable is generated
according to F»(x).

Fine Point: Limiting properties of cdf

Properties (ii), (iii), (v), and (vii) require the continuity property of the probability
function discussed in Section 2.9. For example, for property (ii), we consider the se-
quence of events { X = n} which increases to include all of the sample space S as n ap-
proaches 00, that is, all outcomes lead to a value of X less than infinity. The continuity
property of the probability function (Corollary 8) implies that:

lim Fy(n) = lim P[X = n] = P[lim {X =n}] = P[S] = L

For property (iii), we take the sequence { X = —n} which decreases to the empty set
I, that is, no outcome leads to a value of X less than —oo:

lim Fy(—n) = lim P[X = —n] = P[ lim {X = —n}] = P[D] = 0.

n—>0o0 n—>0o0 n—>0o0

For property (v), we take the sequence of events { X = x + 1/n} which decreases to
{X = x} from the right:

lim Fy(x + 1/n) = lim P[X < x + 1/n]

n—>0o0

= P[lim {X = x + 1n}] = P[{X = x}] = Fy(x).

n—>00

Finally, for property (vii), we take the sequence of events, {b — 1/n < X = b} which
decreases to {b} from the left:

lim (Fy(b) — Fx(b — 1/n)) = lim P[b — l/n < X = b]

n—>0o0 n—>o0

P[lim {b— 1/n < X = b}] = P[X = b].
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THE PROBABILITY DENSITY FUNCTION

The probability density function of X (pdf), if it exists, is defined as the derivative of
Fy(x):

dFy(x)
T dx

In this section we show that the pdf is an alternative, and more useful, way of specify-
ing the information contained in the cumulative distribution function.

The pdf represents the “density” of probability at the point x in the following
sense: The probability that X is in a small interval in the vicinity of x—that is, {x < X
=x+ h}—is

fx(x) (4.7)

Plx < X =x+ h] = Fy(x + h) — Fy(x)

_ Fx(x + h) — FX(x)h

4.8
. (48)
If the cdf has a derivative at x, then as 4 becomes very small,

Plx < X = x + h] = fy(x)h. (4.9)

Thus fx(x) represents the “density” of probability at the point x in the sense that the prob-
ability that X is in a small interval in the vicinity of x is approximately fy (x)A. The deriva-
tive of the cdf, when it exists, is positive since the cdf is a nondecreasing function of x, thus

() fx(x) =0. (4.10)

Equations (4.9) and (4.10) provide us with an alternative approach to specifying
the probabilities involving the random variable X. We can begin by stating a nonnega-
tive function fy(x), called the probability density function, which specifies the proba-
bilities of events of the form “X falls in a small interval of width dx about the point x,”
as shown in Fig. 4.4(a). The probabilities of events involving X are then expressed in
terms of the pdf by adding the probabilities of intervals of width dx. As the widths of
the intervals approach zero, we obtain an integral in terms of the pdf. For example, the
probability of an interval [a, b] is

b
(i) Pla<X =b] = /fX(x) dx. (4.11)

The probability of an interval is therefore the area under fx(x) in that interval, as shown

in Fig. 4.4(b). The probability of any event that consists of the union of disjoint inter-

vals can thus be found by adding the integrals of the pdf over each of the intervals.
The cdf of X can be obtained by integrating the pdf:

(iii) Fy(x) = [ fx(oar (4.12)

In Section 4.1, we defined a continuous random variable as a random variable X whose
cdf was given by Eq. (4.12). Since the probabilities of all events involving X can be
written in terms of the cdf, it then follows that these probabilities can be written in
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Jx() Jx ()

x x+dx a b
Plx <X <x + dx] = fy(x)dx Pla<X<b] = []fyx)dx
(a) (b)
FIGURE 4.4

(a) The probability density function specifies the probability of intervals of infinitesimal width. (b) The probability of an
interval [a, b] is the area under the pdf in that interval.
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terms of the pdf. Thus the pdf completely specifies the behavior of continuous random

variables.

By letting x tend to infinity in Eq. (4.12), we obtain a normalization condition for

pdf’s:

(iv) 1 :/ Fx(t) dt.

(4.13)

The pdf reinforces the intuitive notion of probability as having attributes similar
to “physical mass.” Thus Eq. (4.11) states that the probability “mass” in an interval is
the integral of the “density of probability mass” over the interval. Equation (4.13)

states that the total mass available is one unit.

A valid pdf can be formed from any nonnegative, piecewise continuous function

g(x) that has a finite integral:

/ g(x)dx = ¢ < 0.

(4.14)

By letting fx(x) = g(x)/c, we obtain a function that satisfies the normalization condi-
tion. Note that the pdf must be defined for all real values of x;if X does not take on val-

ues from some region of the real line, we simply set fx(x) = 0 in the region.

Example 4.6 Uniform Random Variable
The pdf of the uniform random variable is given by:

1

a=x=b

x<a and x>0b

(4.15a)
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and is shown in Fig. 4.2(b). The cdf is found from Eq. (4.12):

0 x<a
Fy(x) = z:z a=x=b (4.15b)
1 x > b.

The cdf is shown in Fig. 4.2(a).

Example 4.7 Exponential Random Variable

The transmission time X of messages in a communication system has an exponential distrib-
ution:

P[X >x]=¢e™ x> 0.

Find the cdf and pdf of X.
The cdf is given by Fy(x) = 1 — P[X > x]
0 x <0
Fx(x) = {1 _ o amp (4162)

The pdf is obtained by applying Eq. (4.7):

0 x <0

pmr =0 (4.16b)

fx(x) = Fx(x) = {

Example 4.8 Laplacian Random Variable

The pdf of the samples of the amplitude of speech waveforms is found to decay exponentially at
a rate ¢, so the following pdf is proposed:

fx(x) = e —00 < x < 0. 4.17)

Find the constant c, and then find the probability P[| X| < v].

We use the normalization condition in (iv) to find c:

o0 o0 2
1= / ce M dy = 2/ cedx = i.
—00 0 o

Therefore ¢ = a/2. The probability P[|X| < v] is found by integrating the pdf:

v v
P[|X| < ?)] = %/ e*a‘-’c‘ dx = 2(%)/ e X dx =1 — e,
—v 0

pdf of Discrete Random Variables

The derivative of the cdf does not exist at points where the cdf is not continuous. Thus
the notion of pdf as defined by Eq. (4.7) does not apply to discrete random variables
at the points where the cdf is discontinuous. We can generalize the definition of the
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probability density function by noting the relation between the unit step function and
the delta function. The unit step function is defined as

u(x) = {(1) j:;? (4.18a)
The delta function 5(¢) is related to the unit step function by the following equation:
u(x) = /x 8(t) dt. (4.18b)

A translated unit step function is then:
u(x — xg) = /xxoé(t) dt = /xé(t’ — Xxp) dt'. (4.18¢)

Substituting Eq. (4.18¢) into the cdf of a discrete random variables:

X

Fax) = Spxteuts = x0) = Spata) [ o0 = )

= _m;px(xk)S(t — Xxp)dt. (4.19)

This suggests that we define the pdf for a discrete random variable by

frlx) = JoFx() = Spa(n)ots - ). (420)

Thus the generalized definition of pdf places a delta function of weight P[X = x;] at
the points x; where the cdf is discontinuous.

To provide some intuition on the delta function, consider a narrow rectangular
pulse of unit area and width A centered at¢ = 0:

o[ —an=r=ap
A" 0 lt] > A.

Consider the integral of 7,(¢):

/ () dt / 0dt=0 forx < —A/2

/ wa(t) dt = —u(x). (4.21)
—00 X A2
/ ma(t) dt / 1VAdt =1 forx > A2
—00 —A2

As A — 0, we see that the integral of the narrow pulse approaches the unit step func-
tion. For this reason, we visualize the delta function §(¢) as being zero everywhere
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except at x = 0 where it is unbounded. The above equation does not apply at the value
x = 0. To maintain the right continuity in Eq. (4.18a), we use the convention:

0
u(0) =1= / 8(t) dt.
If we replace mA(¢) in the above derivation with g(¢)m(¢), we obtain the “sifting”
property of the delta function:

o0

g(0) = [Oog(t)ﬁ(t) dt and g(xq) = /_ g(6)é(t — xq) dt. (4.22)

The delta function is viewed as sifting through x and picking out the value of g at the
point where the delta functions is centered, that is, g(x,) for the expression on the right.

The pdf for the discrete random variable discussed in Example 4.1 is shown in
Fig. 4.1(b). The pdf of a random variable of mixed type will also contain delta functions
at the points where its cdf is not continuous. The pdf for the random variable discussed
in Example 4.3 is shown in Fig. 4.3(b).

Example 4.9

Let X be the number of heads in three coin tosses as in Example 4.1. Find the pdf of X. Find
P[1 < X =2]and P[2 = X < 3] by integrating the pdf.
In Example 4.1 we found that the cdf of X is given by

1 3 3 1
== + Su(x — 1) + Su(x — 2) + —u(x — 3).
Fx(x) 8u()c) 8u(x 1) 8u(x 2) 8u(x 3)
It then follows from Egs. (4.18) and (4.19) that
1 3 3 1
== +28(x — 1) + 58(x — 2) + 58(x — 3).
Fielx) = g8(x) + 38(x = 1) + 25(x = 2) + £8(x = 3)

When delta functions appear in the limits of integration, we must indicate whether the delta
functions are to be included in the integration. Thus in P[1 < X = 2] = P[X in (1,2]], the
delta function located at 1 is excluded from the integral and the delta function at 2 is included:

2+

3
Pll<X=2]= fx(x)dx = —.
1+ 8
Similarly, we have that
- 3
P2=X<3]= fx(x)dx = 3
2_

Conditional cdf’s and pdf's

Conditional cdf’s can be defined in a straightforward manner using the same approach
we used for conditional pmf’s. Suppose that event C is given and that P[C] > 0. The
conditional cdf of X given C is defined by

P[{X = x}NC]
P[C]

Fy(x|C) = if P[C] > 0. (4.23)
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It is easy to show that Fy(x|C) satisfies all the properties of a cdf. (See Problem 4.29.)
The conditional pdf of X given C is then defined by

fx(x|C) = dixFX(x|C). (4.24)

Example 4.10

The lifetime X of a machine has a continuous cdf Fy(x). Find the conditional cdf and pdf given
the event C = {X > t} (i.e., “machine is still working at time ¢”).
The conditional cdf is

P{X = x}N{X > t}]

Fy(x|X >1) = P[X = x[X >1] = PlX > 1]

The intersection of the two events in the numerator is equal to the empty set when x < ¢ and to
{t < X = x} when x = ¢. Thus

0 X =t
Fy(x|X > 1) = FXI(") ;ZX)(”
. ¢

The conditional pdf is found by differentiating with respect to x:

fx(x)

fX(x|X > t) = 1 — Fx(l)

X =t

Now suppose that we have a partition of the sample space § into the union of dis-
joint events By, Bs, ..., B,. Let Fy(x|B;) be the conditional cdf of X given event B;.
The theorem on total probability allows us to find the cdf of X in terms of the condi-
tional cdf’s:

Fx(x) = P[X =x] = iP[X = x|B;]P[B] = iFX(x|B,~)P[Bi]. (4.25)

The pdf is obtained by differentiation:

Frle) = () = S

I
M
o
=
&
X
&

(4.26)

Example 4.11

A binary transmission system sends a “0” bit by transmitting a —v voltage signal, and a “1” bit by
transmitting a +v. The received signal is corrupted by Gaussian noise and given by:

Y=X+N

where X is the transmitted signal, and N is a noise voltage with pdf fy(x). Assume that
P[“1”] = p =1 — P[“0”]. Find the pdf of Y.
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Let B, be the event “0” is transmitted and B; be the event “1” is transmitted, then By, B;

form a partition, and

Since Y = X + N,theevent {Y < x|X = v}isequivalentto {v + N < x}and {N < x — v},
and the event {Y < x|X = —v} is equivalent to {N < x + v}. Therefore the conditional

Fy(x) = Fy(x|By)[By] + Fy(x|By)[By]

=P[Y =x|X =—v](1 - p) + P[Y =x|X =v]p.

cdf’s are:
Fy(x|By) = P[N = x + v] = Fy(x +v)
and
Fy(x|B;) = P[N = x — v] = Fy(x — v).
The cdf is:
Fy(x) = Fy(x + 0)(1 = p) + Fy(x = 0)p.
The pdf of N is then:
d
fr(x) = EFY(X)
d

d
= TCR(x )L = p) + L Fu(x = v)p

= fn(x +0)(1 = p) + fn(x = v)p.
The Gaussian random variable has pdf:

1
In(x) = 726_"2’2"2 —00 < x < 00,
2o

The conditional pdfs are:

e—(x+1))2/2¢r2

fr(xBy) = fy(x +v) =

8]

2o

Jax + ) Inx —v)

FIGURE 4.5
The conditional pdfs given the input signal
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and
1 —(x—v)%20?
fr(xIBy) = fn(x —v) = e o
2ma?
The pdf of the received signal Y is then:
fr(x) = #e_()ﬁv)z/z”z(l - p)+ ! e—(x—v)Z/erzp.
2’7T0'2 2770.2

Figure 4.5 shows the two conditional pdfs. We can see that the transmitted signal X shifts the cen-
ter of mass of the Gaussian pdf.

THE EXPECTED VALUE OF X

We discussed the expected value for discrete random variables in Section 3.3, and found
that the sample mean of independent observations of a random variable approaches
E[X]. Suppose we perform a series of such experiments for continuous random vari-
ables. Since continuous random variables have P[ X = x] = 0 for any specific value
of x, we divide the real line into small intervals and count the number of times N,(n)
the observations fall in the interval {x; < X < x; + A}. Asn becomes large, then the
relative frequency fi(n) = Ni(n)/n will approach fx(x,)A, the probability of the inter-
val. We calculate the sample mean in terms of the relative frequencies and let n — 00:

(X)n = ;xkfk(”) - ;xkfX(xk)A-

The expression on the right-hand side approaches an integral as we decrease A.
The expected value or mean of a random variable X is defined by

E[X] = /:Otfx(t) dr. 4.27)

The expected value E[X] is defined if the above integral converges absolutely, that is,

E[|X|]=/_ |t fx(t) dt <00,

If we view fx(x) as the distribution of mass on the real line, then E[X] represents the
center of mass of this distribution.

We already discussed E[X] for discrete random variables in detail, but it is worth
noting that the definition in Eq. (4.27) is applicable if we express the pdf of a discrete
random variable using delta functions:

BIX) = [ S paasts - )

S pa() / (S8t — ) di
P S
:Ek:PX(xk)xk-
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Example 4.12 Mean of a Uniform Random Variable

The mean for a uniform random variable is given by

a+b

b
E[X]=(b—a)’1/tdt= 7

which is exactly the midpoint of the interval [a, b]. The results shown in Fig. 3.6 were obtained by
repeating experiments in which outcomes were random variables Y and X that had uniform cdf’s
in the intervals [—1, 1] and [3, 7], respectively. The respective expected values, 0 and 5, corre-
spond to the values about which X and Y tend to vary.

The result in Example 4.12 could have been found immediately by noting that
E[X] = m when the pdf is symmetric about a point m. That is, if

fx(m — x) = fx(m + x) for all x,
then, assuming that the mean exists,
+00 +00
0= / (m = t)fx(t)dt = m — / tfx(t) dt.

The first equality above follows from the symmetry of fy(¢) about t = m and the odd
symmetry of (m — t) about the same point. We then have that E[ X ] = m.

Example 4.13 Mean of a Gaussian Random Variable

The pdf of a Gaussian random variable is symmetric about the point x = m. Therefore E[ X | = m.

The following expressions are useful when X is a nonnegative random variable:

EX] = A (1 — Fx(t)) dt if X continuous and nonnegative  (4.28)

and
[oe]

E[X] = sz)P[X > k] if X nonnegative, integer-valued. (4.29)

The derivation of these formulas is discussed in Problem 4.47.

Example 4.14 Mean of Exponential Random Variable

The time X between customer arrivals at a service station has an exponential distribution. Find
the mean interarrival time.
Substituting Eq. (4.17) into Eq. (4.27) we obtain

E[X] = / the ™ dt.
JO
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We evaluate the integral using integration by parts (./ udv = uv — / vdu), with u = ¢ and

dv = xe M dt:
+ / e M dt
0 0

_ef)\t [o¢]
= limte™ — 0 +
{—00 A 0

_ e*)\[

—At

E[X] = —te

lim
t—00 A\

1 1
+-=-,
AA

where we have used the fact that e ™ and te™* go to zero as ¢ approaches infinity.
For this example, Eq. (4.28) is much easier to evaluate:

= 1
E[X] = eMdt = —.
o A

Recall that A is the customer arrival rate in customers per second. The result that the mean inter-
arrival time E[ X | = 1/A seconds per customer then makes sense intuitively.

The Expected Value of Y = g(X)

Suppose that we are interested in finding the expected value of Y = g(X). As in the
case of discrete random variables (Eq. (3.16)), E[Y] can be found directly in terms of
the pdf of X:

E[Y] = / g(0fx(x) (4.30)

To see how Eq. (4.30) comes about, suppose that we divide the y-axis into intervals
of length &, we index the intervals with the index k and we let y, be the value in the
center of the kth interval. The expected value of Y is approximated by the follow-
ing sum:

E[Y] = Ek:kaY()’k)h-

Suppose that g(x) is strictly increasing, then the kth interval in the y-axis has a unique
corresponding equivalent event of width 4 in the x-axis as shown in Fig. 4.6. Let x; be
the value in the kth interval such that g(x;) = y, then since fy (v )h = fx(xp)hy,

E[Y] = ;g(xk)fX(xk)hIc

By letting /& approach zero, we obtain Eq. (4.30). This equation is valid even if g(x) is
not strictly increasing.
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y=gx)

Vi @

—_ S |e—

FIGURE 4.6
Two infinitesimal equivalent events.

Example 4.15 Expected Values of a Sinusoid with Random Phase

Let Y = acos(wt + ©) where a, w, and ¢ are constants, and O is a uniform random variable
in the interval (0, 27). The random variable Y results from sampling the amplitude of a sinu-

soid with random phase 0. Find the expected value of Y and expected value of the power of
Y, Y2

E[Y] = E[acos(wt + O)]

2w

27 do
1 acos(wt + O)E = —asin(wt + 6)

0

= —asin(wt + 27) + asin(wt) = 0.

The average power is

2 2
E[Y?] = E[a* cos*(wt + ©)] = E[”z + %cos(Zwt + 2@)}
R o  a’
=+ 2wt + =—.
> ZA cos(2wt 0)277_ >

Note that these answers are in agreement with the time averages of sinusoids: the time average
(“dc” value) of the sinusoid is zero; the time-average power is a%/2.
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Example 4.16 Expected Values of the Indicator Function

Let g(X) = Ic(X) be the indicator function for the event { X in C}, where C is some interval or
union of intervals in the real line:

0 XnotinC
X) =
8(X) {1 XinC,
then

E[Y] = /_OO g(X)fx(x)dx = lfx(x) dx = P[X in C].

Thus the expected value of the indicator of an event is equal to the probability of the event.

It is easy to show that Egs. (3.17a)—(3.17¢) hold for continuous random variables
using Eq. (4.30). For example, let ¢ be some constant, then

E[c] = /OocfX(x) dx = c/oofx(x) dx = ¢ (4.31)
and
ElcX] = / cxfy(x)dx = c/ xfx(x)dx = cE[X]. (4.32)

The expected value of a sum of functions of a random variable is equal to the sum
of the expected values of the individual functions:

E[Y] - E[igkm}
=1

[
|
g 8
M=
£
=
=
=
Y
=
[
M=
—
8
2
=
=
=
=
IS
=

= > E[a(X)]. (4.33)

Example 4.17
LetY = g(X) = ap + a1 X + a,X? + -+ + a,X", where a, are constants, then
E[Y] = Elay] + E[e;X] + -+ + E[a,X"]
=ay+ aE[X] + E[X?*] + -+ + a,E[X"],
where we have used Eq. (4.33), and Egs. (4.31) and (4.32). A special case of this result is that
E[X +c¢] = E[X] + ¢,

that is, we can shift the mean of a random variable by adding a constant to it.
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Variance of X

The variance of the random variable X is defined by

VAR[X] = E[(X — E[X])*] = E[X*] - E[X] (4.34)
The standard deviation of the random variable X is defined by
STD[X] = VAR[X]"2 (4.35)

Example 4.18 Variance of Uniform Random Variable

Find the variance of the random variable X that is uniformly distributed in the interval [a, b].
Since the mean of Xis (a + b)/2,

1 b a+ b\?
VAR[X1*b,a[(x_ > )dx.

Lety = (x — (a + b)12),

(b—a)2 )2
1 (b—a)
VAR[X] = 2dy = ——.
L b—d/(ba)/zy Y 12

The random variables in Fig. 3.6 were uniformly distributed in the interval [—1, 1] and [3, 7], re-
spectively. Their variances are then 1/3 and 4/3. The corresponding standard deviations are 0.577
and 1.155.

Example 4.19 Variance of Gaussian Random Variable

Find the variance of a Gaussian random variable.
First multiply the integral of the pdf of X by V27 o to obtain

/ e M gy = \27r g
Differentiate both sides with respect to o
0 _ 2
/ <(x 3m)>e_(x_m)2/2"2 dx = V2.
—00 g

By rearranging the above equation, we obtain

1

Vor o

This result can also be obtained by direct integration. (See Problem 4.46.) Figure 4.7 shows the
Gaussian pdf for several values of o; it is evident that the “width” of the pdf increases with o.

VAR[X] =

/ (x = m)ze_()‘_’")z/z“2 dx = %

The following properties were derived in Section 3.3:

VAR[c] =0 (4.36)
VAR[X + c] = VAR[X] (4.37)
VAR[cX] = ¢ VAR[X], (4.38)

where c is a constant.
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FIGURE 4.7
Probability density function of Gaussian random variable.

The mean and variance are the two most important parameters used in summa-
rizing the pdf of a random variable. Other parameters are occasionally used. For ex-
ample, the skewness defined by E[(X — E[X])*]/STD[X ] measures the degree of
asymmetry about the mean. It is easy to show that if a pdf is symmetric about its
mean, then its skewness is zero. The point to note with these parameters of the pdf is
that each involves the expected value of a higher power of X. Indeed we show in a
later section that, under certain conditions, a pdf is completely specified if the expect-
ed values of all the powers of X are known. These expected values are called the mo-
ments of X.

The nth moment of the random variable X is defined by

[o¢]

E[X"] = [oox”fx(x) dx. (4.39)

The mean and variance can be seen to be defined in terms of the first two moments,
E[X] and E[X?].

*Example 4.20 Analog-to-Digital Conversion: A Detailed Example

A quantizer is used to convert an analog signal (e.g., speech or audio) into digital form. A quan-
tizer maps a random voltage X into the nearest point ¢(X) from a set of 2% representation values
as shown in Fig. 4.8(a). The value X is then approximated by g(X), which is identified by an R-bit
binary number. In this manner, an “analog” voltage X that can assume a continuum of values is
converted into an R-bit number.

The quantizer introduces an error Z = X — g(X ) as shown in Fig. 4.8(b). Note that Zis a
function of X and that it ranges in value between —d/2 and d/2, where d is the quantizer step size.
Suppose that X has a uniform distribution in the interval [ —xax, Xmax ], that the quantizer has 2R
levels, and that 2x,,,, = 2%d. It is easy to show that Z is uniformly distributed in the interval
[—d/2, d/2] (see Problem 4.93).
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0 = 57

(@) (b)

FIGURE 4.8
(a) A uniform quantizer maps the input x into the closest point from the set {+d/2, +3d/2, +£5d/2, £7d/2}. (b) The uniform
quantizer error for the input x is x — g(x).

Therefore from Example 4.12,

dr —dn

E7) =

The error Z thus has mean zero.

By Example 4.18,
(dR — (-dR))?* 42
VAR[Z] = — 0 1

This result is approximately correct for any pdf that is approximately flat over each quantizer in-
terval. This is the case when 2% is large.
The approximation g(x) can be viewed as a “noisy” version of X since

0X) =X - Z,

where Z is the quantization error Z. The measure of goodness of a quantizer is specified by the
SNR ratio, which is defined as the ratio of the variance of the “signal” X to the variance of the
distortion or “noise” Z:

VAR[X] VAR[X]

[
~ VAR[Z] 412
[

where we have used the fact that d = 2x,,,,/2%. When X is nonuniform, the value x,,,, is select-
ed so that P[| X| > xp,y] is small. A typical choice is Xy, = 4 STD[ X ]. The SNR is then
3
SNR = —2%k
16
This important formula is often quoted in decibels:

SNR dB = 101log;y SNR = 6R — 7.3 dB.
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The SNR increases by a factor of 4 (6 dB) with each additional bit used to represent X. This
makes sense since each additional bit doubles the number of quantizer levels, which in turn re-
duces the step size by a factor of 2. The variance of the error should then be reduced by the
square of this, namely 2 = 4.

IMPORTANT CONTINUOUS RANDOM VARIABLES

We are always limited to measurements of finite precision, so in effect, every random
variable found in practice is a discrete random variable. Nevertheless, there are several
compelling reasons for using continuous random variable models. First, in general, con-
tinuous random variables are easier to handle analytically. Second, the limiting form of
many discrete random variables yields continuous random variables. Finally, there are
a number of “families” of continuous random variables that can be used to model a
wide variety of situations by adjusting a few parameters. In this section we continue
our introduction of important random variables. Table 4.1 lists some of the more im-
portant continuous random variables.

The Uniform Random Variable

The uniform random variable arises in situations where all values in an interval of the real
line are equally likely to occur. The uniform random variable U in the interval [, b] has pdf:

1

a=x=b>

fo(x) =yb—a (4.40)
0 x<a and x>0b
and cdf

0 x<a
Fy(x) = z:z a=x=0b (4.41)

1 x > b.

See Figure 4.2. The mean and variance of U are given by:

a+b (b—a)2

E[U] = and VAR[X] = >

(4.42)

The uniform random variable appears in many situations that involve equally
likely continuous random variables. Obviously U can only be defined over intervals
that are finite in length. We will see in Section 4.9 that the uniform random variable
plays a crucial role in generating random variables in computer simulation models.

The Exponential Random Variable

The exponential random variable arises in the modeling of the time between occur-
rence of events (e.g., the time between customer demands for call connections), and in
the modeling of the lifetime of devices and systems. The exponential random variable
X with parameter A has pdf
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TABLE 4.1 Continuous random variables.

Uniform Random Variable

Sx = [a,b]
fe(x) = a=x=b
b—a
a+b (b - 0)2 elob — elwa
E[X] = VAR X ]| =—-—" (] =
[X] [X] =5 xw) =S
Exponential Random Variable
SX = [0’ 00)
fx(x) =2™ x=0 and A>0
1 1 A
E[X]=— VAR[X] = — (] =
[X] =4 (X]= el =
Remarks: The exponential random variable is the only continuous random variable with the memoryless
property.

Gaussian (Normal) Random Variable

Sy = (—00, +00)
e*(x*m)z/Zaz
)= —co<x<+oo and o >0

\V2mo
E[X] =m VAR[X] = 0'2 (:I)X(w) — ejmwfazwzlz

Remarks: Under a wide range of conditions X can be used to approximate the sum of a large number of in-
dependent random variables.

Gamma Random Variable

Sy = (0, +0)
A(Ax) e
fx(x) = ——F—— x>0 and a>0,A>0
I(a)
where I'(z) is the gamma function (Eq. 4.56).
1

E[X] = VAR[X] = 2 ) T —

[X] = alr [X] = a/A x(o) (1 = jwlA)®

Special Cases of Gamma Random Variable
m-1 Erlang Random Variable: « = m, a positive integer
)\e’)"“()\x)’"’2 1 m
fx(x) =T m—1 ¥ >0  Py(w)= <m)
Remarks: An m—1 Erlang random variable is obtained by adding m independent exponentially distributed
random variables with parameter A.

Chi-Square Random Variable with k degrees of freedom: « = k/2, k a positive integer,and A = 1/2
(k=2)/2,,~x2 1 k12
X e
I P T
Fx(x) 220 (k12) x@) =17

Remarks: The sum of k mutually independent, squared zero-mean, unit-variance Gaussian random vari-
ables is a chi-square random variable with k degrees of freedom.




Laplacian Random Variable

Sx = (700’ OO)

fx(x) = %e"“x‘ —00<x<+00 and a >0
2 o
E[X]=0 VAR[X] = 2/« Dy(0) = — 2
o+

Rayleigh Random Variable
SX = [07 OO)
fx(x) = %e”‘z/zaz x=0 and a>0

o
E[X]=aVa2 VAR[X] = (2 — 7/2)d?
Cauchy Random Variable
Sy = (=00, +00)

/

fx(x) = 20”72 —0o<x<+00 and a>0

X+ «a
Mean and variance do not exist. Py(w) = el
Pareto Random Variable
SX = [xma Oo)xm > 0.

0 x < x,,
fx(x) = § a0
X ax““ X =Xy,
2

ax,, axy,
E[X] = fora >1 VAR[X] = ——F—— fora > 2

a—-1 (a =2)(a—1)

Remarks: The Pareto random variable is the most prominent example of random variables with “long
tails,” and can be viewed as a continuous version of the Zipf discrete random variable.

Beta Random Variable
M a—1 _ B-1
fr(x) = ATy ™ 7Y 0<x<1 and a>08>0
0 otherwise
«a ap
E[X] = VAR[X] =
] atp X (a+ B a+ B +1)

Remarks: The beta random variable is useful for modeling a variety of pdf shapes for random variables
that range over finite intervals.
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(4.43)

and cdf

0 x <0
FX(X) = {1 _ e—)\x ¥ = 0. (444)

The cdf and pdf of X are shown in Fig. 4.9.

The parameter A is the rate at which events occur, so in Eq. (4.44) the probability
of an event occurring by time x increases at the rate A increases. Recall from Example
3.31 that the interarrival times between events in a Poisson process (Fig. 3.10) is an ex-
ponential random variable.

The mean and variance of X are given by:

E[U] =% and VAR[X] = 1 (4.45)

22
In event interarrival situations, A is in units of events/second and 1/A is in units of sec-
onds per event interarrival.
The exponential random variable satisfies the memoryless property:

P[X >t + h|X >1t] = P[X > h]. (4.46)

The expression on the left side is the probability of having to wait at least /# additional
seconds given that one has already been waiting ¢ seconds. The expression on the right
side is the probability of waiting at least # seconds when one first begins to wait. Thus
the probability of waiting at least an additional 4 seconds is the same regardless of how
long one has already been waiting! We see later in the book that the memoryless prop-
erty of the exponential random variable makes it the cornerstone for the theory of

Sx(x)

I —e M Ae—Ax

(@ (b)

FIGURE 4.9
An example of a continuous random variable—the exponential random variable. Part (a) is the cdf and part (b) is the pdf.
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Markov chains, which is used extensively in evaluating the performance of computer
systems and communications networks.
We now prove the memoryless property:

P{X >t + h}N{X > t}]

P[X >t+ hlX >1] = PIX = 1] forh >0
P[X >t + h] e Ath)
P[X >1t] N

=eM=P[X > h]

It can be shown that the exponential random variable is the only continuous random
variable that satisfies the memoryless property.
Examples 2.13,2.28, and 2.30 dealt with the exponential random variable.

The Gaussian (Normal) Random Variable

There are many situations in manmade and in natural phenomena where one deals with a
random variable X that consists of the sum of a large number of “small” random variables.
The exact description of the pdf of X in terms of the component random variables can be-
come quite complex and unwieldy. However, one finds that under very general conditions,
as the number of components becomes large, the cdf of X approaches that of the Gaussian
(normal) random variable.! This random variable appears so often in problems involving
randomness that it has come to be known as the “normal” random variable.
The pdf for the Gaussian random variable X is given by

1 2 2
fx(x) = e (T o0 < x < 00, (4.47)
V2mo
where m and o > 0 are real numbers, which we showed in Examples 4.13 and 4.19 to be
the mean and standard deviation of X. Figure 4.7 shows that the Gaussian pdf is a “bell-
shaped” curve centered and symmetric about m and whose “width” increases with o
The cdf of the Gaussian random variable is given by

1 . ’ 2 2
P[X =x] = / e~ (Xmmy o gy (4.48)

V2mo J-o
The change of variable t = (x’ — m)/o results in
1 (x—m)lo 0
Fx(x) = / e dt
X V2 J-o
= cp(x - m) (4.49)

(o

where ®(x) is the cdf of a Gaussian random variable with m = 0 and o = 1:

O (x) = 2 gy, (4.50)

1 /
— e
\/ 27 J-0

IThis result, called the central limit theorem, will be discussed in Chapter 7.
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Therefore any probability involving an arbitrary Gaussian random variable can be ex-
pressed in terms of ®(x).

Example 4.21

Show that the Gaussian pdf integrates to one. Consider the square of the integral of the pdf:

1 0072/2 2 1 0072/2 0072/2
— | edx | =— | e"dx | eY"dy
\/zﬁ[oo :| 27 ) o

1 (o 0] (o 0]
= g[oo Zooe’("z+y2)/2 dx dy.

Let x = rcos 6 and y = rsin 6 and carry out the change from Cartesian to polar coordinates,

then we obtain:
o) 2T 00
1
—/ / e Prdr do = / re " dr
2w Jo Jo 0

_2
=[5

=1

In electrical engineering it is customary to work with the Q-function, which is de-
fined by
O(x)=1- d(x) (4.51)

1 / ” —£2
=——=[ e'"“dt (4.52)
\/ 27 Jx
QO(x) is simply the probability of the “tail” of the pdf. The symmetry of the pdf im-
plies that

0(0)=12 and QO(—x) =1 - O(x). (4.53)

The integral in Eq. (4.50) does not have a closed-form expression. Traditionally
the integrals have been evaluated by looking up tables that list Q(x) or by using ap-
proximations that require numerical evaluation [Ross]. The following expression has
been found to give good accuracy for Q(x) over the entire range 0 < x < 00:

~ 1 1 —x*2
o) Ll Tt m} Vot (59

where a = 1/ and b = 27 [Gallager]. Table 4.2 shows Q(x) and the value given by the
above approximation. In some problems, we are interested in finding the value of x for
which Q(x) = 107X, Table 4.3 gives these values for k = 1,.. ., 10.

The Gaussian random variable plays a very important role in communication sys-
tems, where transmission signals are corrupted by noise voltages resulting from the
thermal motion of electrons. It can be shown from physical principles that these volt-
ages will have a Gaussian pdf.
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TABLE 4.2 Comparison of Q(x) and approximation given by Eq. (4.54).

X O(x) Approximation X O(x) Approximation
0 5.00E-01 5.00E-01 2.7 347E-03 3.46E-03
0.1  4.60E-01 4.58E-01 2.8 2.56E-03 2.55E-03
0.2 421E-01 4.17E-01 29 1.87E-03 1.86E-03
03 3.82E-01 3.78E-01 3.0 1.35E-03 1.35E-03
0.4  345E-01 3.41E-01 31 9.68E-04 9.66E-04
0.5 3.09E-01 3.05E-01 32 6.87E-04 6.86E-04
0.6 2.74E-01 2.71E-01 33 4.83E-04 4.83E-04
0.7 242E-01 2.39E-01 34 3.37E-04 3.36E-04
0.8 2.12E-01 2.09E-01 35 2.33E-04 2.32E-04
0.9 1.84E-01 1.82E-01 3.6 1.59E-04 1.59E-04
1.0  1.59E-01 1.57E-01 3.7 1.08E-04 1.08E-04
1.1 1.36E-01 1.34E-01 3.8 7.24E-05 7.23E-05
1.2 1.15E-01 1.14E-01 39 481E-05 4.81E-05
1.3 9.68E-02 9.60E-02 40 3.17E-05 3.16E-05
14  8.08E-02 8.01E-02 45  3.40E-06 3.40E-06
1.5  6.68E-02 6.63E-02 5.0 2.87E-07 2.87E-07
1.6  5.48E-02 5.44E-02 55 1.90E-08 1.90E-08
1.7 4.46E-02 4.43E-02 6.0 9.87E-10 9.86E-10
1.8  3.59E-02 3.57E-02 6.5 4.02E-11 4.02E-11
1.9 2.87E-02 2.86E-02 7.0 1.28E-12 1.28E-12
2.0 228E-02 2.26E-02 7.5 3.19E-14 3.19E-14
21  1.79E-02 1.78E-02 8.0 6.22E-16 6.22E-16
22 1.39E-02 1.39E-02 8.5 9.48E-18 9.48E-18
23 1.07E-02 1.07E-02 9.0 1.13E-19 1.13E-19
24  8.20E-03 8.17E-03 9.5 1.05E-21 1.05E-21
2.5 6.21E-03 6.19E-03 10.0 7.62E-24 7.62E-24
2.6  4.66E-03 4.65E-03

Example 4.22

A communication system accepts a positive voltage V as input and outputs a voltage
Y = aV + N,where @ = 1072 and N is a Gaussian random variable with parameters m = 0 and
o = 2. Find the value of V that gives P[Y < 0] = 10,

The probability P[Y < 0] is written in terms of N as follows:

P[Y < 0] = PlaV + N < 0]
= P[N < —aV] = @(_ZV> = Q(%) =107,

From Table 4.3 we see that the argument of the Q-function should be aV/o = 4.753. Thus
V = (4.753)ala = 950.6.
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TABLE4.3 Q(x) = 107%

k  x=07Y107%

1.2815
2.3263
3.0902
3.7190
4.2649
4.7535
5.1993
5.6120
5.9978
6.3613

S O 0NN AW~

—_

The Gamma Random Variable

The gamma random variable is a versatile random variable that appears in many appli-
cations. For example, it is used to model the time required to service customers in queue-
ing systems, the lifetime of devices and systems in reliability studies, and the defect
clustering behavior in VLSI chips.

The pdf of the gamma random variable has two parameters, « > 0 and A > 0,
and is given by
A()\x)afleﬂ\x

fX(x) = F(O[)

0<x < oo, (4.55)

where I'(z) is the gamma function, which is defined by the integral

I'(z) = / xle*dx  z>0. (4.56)
0

The gamma function has the following properties:

1

r() =V,

2
INz+1)=zl(2) for z > 0, and
'(m + 1) = m! for m a nonnegative integer.

The versatility of the gamma random variable is due to the richness of the gamma
function I'(z). The pdf of the gamma random variable can assume a variety of shapes
as shown in Fig. 4.10. By varying the parameters « and A it is possible to fit the gamma
pdf to many types of experimental data. In addition, many random variables are spe-
cial cases of the gamma random variable. The exponential random variable is obtained
by letting « = 1. By letting A = 1/2 and o = k/2, where k is a positive integer, we ob-
tain the chi-square random variable, which appears in certain statistical problems. The
m-Erlang random variable is obtained when o = m, a positive integer. The m-Erlang
random variable is used in the system reliability models and in queueing systems mod-
els. Both of these random variables are discussed in later examples.
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FIGURE 4.10
Probability density function of gamma random variable.

Example 4.23

Show that the pdf of a gamma random variable integrates to one.
The integral of the pdf is

00 ooA(/\x)aflef)\x
le(x)dleil“(a) dx

A% /OO —-1,-Ax
= x* e M dx.
[(a) Jo

Let y = Ax, then dx = dy/\ and the integral becomes

Y
= [ yleVdy =1
F(a)/\“l Yoo

where we used the fact that the integral equals I'(«).

In general, the cdf of the gamma random variable does not have a closed-form
expression. We will show that the special case of the m-Erlang random variable does
have a closed-form expression for the cdf by using its close interrelation with the expo-
nential and Poisson random variables. The cdf can also be obtained by integration of
the pdf (see Problem 4.74).

Consider once again the limiting procedure that was used to derive the Poisson
random variable. Suppose that we observe the time S,, that elapses until the occur-
rence of the mth event. The times X1, X,,..., X,, between events are exponential ran-
dom variables, so we must have

Sm:X1+X2+"'+Xm.
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We will show that §,, is an m-Erlang random variable. To find the cdf of S,,, let N(¢) be
the Poisson random variable for the number of events in ¢ seconds. Note that the mth
event occurs before time t—that is, S,, = t—if and only if m or more events occur in ¢
seconds, namely N(¢) = m. The reasoning goes as follows. If the mth event has oc-
curred before time ¢, then it follows that m or more events will occur in time ¢. On the
other hand, if m or more events occur in time ¢, then it follows that the mth event oc-
curred by time ¢. Thus

Fs (t) = P[S,, =t] = P[N(t) = m] (4.57)
P () Ay
_1_;;) e (4.58)

where we have used the result of Example 3.31. If we take the derivative of the above
cdf, we finally obtain the pdf of the m-Erlang random variable. Thus we have shown
that S,, is an m-Erlang random variable.

Example 4.24

A factory has two spares of a critical system component that has an average lifetime of 1/A = 1
month. Find the probability that the three components (the operating one and the two spares)
will last more than 6 months. Assume the component lifetimes are exponential random variables.

The remaining lifetime of the component in service is an exponential random variable
with rate A by the memoryless property. Thus, the total lifetime X of the three components is the
sum of three exponential random variables with parameter A = 1. Thus X has a 3-Erlang distri-
bution with A = 1. From Eq. (4.58) the probability that X is greater than 6 is

P[X >6]=1- P[X = 6]

6k
= > e’ =.06197.
k=0K-

The Beta Random Variable
The beta random variable X assumes values over a closed interval and has pdf:

fx(x) = cx® 11 — x)P7! for0 <x <1 (4.59)
where the normalization constant is the reciprocal of the beta function

1
1
— = B(a,b) =/x"1(1 — x)P"tdx
0

c

and where the beta function is related to the gamma function by the following expression:

I'(a)L'(b)

B(a,b) = ——.
(@b) =t p)

When a = b = 1, we have the uniform random variable. Other choices of a and b give
pdfs over finite intervals that can differ markedly from the uniform. See Problem 4.75. If
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a = b > 1, then the pdf is symmetric about x = 1/2 and is concentrated about x = 1/2

aswell. Whena = b < 1, then the pdf is symmetric but the density is concentrated at the

edges of the interval. When @ < b (or a > b) the pdf is skewed to the right (or left).
The mean and variance are given by:

ab
(a+Db)*a+b+1)

E[X] = and VAR[X] = (4.60)

a+b

The versatility of the pdf of the beta random variable makes it useful to model a
variety of behaviors for random variables that range over finite intervals. For example,
in a Bernoulli trial experiment, the probability of success p could itself be a random
variable. The beta pdf is frequently used to model p.

The Cauchy Random Variable
The Cauchy random variable X assumes values over the entire real line and has pdf:
1/
fx(x) = (4.61)

1+ K2

It is easy to verify that this pdf integrates to 1. However, X does not have any moments
since the associated integrals do not converge. The Cauchy random variable arises as
the tangent of a uniform random variable in the unit interval.

The Pareto Random Variable

The Pareto random variable arises in the study of the distribution of wealth where it
has been found to model the tendency for a small portion of the population to own a
large portion of the wealth. Recently the Pareto distribution has been found to cap-
ture the behavior of many quantities of interest in the study of Internet behavior,
e.g., sizes of files, packet delays, audio and video title preferences, session times in
peer-to-peer networks, etc. The Pareto random variable can be viewed as a continuous
version of the Zipf discrete random variable.

The Pareto random variable X takes on values in the range x > x,,, where x,,
is a positive real number. X has complementary cdf with shape parameter o > 0
given by:

x < X,

1
PIX>x]=q%m _ (4.62)
x“ "

The tail of X decays algebraically with x which is rather slower in comparison to the ex-
ponential and Gaussian random variables. The Pareto random variable is the most
prominent example of random variables with “long tails.”

The cdf and pdf of X are:

0 x < X,
Fy(x) = [ — ﬁ ‘ (4.63)
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Because of its long tail, the cdf of X approaches 1 rather slowly as x increases.

0 <
= Tm (4.64)

Example 4.25 Mean and Variance of Pareto Random Variable

Find the mean and variance of the Pareto random variable.

<Xy <Xy, a X% ax,,
EMJIXI%“ﬁﬁ:xaFm:a—lﬁﬂ: fora >1  (4.65)

m m

where the integral is defined for « > 1, and

o xe o xe @ x5 ax?
E[X?] = o dr = a—_"rdt = = L fora > 2
1 x, ° a— 2 x% a—2
where the second moment is defined for o > 2.
The variance of X is then:

VAR[X] = %% iy \!_ @y fora > 2 4.66
X=e=2 a-1) " @-2a-1p fre=? (4.66)

FUNCTIONS OF A RANDOM VARIABLE

Let X be a random variable and let g(x) be a real-valued function defined on the real
line. Define Y = g(X), that is, Y is determined by evaluating the function g(x) at the
value assumed by the random variable X. Then Y is also a random variable. The prob-
abilities with which Y takes on various values depend on the function g(x) as well as
the cumulative distribution function of X. In this section we consider the problem of
finding the cdf and pdf of Y.

Example 4.26
Let the function #(x) = (x)* be defined as follows:

0 ifx<0
+:
(x) {x if x = 0.

For example, let X be the number of active speakers in a group of N speakers, and let Y be the
number of active speakers in excess of M, then Y = (X — M)*. In another example, let X be a
voltage input to a halfwave rectifier, then Y = (X)* is the output.
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Example 4.27

Let the function g(x) be defined as shown in Fig. 4.8(a), where the set of points on the real line are
mapped into the nearest representation point from the set Sy = {—3.5d, —2.5d, —1.5d, —0.5d,
0.5d,1.5d,2.5d,3.5d}. Thus, for example, all the points in the interval (0, d) are mapped into the
point d/2. The function g(x) represents an eight-level uniform quantizer.

Example 4.28

Consider the linear function ¢(x) = ax + b, where a and b are constants. This function arises in
many situations. For example, c(x) could be the cost associated with the quantity x, with the constant
a being the cost per unit of x, and b being a fixed cost component. In a signal processing context,
¢(x) = ax could be the amplified version (if @ > 1) or attenuated version (if a < 1) of the voltage x.

The probability of an event C involving Y is equal to the probability of the equiv-
alent event B of values of X such that g(X) is in C:

P[YinC] = P[g(X)inC] = P[X in B].

Three types of equivalent events are useful in determining the cdf and pdf of Y = g(X):
(1) The event {g(X) = y,} is used to determine the magnitude of the jump at a point y;
where the cdf of Y is known to have a discontinuity; (2) the event {g(X) =< y} is used to
find the cdf of Y directly; and (3) the event {y < g(X) = y + h} is useful in determining
the pdf of Y. We will demonstrate the use of these three methods in a series of examples.

The next two examples demonstrate how the pmf is computed in cases where
Y = g(X) is discrete. In the first example, X is discrete. In the second example, X is
continuous.

Example 4.29

Let X be the number of active speakers in a group of N independent speakers. Let p be the prob-
ability that a speaker is active. In Example 2.39 it was shown that X has a binomial distribution
with parameters N and p. Suppose that a voice transmission system can transmit up to M voice
signals at a time, and that when X exceeds M, X — M randomly selected signals are discarded.
Let Y be the number of signals discarded, then

Y =(X - M)".

Y takes on values from the set Sy = {0,1,..., N — M}. Y will equal zero whenever X is less
than or equal to M, and Y will equal k > 0 when Xis equal to M + k. Therefore
M
P[Y =0] = P[Xin{0,1,...,M}] = > p;
j=0

and
PlY =k]=P[X =M+ k] = py+x 0<k=N-M,

where p; is the pmf of X.
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Example 4.30

Let X be a sample voltage of a speech waveform, and suppose that X has a uniform distribution
in the interval [—4d, 4d]. Let Y = q(X), where the quantizer input-output characteristic is as
shown in Fig. 4.10. Find the pmf for Y.

The event {Y = g} for g in Sy is equivalent to the event {X in I }, where [, is an interval
of points mapped into the representation point g. The pmf of Y is therefore found by evaluating

HY=ﬂ=[&mﬂ

It is easy to see that the representation point has an interval of length d mapped into it. Thus the
eight possible outputs are equiprobable, that is, P[Y = g] = 1/8 for g in Sy.

In Example 4.30, each constant section of the function g(X) produces a delta
function in the pdf of Y. In general, if the function g(X) is constant during certain in-
tervals and if the pdf of X is nonzero in these intervals, then the pdf of Y will contain
delta functions. Y will then be either discrete or of mixed type.

The cdf of Y is defined as the probability of the event {Y =< y}. In principle, it
can always be obtained by finding the probability of the equivalent event {g(X) = y}
as shown in the next examples.

Example 4.31 A Linear Function
Let the random variable Y be defined by
Y =aX + b,

where a is a nonzero constant. Suppose that X has cdf Fy(x), then find Fy(y).
The event {Y = y} occurs when A = {aX + b = y} occurs.If a > 0, then A = {X =
(y — b)/a} (see Fig.4.11), and thus

Fy(y) = P{X = ya;b} = FX(y ; b) a>0.

On the other hand,if a < 0,then A = {X = (y — b)/a}, and

Fy(y) = P[X = %b} =1- FX(—) a<0.

We can obtain the pdf of Y by differentiating with respect to y. To do this we need to use the
chain rule for derivatives:

dF _dF du
dy dudy’

where u is the argument of F. In this case,u = (y — b)/a, and we then obtain

a

p = 1(250) e
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FIGURE 4.11
The equivalent event for {Y = y} is the event
{X=(y — b)la},ifa>0.

and
1 y—>b
fr(y) = Tafx( p ) a<0
The above two results can be written compactly as
1 y—>b
fr(y) = *fx( ) (4.67)
|al a

Example 4.32 A Linear Function of a Gaussian Random Variable

Let X be a random variable with a Gaussian pdf with mean m and standard deviation o

fx(x) = L ptmmine oo < x < oo, (4.68)

Vor o

LetY = aX + b, then find the pdf of Y.
Substitution of Eq. (4.68) into Eq. (4.67) yields

fr(y) ! —(y=b—am)*2(ac)*

=——¢
\V 2 |ao|

Note that Y also has a Gaussian distribution with mean b + am and standard deviation |a| .
Therefore a linear function of a Gaussian random variable is also a Gaussian random variable.

Example 4.33

Let the random variable Y be defined by
Y = X°,

where X is a continuous random variable. Find the cdf and pdf of Y.
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FIGURE 4.12
The equivalent event for {Y =< y} is the event
{-Vy =Xx=Vy}ify =0

The event {Y = y} occurs when {X2 < y} or equivalently when {—Vy = X = Vy}

for y nonnegative; see Fig. 4.12. The event is null when y is negative. Thus

F _Jo y<0
YD) T RV - Fr(=Vy) v >0

and differentiating with respect to y,

V) VD)

ROV V)
=2 T (4.69)

Example 4.34 A Chi-Square Random Variable

Let X be a Gaussian random variable with mean m = 0 and standard deviation o = 1. X is then
said to be a standard normal random variable. Let Y = X2 Find the pdf of Y.
Substitution of Eq. (4.68) into Eq. (4.69) yields

e*y/2

fr(y) = y=0. (4.70)
V 2y
From Table 4.1 we see that fy(y) is the pdf of a chi-square random variable with one degree of

freedom.

The result in Example 4.33 suggests that if the equation y, = g(x) has n solu-
tions, xg, X1, .., X,, then fy(yy) will be equal to n terms of the type on the right-hand
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y =8k

y+dy
y

xpx; +dx; xo + dxy x5 X3 X3+ dxz

FIGURE 4.13
The equivalent event of {y <Y <y + dy}is {x; < X < x; + dx;}
U+ do <X <x}U{xs <X <x3+ dxs}.

side of Eq. (4.69). We now show that this is generally true by using a method for direct-
ly obtaining the pdf of Y in terms of the pdf of X.

Consider a nonlinear function Y = g(X') such as the one shown in Fig. 4.13. Con-
sider the event C, = {y <Y < y + dy} and let B be its equivalent event. For y indi-
cated in the figure, the equation g(x) = y has three solutions x;, x,, and x3, and the
equivalent event B, has a segment corresponding to each solution:

By ={x; <X <x;+dx}U{x; +dx, < X < xp}
U{X3 <X < X3 + dX3}.
The probability of the event C, is approximately

P[Cy] = fy(y)ldyl, (4.71)

where |dy| is the length of the interval y < Y = y + dy. Similarly, the probability of
the event B, is approximately

P[B,] = fx(x)ldx;| + fx(x2)ldxs| + fyx(x3)ldxs]. (4.72)

Since C, and B, are equivalent events, their probabilities must be equal. By equating
Eqgs. (4.71) and (4.72) we obtain

_ fx(x)

fr(y) = Ek) dy/dn] oo, (4.73)
_ dx 474
- ;f)((x) dy P ( * )

It is clear that if the equation g(x) = y has n solutions, the expression for the pdf of Y
at that point is given by Egs. (4.73) and (4.74), and contains » terms.
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Example 4.35

LetY = X?asin Example 4.34. For y = 0, the equation y = x2 has two solutions, x, = Vy and
x1 = —Vy, so Eq. (4.73) has two terms. Since dy/dx = 2x, Eq. (4.73) yields
fy) = fx(Vy) N fx(=Vy)
v 2Vy 2Vy

This result is in agreement with Eq. (4.69). To use Eq. (4.74), we note that

dx d 1

=t Vy =+,

dy —dy VT vy

which when substituted into Eq. (4.74) then yields Eq. (4.69) again.

Example 436 Amplitude Samples of a Sinusoidal Waveform

LetY = cos(X), where X is uniformly distributed in the interval (0, 27r]. Y can be viewed as the
sample of a sinusoidal waveform at a random instant of time that is uniformly distributed over
the period of the sinusoid. Find the pdf of Y.

It can be seen in Fig. 4.14 that for —1 < y < 1 the equation y = cos(x) has two solutions in
the interval of interest, x, = cos }(y) and x; = 27 — x,. Since (see an introductory calculus
textbook)

% = —sin(xy) = —sin(cos (y)) = = V1 — %,
Xo

and since fy(x) = 1/27 in the interval of interest, Eq. (4.73) yields

1 1
fr(y) = +
’ 2V — 2 25V1 - )

for—-1 <y <1.

0.5 —
y 0 v ! v N
cos~I(y) T 27 —cos~ly 27
—-0.5
-1
FIGURE 4.14

y = cos x has two roots in the interval (0, 27).
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The cdf of Y is found by integrating the above:

0 y<-1
1 sinly

F(y)=y7+ “l=y=1
1 y> 1.

Y is said to have the arcsine distribution.

THE MARKOV AND CHEBYSHEV INEQUALITIES

In general, the mean and variance of a random variable do not provide enough infor-
mation to determine the cdf/pdf. However, the mean and variance of a random vari-
able X do allow us to obtain bounds for probabilities of the form P[| X | = ¢]. Suppose
first that X is a nonnegative random variable with mean E [ X]. The Markov inequality
then states that

E[X] ,
P[X =a] = — for X nonnegative. (4.75)

We obtain Eq. (4.75) as follows:

E[X]= Atfx(t) dz+/ th(t)dIZ/ tfx(t) dt

= /Ooan(t) dt = aP[ X = a].

The first inequality results from discarding the integral from zero to a; the second in-
equality results from replacing ¢ with the smaller number a.

Example 4.37

The mean height of children in a kindergarten class is 3 feet, 6 inches. Find the bound on the prob-
ability that a kid in the class is taller than 9 feet. The Markov inequality gives P[H = 9] = 42/108
= .389.

The bound in the above example appears to be ridiculous. However, a bound, by
its very nature, must take the worst case into consideration. One can easily construct a
random variable for which the bound given by the Markov inequality is exact. The rea-
son we know that the bound in the above example is ridiculous is that we have knowl-
edge about the variability of the children’s height about their mean.

Now suppose that the mean E[X] = m and the variance VAR[X] = ¢ of a
random variable are known, and that we are interested in bounding P[|X — m| = a].
The Chebyshev inequality states that

S}

o
P[|X — m| = a] Sz.

(4.76)
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The Chebyshev inequality is a consequence of the Markov inequality. Let D> = (X
— m)? be the squared deviation from the mean. Then the Markov inequality applied to
D? gives

P[D? = d?]

n
Il
|

Equation (4.76) follows when we note that { D* = a*} and {|X — m| = a} are equiv-
alent events.

Suppose that a random variable X has zero variance; then the Chebyshev in-
equality implies that

P[X =m] =1, (4.77)

that is, the random variable is equal to its mean with probability one. In other words, X
is equal to the constant m in almost all experiments.

Example 4.38

The mean response time and the standard deviation in a multi-user computer system are known
to be 15 seconds and 3 seconds, respectively. Estimate the probability that the response time is
more than 5 seconds from the mean.
The Chebyshev inequality with m = 15 seconds, ¢ = 3 seconds, and a = 5 seconds gives
9

Plx — 15/ = 5] = - = 36.
[l 51 = 5] = 5= 36

Example 4.39
If X has mean m and variance o, then the Chebyshev inequality for a = ko gives
1
PllX —m| = ko] = et
Now suppose that we know that X is a Gaussian random variable, then for k = 2, P[|X — m| = 20]
= .0456, whereas the Chebyshev inequality gives the upper bound .25.

Example 4.40 Chebyshev Bound Is Tight

Let the random variable X have P[X = —v] = P[X = v] = 0.5. The mean is zero and the vari-
ance is VAR[X] = E[X?] = (—v)20.5 + 2% 0.5 = v°.
Note that P[|X| = v] = 1. The Chebyshev inequality states:

VAR[X]

PllXl=zv]=1-—F—=1
v

We see that the bound and the exact value are in agreement, so the bound is tight.
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We see from Example 4.38 that for certain random variables, the Chebyshev in-
equality can give rather loose bounds. Nevertheless, the inequality is useful in situations
in which we have no knowledge about the distribution of a given random variable other
than its mean and variance. In Section 7.2, we will use the Chebyshev inequality to prove
that the arithmetic average of independent measurements of the same random variable
is highly likely to be close to the expected value of the random variable when the num-
ber of measurements is large. Problems 4.100 and 4.101 give examples of this result.

If more information is available than just the mean and variance, then it is possi-
ble to obtain bounds that are tighter than the Markov and Chebyshev inequalities.
Consider the Markov inequality again. The region of interest is A = {t = a}, so let
14(t) be the indicator function, that is, /4(¢) = 1if te A and I4(¢) = 0 otherwise. The
key step in the derivation is to note that t/a = 1 in the region of interest. In effect we
bounded /4(¢) by t/a as shown in Fig. 4.15. We then have:

Px=a - [ Lomwa=s [ Liwa- X

0 a

By changing the upper bound on /4(¢), we can obtain different bounds on P[ X = a].
Consider the bound 1,(¢) =< e*", also shown in Fig. 4.15, where s > 0. The resulting
bound is:

PX = a] = / L(0)f(0) dt = A DL () d

e / e fy(t) dt = e E[e*]. (4.78)
0

This bound is called the Chernoff bound, which can be seen to depend on the expected
value of an exponential function of X. This function is called the moment generating
function and is related to the transforms that are introduced in the next section. We de-
velop the Chernoff bound further in the next section.

es(t — a)

FIGURE 4.15
Bounds on indicator function for A = {t = a}.
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TRANSFORM METHODS

In the old days, before calculators and computers, it was very handy to have loga-
rithm tables around if your work involved performing a large number of multiplica-
tions. If you wanted to multiply the numbers x and y, you looked up log(x) and
log(y), added log(x) and log(y), and then looked up the inverse logarithm of the
result. You probably remember from grade school that longhand multiplication is
more tedious and error-prone than addition. Thus logarithms were very useful as a
computational aid.

Transform methods are extremely useful computational aids in the solution of
equations that involve derivatives and integrals of functions. In many of these problems,
the solution is given by the convolution of two functions: fi(x) = f>(x). We will define
the convolution operation later. For now, all you need to know is that finding the con-
volution of two functions can be more tedious and error-prone than longhand multipli-
cation! In this section we introduce transforms that map the function f;(x) into another
function %, (w), and that satisfy the property that & [fi(x) = fo(x)] = F (@)%, (). In
other words, the transform of the convolution is equal to the product of the individual
transforms. Therefore transforms allow us to replace the convolution operation by
the much simpler multiplication operation. The transform expressions introduced in
this section will prove very useful when we consider sums of random variables in
Chapter 7.

The Characteristic Function

The characteristic function of a random variable X is defined by

Oy (w) = E[e/X)] (4.79a)
_ / Fr(x)el" dx. (4.79b)

where j = V=1 is the imaginary unit number. The two expressions on the right-hand
side motivate two interpretations of the characteristic function. In the first expression,
® y(w) can be viewed as the expected value of a function of X, ¢/*X, in which the para-
meter o is left unspecified. In the second expression, ® y(w) is simply the Fourier
transform of the pdf fx(x) (with a reversal in the sign of the exponent). Both of these
interpretations prove useful in different contexts.

If we view ® y(w) as a Fourier transform, then we have from the Fourier trans-
form inversion formula that the pdf of X is given by

Fx(x) 1 [ OO(I) x(@)e 7" dw. (4.80)

:277

It then follows that every pdf and its characteristic function form a unique Fourier
transform pair. Table 4.1 gives the characteristic function of some continuous random
variables.
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Example 4.41 Exponential Random Variable

The characteristic function for an exponentially distributed random variable with parameter A is
given by

dy(w) = A e Melo¥ dy = [ Ae~(mio)x gy

_ A
A —jo’

If X is a discrete random variable, substitution of Eq. (4.20) into the definition of
b y(w) gives

D y(w) = D px(x;)e*  discrete random variables.
%

Most of the time we deal with discrete random variables that are integer-valued. The
characteristic function is then

[e¢]

Dy(w) = > px(k)e  integer-valued random variables. (4.81)

k=—00

Equation (4.81) is the Fourier transform of the sequence py(k). Note that the
Fourier transform in Eq. (4.81) is a periodic function of w with period 27, since
/(0F2mk= ook oIk2T and /2™ = 1. Therefore the characteristic function of integer-
valued random variables is a periodic function of w. The following inversion formula
allows us to recover the probabilities py (k) from ® y(w):

1 27 ‘
px(k) = 2/ Dy(w)e ™ do k=0 +1,+2,... (4.82)
™ Jo
Indeed, a comparison of Eqs. (4.81) and (4.82) shows that the pyx (k) are simply the co-
efficients of the Fourier series of the periodic function ® y(w).

Example 4.42 Geometric Random Variable

The characteristic function for a geometric random variable is given by

(qe)*

Mg

[oe]
Dy (w) = ;)quewk =p

k=0

_pr
1- qe/""

Since fx(x) and ® y(w) form a transform pair, we would expect to be able to ob-
tain the moments of X from @ y(w). The moment theorem states that the moments of
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X are given by

ELX) = 4 (o)

4.83
j" do" ( )

To show this, first expand ¢/“ in a power series in the definition of ® y(w):

o0 . 2
dy(w) = [Oofx(x){l + joX + (]wX) + } dx.

2!

Assuming that all the moments of X are finite and that the series can be integrated
term by term, we obtain

 V2ET X2 o
¢X(w):1+wa[X]+(]w>2£?[Xv]+...+(ﬂu)’f[)(]+

If we differentiate the above expression once and evaluate the result at @ = 0 we obtain

i‘bx(w)

- = JELX]

=0

If we differentiate n times and evaluate at w = 0, we finally obtain

a"
do" (I)X(w)

= J"E[X"],

w=0
which yields Eq. (4.83).

Note that when the above power series converges, the characteristic function and
hence the pdf by Eq. (4.80) are completely determined by the moments of X.

Example 4.43
To find the mean of an exponentially distributed random variable, we differentiate ® y(w)
= A(A — jo) ! once, and obtain
Pylw) = —
P

The moment theorem then implies that E[ X ] = ®x(0)/j = 1/A.
If we take two derivatives, we obtain

—2A

Py (w) = A= o

so the second moment is then E[ X?] = ®%(0)/j? = 2/A% The variance of X is then given by

VAR[X] = E[X*] - E[X]* = 21 1
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Example 4.44 Chernoff Bound for Gaussian Random Variable

Let X be a Gaussian random variable with mean m and variance o2 Find the Chernoff bound
for X.
The Chernoff bound (Eq. 4.78) depends on the moment generating function:

E[e™"] = ®x(=]s).
In terms of the characteristic function the bound is given by:
P[X =a] = e Py(—js) for s=0.

The parameter s can be selected to minimize the upper bound.
The bound for the Gaussian random variable is:

_ 202 Co(n— 202
P[X > (l] =e¢ :aem:+(rs/2 =¢ s(a—m)+o’s°2 for s =0.

‘We minimize the upper bound by minimizing the exponent:

d 22 C a—m
ds( s(a — m) + o°s7/2) which implies s e

The resulting upper bound is:

P[X > ll] — Q(a - m) = e*(afm)z/Z(rz.

o

This bound is much better than the Chebyshev bound and is similar to the estimate given in
Eq. (4.54).

The Probability Generating Function

In problems where random variables are nonnegative, it is usually more convenient to
use the z-transform or the Laplace transform. The probability generating function
Gy(z) of a nonnegative integer-valued random variable N is defined by

Gn(z) = E[ZV] (4.84a)
= /;opN(k) zx. (4.84b)

The first expression is the expected value of the function of N, zV. The second expres-
sion is the z-transform of the pmf (with a sign change in the exponent). Table 3.1 shows
the probability generating function for some discrete random variables. Note that the
characteristic function of N is given by @ y(w) = Gy(€/®).

Using a derivation similar to that used in the moment theorem, it is easy to show
that the pmf of N is given by

1 d*
= EdiszN(Z) Z=0. (485)

This is why Gy(z) is called the probability generating function. By taking the first two
derivatives of Gy(z) and evaluating the result at z = 1, it is possible to find the first

pn(k)
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two moments of X:

d o0 B (o)
-On(D)| = 2pn(k)k T = S kpy(k) = E[N]
Z z=1 k=0 z=1 k=0
and
d’ >
——Gn(2)| = X pn(k)k(k —1)K72
dz =1 k=0 =1

Thus the mean and variance of X are given by
E[N] = Gy(1) (4.86)
and
VAR[N] = G}(1) + Giy(1) — (Gy(1))% (4.87)

Example 4.45 Poisson Random Variable

The probability generating function for the Poisson random variable with parameter « is given by

k

Sk o (a2)
Gy(z) = Eﬁe ak =y 0
=0 k! =

= e % = eoz7D),
The first two derivatives of Gy(z) are given by

Gh(z) = aeE™)
and

Gi(z) = a?e*= D),
Therefore the mean and variance of the Poisson are

E[N]=«a
VAR[N]=d?+a—ad?=a.

4.7.3  The Laplace Transform of the pdf

In queueing theory one deals with service times, waiting times, and delays. All of these
are nonnegative continuous random variables. It is therefore customary to work with
the Laplace transform of the pdf,

X*(s) = /Ome(x)e”‘ dx = E[e™X]. (4.88)

Note that X*(s) can be interpreted as a Laplace transform of the pdf or as an expected
value of a function of X, e *¥.
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The moment theorem also holds for X*(s):

dﬂ
ds"

E[X"] = (—1)""— X*(s) (4.89)

s=0

Example 4.46 Gamma Random Variable

The Laplace transform of the gamma pdf is given by

Oy a—1,-Ax —sx a 00
X*(s) = / AT e Te dx = A / x@ lem MY gy
0 I'(a) I'(a) Jo

A 1 R A
= - a )’d [
T(a) (A + s)f% yoera = e

where we used the change of variable y = (A + s)x. We can then obtain the first two moments
of X as follows:

EIX] =~y | =%
ds (A +8)s=0 (A +s) =0 A
and
d? Y ala + 1A ala + 1
ex) = L - ( ) _ ( ' ).
ds* (A +5)%5=0 (A + 5)**? |s=0 A

BASIC RELIABILITY CALCULATIONS

In this section we apply some of the tools developed so far to the calculation of
measures that are of interest in assessing the reliability of systems. We also show
how the reliability of a system can be determined in terms of the reliability of its
components.

The Failure Rate Function

Let T be the lifetime of a component, a subsystem, or a system. The reliability at time ¢
is defined as the probability that the component, subsystem, or system is still function-
ing at time #:

R(t) = P[T > t]. (4.90)

The relative frequency interpretation implies that, in a large number of components or
systems, R(¢) is the fraction that fail after time ¢. The reliability can be expressed in
terms of the cdf of T:

R(t) =1—P[T =t]=1— Fr(¢). (4.91)
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Note that the derivative of R(f) gives the negative of the pdf of T:

R'(t) = —fr(¢). (4.92)
The mean time to failure (MTTF) is given by the expected value of T:

E[T] = A fT(t)dz=/0 R(?) dt,

where the second expression was obtained using Eqgs. (4.28) and (4.91).

Suppose that we know a system is still functioning at time ¢, what is its future be-
havior? In Example 4.10, we found that the conditional cdf of T given that T > ¢ is
given by

Fp(x|T > t) = P[T = x|T > t]
0 x <t
— = X =1
1 = Fp(1)
The pdf associated with Fr(x|T > t) is
fr(x)
T>t)=——7—— =t 4.94
fT(x| ) 1 — Fp(1) X (4.94)

Note that the denominator of Eq. (4.94) is equal to R(¢).
The failure rate function r(¢) is defined as f(x|T > t) evaluated at x = ¢:

r(t) = fr(tIT > 1)

_ R 4.95

COR(r) (495)

since by Eq. (4.92), R'(¢t) = —fr(¢). The failure rate function has the following meaning:
Pt <T =t+dt|T >t] = fr(tIT >1t)dt = r(¢t) dt. (4.96)

In words, () dt is the probability that a component that has functioned up to time # will
fail in the next dt seconds.

Example 4.47 Exponential Failure Law

Suppose a component has a constant failure rate function, say r(¢) = A. Find the pdf and the
MTTF for its lifetime 7.
Equation (4.95) implies that

= -\ (4.97)

Equation (4.97) is a first-order differential equation with initial condition R(0) = 1. If we
integrate both sides of Eq. (4.97) from 0 to ¢, we obtain

/t d k /tR,(t,)d In R
- Adt' + k= t" = In R(t),
; ) R() ©
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which implies that
R(t) = Ke™,  where K = ek,
The initial condition R(0) = 1 implies that K = 1. Thus
R(t)y=e™ >0 (4.98)

and
fr(t) = xe™  t>0.
Thus if T has a constant failure rate function, then T is an exponential random variable. This is

not surprising, since the exponential random variable satisfies the memoryless property. The
MTTF = E[T] = 1/A.

The derivation that was used in Example 4.47 can be used to show that, in gener-
al, the failure rate function and the reliability are related by

R(¢r) = exp{—/otr(t’) dt’} (4.99)

fr(t) = r(¢) exp{—lr(t’) dt’}. (4.100)

and from Eq. (4.92),

Figure 4.16 shows the failure rate function for a typical system. Initially there may
be a high failure rate due to defective parts or installation. After the “bugs” have been
worked out, the system is stable and has a low failure rate. At some later point, ageing
and wear effects set in, resulting in an increased failure rate. Equations (4.99) and
(4.100) allow us to postulate reliability functions and the associated pdf’s in terms of
the failure rate function, as shown in the following example.

r(1)

/

FIGURE 4.16
Failure rate function for a typical system.
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Example 4.48 Weibull Failure Law
The Weibull failure law has failure rate function given by
r(t) = aBtP™1, (4.101)
where a and B are positive constants. Equation (4.99) implies that the reliability is given by
R(t) = e,
Equation (4.100) then implies that the pdf for T is
fr(t) = aBtP e 1> 0. (4.102)

Figure 4.17 shows fr(¢) for « = 1 and several values of 8. Note that 8 = 1 yields the expo-
nential failure law, which has a constant failure rate. For 8 > 1, Eq. (4.101) gives a failure rate
function that increases with time. For 8 < 1, Eq. (4.101) gives a failure rate function that de-
creases with time. Further properties of the Weibull random variable are developed in the
problems.

Reliability of Systems

Suppose that a system consists of several components or subsystems. We now show
how the reliability of a system can be computed in terms of the reliability of its subsys-
tems if the components are assumed to fail independently of each other.

fr®

FIGURE 4.17
Probability density function of Weibull random variable, « = 1 and
B =124
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FIGURE 4.18

(a) System consisting of n components in series. (b) System consisting
of n components in parallel.

Consider first a system that consists of the series arrangement of n components
as shown in Fig. 4.18(a). This system is considered to be functioning only if all the com-
ponents are functioning. Let A be the event “system functioning at time ¢,” and let A;
be the event “jth component is functioning at time #,” then the probability that the sys-
tem is functioning at time ¢ is

R(1) = P[A]
= RU(Ry(1) ... R,(1), (4.103)

since P[A;] = R;(t), the reliability function of the jth component. Since probabilities
are numbers that are less than or equal to one, we see that R (¢) can be no more reliable
than the least reliable of the components, that is, R(¢) = min; R;(¢).

If we apply Eq. (4.99) to each of the R;(¢) in Eq. (4.103), we then find that the fail-
ure rate function of a series system is given by the sum of the component failure rate

functions:

R(t) = exp{—fotrl(t’) dt’}exp{—fotrz(t’) dt’} . ..exp{—fotr,,(t') dt’}
exp{— fi[n(t") + r(t') + -+ r(¢)] dr'}.

Example 4.49

Suppose that a system consists of # components in series and that the component lifetimes are
exponential random variables with rates A, A,, ..., A,,. Find the system reliability.
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From Eqgs. (4.98) and (4.103), we have
R(t) = e Mle™ g™
—(A A

= e

Thus the system reliability is exponentially distributed with rate A; + Ay + - + A,,.

Now suppose that a system consists of n components in parallel, as shown in
Fig. 4.18(b). This system is considered to be functioning as long as at least one of the
components is functioning. The system will not be functioning if and only if all the
components have failed, that is,

PLAS] = PLASIPLAS]... PLAS)

Thus

1= R(t) = (1 = R(D)(1 = Ro(1))... (1 = R,(1)),
and finally,

R(t) =1 — (1 = Ri(1))(1 — Ry(1))... (1 = R,(2)). (4.104)
Example 4.50

Compare the reliability of a single-unit system against that of a system that operates two units in
parallel. Assume all units have exponentially distributed lifetimes with rate 1.
The reliability of the single-unit system is

Ry(t) = .
The reliability of the two-unit system is

R,(1)

1-(1=ehH(1 —-e™)
=e'(2 —e™).
The parallel system is more reliable by a factor of

(2 e > 1.

More complex configurations can be obtained by combining subsystems consisting
of series and parallel components. The reliability of such systems can then be computed in
terms of the subsystem reliabilities. See Example 2.35 for an example of such a calculation.

COMPUTER METHODS FOR GENERATING RANDOM VARIABLES

The computer simulation of any random phenomenon involves the generation of ran-
dom variables with prescribed distributions. For example, the simulation of a queueing
system involves generating the time between customer arrivals as well as the service
times of each customer. Once the cdf’s that model these random quantities have been
selected, an algorithm for generating random variables with these cdf’s must be found.
MATLAB and Octave have built-in functions for generating random variables for all
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of the well known distributions. In this section we present the methods that are used
for generating random variables. All of these methods are based on the availability of
random numbers that are uniformly distributed between zero and one. Methods for
generating these numbers were discussed in Section 2.7.

All of the methods for generating random variables require the evaluation of ei-
ther the pdf, the cdf, or the inverse of the cdf of the random variable of interest. We can
write programs to perform these evaluations, or we can use the functions available in
programs such as MATLAB and Octave. The following example shows some typical
evaluations for the Gaussian random variable.

Example 4.51 Evaluation of pdf, cdf, and Inverse cdf

Let X be a Gaussian random variable with mean 1 and variance 2. Find the pdf at x = 7. Find the
cdf at x = —2. Find the value of x at which the cdf = 0.25.
The following commands show how these results are obtained using Octave.

>normal_pdf (7, 1, 2)
ans = 3.4813e-05
>normal_cdf (-2, 1, 2)
ans =0.016947
>normal_inv (0.25, 1, 2)
ans =0.046127

The Transformation Method

Suppose that U is uniformly distributed in the interval [0, 1]. Let Fx(x) be the cdf of
the random variable we are interested in generating. Define the random variable,
Z = Fx(U); that s, first U is selected and then Z is found as indicated in Fig. 4.19. The
cdf of Z is

P[Z = x] = P[F}(U) = x] = P[U = Fx(x)].

But if U is uniformly distributed in [0, 1] and 0 < & < 1, then P[U =< h] = h (see
Example 4.6). Thus
PIZ = x] = Fy(x),

and Z = F¥(U) has the desired cdf.

Transformation Method for Generating X:

1. Generate U uniformly distributed in [0, 1].
2. Let Z = F(U).

Example 4.52 Exponential Random Variable

To generate an exponentially distributed random variable X with parameter A, we need to invert
the expression u = Fy(x) = 1 — e **. We obtain

1
X =——"In(1 -U).
Jin( = 0)
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D Z=Fyi(U)
0 ®

FIGURE 4.19
Transformation method for generating a random variable with cdf Fy(x).

Note that we can use the simpler expression X = —In(U)/A, since 1 — U is also uniform-
ly distributed in [0, 1]. The first two lines of the Octave commands below show how to implement
the transformation method to generate 1000 exponential random variables with A = 1. Figure
4.20 shows the histogram of values obtained. In addition, the figure shows the probability that
samples of the random variables fall in the corresponding histogram bins. Good correspondence
between the histograms and these probabilities are observed. In Chapter 8 we introduce meth-
ods for assessing the goodness-of-fit of data to a given distribution. Both MATLAB and Octave
use the transformation method in their function exponential_rnd.

>U=rand (1, 1000); % Generate 1000 uniform random variables.
> X=-1og (U) ; % Compute 1000 exponential RVs.
>K=0.25:0.5:6;

>P(1l)=1-exp(-0.5)

> for i=2:12, % The remaining lines show how to generate
>P(1)=P(i-1)*exp(-0.5) % the histogram bins.
> end;

> stem (K, P)
>hold on
>Hist (X, K, 1)

The Rejection Method

We first consider the simple version of this algorithm and explain why it works; then
we present it in its general form. Suppose that we are interested in generating a ran-
dom variable Z with pdf fy(x) as shown in Fig. 4.21. In particular, we assume that: (1)
the pdf is nonzero only in the interval [0, a], and (2) the pdf takes on values in the
range [0, b]. The rejection method in this case works as follows:
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FIGURE 4.20
Histogram of 1000 exponential random variables using transformation method.
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FIGURE 4.21
Rejection method for generating a random variable with pdf fy(x).

1. Generate X; uniform in the interval [0, a].
2. Generate Y uniform in the interval [0, b].
3. fY = fy(Xy), then output Z = Xj; else, reject X; and return to step 1.
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Note that this algorithm will perform a random number of steps before it produces the
output Z.

We now show that the output Z has the desired pdf. Steps 1 and 2 select a point at
random in a rectangle of width a and height b. The probability of selecting a point in
any region is simply the area of the region divided by the total area of the rectangle, ab.
Thus the probability of accepting X is the probability of the region below fy(x) divid-
ed by ab. But the area under any pdfis 1, so we conclude that the probability of success
(i.e., acceptance) is 1/ab. Consider now the following probability:

P[x < X; = x + dx| X is accepted]

_ P[{x < X; = x + dx} N {X, accepted}]
a P[ X, accepted]

_ shaded area/ab  fx(x) dx/ab
a 1/ab ~ lab

= fx(x) dx.
Therefore X; when accepted has the desired pdf. Thus Z has the desired pdf.

Example 4.53 Generating Beta Random Variables

Show that the beta random variables with a’ = b’ = 2 can be generated using the rejection method.
The pdf of the beta random variable with a’ = b’ = 2 is similar to that shown in Fig. 4.21.
This beta pdf is maximum at x = 1/2 and the maximum value is:
(112)*7 (172> 1/4 14 3

B(2,2) T T(Q)r@Q)yr@)  ums 2

Therefore we can generate this beta random variable using the rejection method with b = 1.5.

The algorithm as stated above can have two problems. First, if the rectangle does
not fit snugly around fx(x), the number of X,’s that need to be generated before ac-
ceptance may be excessive. Second, the above method cannot be used if fy(x) is un-
bounded or if its range is not finite. The general version of this algorithm overcomes
both problems. Suppose we want to generate Z with pdf fy(x). Let W be a random
variable with pdf fy(x) that is easy to generate and such that for some constant K > 1,

Kfw(x) = fx(x) for all x,

that is, the region under K f(x) contains fx(x) as shown in Fig. 4.22.

Rejection Method for Generating X:

1. Generate X with pdf fiy(x). Define B(X;) = Kfw(X;).
2. Generate Y uniformin [0, B(X;)].
3. If Y = fx(X,), then output Z = X7; else reject X; and return to step 1.

See Problem 4.143 for a proof that Z has the desired pdf.
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FIGURE 4.22

Rejection method for generating a random variable with gamma pdf and with

O<a<

199

Example 4.54 Gamma Random Variable

‘We now show how the rejection method can be used to generate X with gamma pdf and parameters

0 < a < landA = 1. A function K fy,(x) that “covers” fx(x) is easily obtained (see Fig. 4.22):

a—1,—x
Ix(0) = Ty = Khwl) =

xa—l

= =<
T(a) 0=x=1
e—X

> 1.
() x >1

The pdf fi(x) that corresponds to the function on the right-hand side is

aex® !
a+te
fW(x) = e ¥
ae
a+ e
The cdf of Wis
ex®
a+ e
FW(x) = e ¥
1 — ae
a+e

0

W is easy to generate using the transformation method, with

[(a + e)u}l/a

Fyi(u) = ¢

—ln{(a +e)

ae

(1 - u)

u=cella+e)

u>ella+e).
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We can therefore use the transformation method to generate this fiy(x), and then the rejec-
tion method to generate any gamma random variable X with parameters 0 < a« < 1 and
A = 1. Finally we note that if we let W = A X, then W will be gamma with parameters « and
A. The generation of gamma random variables with « > 1 is discussed in Problem 4.142.

Example 4.55 Implementing Rejection Method for Gamma Random Variables

Given below is an Octave function definition to implement the rejection method using the above
transformation.

% Generate random numbers from the gamma distribution for 0 = a = 1.
function X = gamma_rejection_method_altone (alpha)
while (true),

X = special_inverse (alpha) ; % Step 1: Generate X with pdf fx(x).
B = special_pdf (X, alpha); % Step 2: Generate Y uniform in [0, Kfy(X)].
Y =rand. * B;
if (Y <= fx_gamma_pdf (X, alpha)), % Step 3: Accept or reject . ..
break;
end

end

% Helper function to generate random variables according to Kf(x).
function X = special_inverse (alpha)
u = rand;
if (u<=e./(alpha+e)),
X = ((alpha+e) .*u./e). ~ (1./alpha) ;
elseif (u>e./(alpha+e)),
X =-log((alpha+e).*(1-u) ./ (alpha.*e));
end

% Return B in order to generate uniform variables in [0, Kf,(X)].
function B = special_pdf (X, alpha)
if (X>=0 && X<=1),
B =alpha.*e.*X.”" (alpha-1) ./ (alpha + e) ;
elseif (X>1),
B=alpha.*e.*(e. ~(-X)./(alpha +e));
end

% pdf of the gamma distribution.

% Could also use the built in gamma_pdf (X, A, B) function supplied with Octave
settingB=1

function Y = fx_gamma_pdf (x, alpha)

v = (x.” (alpha-1)).*(e.” (-x)) ./ (gamma (alpha)) ;

Figure 4.23 shows the histogram of 1000 samples obtained using this function. The figure
also shows the probability that the samples fall in the bins of the histogram.

We have presented the most common methods that are used to generate ran-
dom variables. These methods are incorporated in the functions provided by programs
such as MATLAB and Octave, so in practice you do not need to write programs to
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FIGURE 4.23
1000 samples of gamma random variable using rejection method.

generate the most common random variables. You simply need to invoke the appro-
priate functions.

Example 4.56 Generating Gamma Random Variables

Use Octave to obtain eight Gamma random variables with @« = 0.25 and A = 1.
The Octave command and the corresponding answer are given below:

> gamma_rnd (0.25, 1, 1, 8)
ans =
Columns 1 through 6:
0.00021529 0.09331491 0.24606757 0.08665787
0.00013400 0.23384718
Columns 7 and 8:
1.72940941 1.29599702

4.9.3 Generation of Functions of a Random Variable

Once we have a simple method of generating a random variable X, we can easily gener-
ate any random variable that is defined by Y = g(X) oreven Z = h(X;, X,,..., X,,),
where X,..., X, are n outputs of the random variable generator.
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Example 4.57 m-Erlang Random Variable

Let X, X,,... be independent, exponentially distributed random variables with parameter A.
In Chapter 7 we show that the random variable

Y:X1+X2+"‘+Xm

has an m-Erlang pdf with parameter A. We can therefore generate an m-Erlang random variable
by first generating m exponentially distributed random variables using the transformation
method, and then taking the sum. Since the m-Erlang random variable is a special case of the
gamma random variable, for large m it may be preferable to use the rejection method described
in Problem 4.142.

Generating Mixtures of Random Variables

We have seen in previous sections that sometimes a random variable consists of a mix-
ture of several random variables. In other words, the generation of the random variable
can be viewed as first selecting a random variable type according to some pmf, and
then generating a random variable from the selected pdf type. This procedure can be
simulated easily.

Example 4.58 Hyperexponential Random Variable

A two-stage hyperexponential random variable has pdf
fx(x) = pae™™ + (1 — p)be™™.

It is clear from the above expression that X consists of a mixture of two exponential random
variables with parameters a and b, respectively. X can be generated by first performing a
Bernoulli trial with probability of success p. If the outcome is a success, we then use the transfor-
mation method to generate an exponential random variable with parameter a. If the outcome is
a failure, we generate an exponential random variable with parameter b instead.

ENTROPY

Entropy is a measure of the uncertainty in a random experiment. In this section, we
first introduce the notion of the entropy of a random variable and develop several of
its fundamental properties. We then show that entropy quantifies uncertainty by the
amount of information required to specify the outcome of a random experiment. Fi-
nally, we discuss the method of maximum entropy, which has found wide use in charac-
terizing random variables when only some parameters, such as the mean or variance,
are known.

The Entropy of a Random Variable

Let X be a discrete random variable with Sy = {1,2,..., K} and pmf p, = P[X = k].
We are interested in quantifying the uncertainty of the event A, = {X = k}. Clearly, the
uncertainty of A is low if the probability of A is close to one, and it is high if the
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probability of A, is small. The following measure of uncertainty satisfies these two
properties:

I(X=k)y=In—————-=-InP[X = k]. (4.105)

Note from Fig. 424 that I(X = k) = 0if P[X = k] = 1,and I(X = k) increases with
decreasing P[ X = k]. The entropy of a random variable X is defined as the expected
value of the uncertainty of its outcomes:

K 1
Hy = E[I(X)] = EP[X = k]In PIX = K]
= _ip[x = k]ln P[X = k]. (4.106)
k=1

Note that in the above definition we have used I (X) as a function of a random variable. We
say that entropy is in units of “bits” when the logarithm is base 2. In the above expression
we are using the natural logarithm, so we say the units are in “nats.” Changing the base of
the logarithm is equivalent to multiplying entropy by a constant, since In(x) = In 2 log, x.

Example 4.59 Entropy of a Binary Random Variable

Suppose that Sy = {0,1} and p = P[X = 0] =1 — P[X = 1]. Figure 4.25 shows —p In(p),
—(1 = p)In(1 — p), and the entropy of the binary random variable Hy = h(p) = —p
In(p) — (1 — p)In(1 — p) as functions of p. Note that 4 (p) is symmetric about p = 1/2 and that
it achieves its maximum at p = 1/2. Note also how the uncertainties of the events {X = 0} and
{X = 1} vary together in complementary fashion: When P[X = 0] is very small (i.e., highly
uncertain), then P[ X = 1] is close to one (i.e., highly certain), and vice versa. Thus the highest
average uncertainty occurs when P[X = 0] = P[X = 1] = 1/2.

Hy can be viewed as the average uncertainty that is resolved by observing X. This suggests
that if we are designing a binary experiment (for example, a yes/no question), then the average un-
certainty that is resolved will be maximized if the two outcomes are designed to be equiprobable.

0 T‘\Z
L

FIGURE 4.24
In(1/x) =1 —x
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Entropy of binary random variable.

Example 4.60 Reduction of Entropy Through Partial Information

The binary representation of the random variable X takes on values from the set {000, 001,
010,..., 111} with equal probabilities. Find the reduction in the entropy of X given the event
A = {X begins with a 1}.

The entropy of X is

1 1 1 1 1 1 .
Hy = fglogzg - glogzg — = glogzg = 3 bits.

The event A implies that X is in the set {100, 101, 110, 111}, so the entropy of X given A is

1 1 1 1 .
Hxjq = leogzz - Zlogzz = 2 bits.

Thus the reduction in entropy is Hy — Hy|, = 3 — 2 = 1 bit.

Letp = (p1, p2,---» Px), and ¢ = (q1, @2, - - -, qx) be two pmf’s. The relative en-
tropy of g with respect to p is defined by

K
Epk ln — Hy = > piln—. (4.107)
P>

The relative entropy is nonnegative, and equal to zero if and only if p; = q; for all k:
H(p;q) =0 with equality iff Pk = qx fork =1,...,K. (4.108)

We will use this fact repeatedly in the remainder of this section.
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To show that the relative entropy is nonnegative, we use the inequality
In(1/x) = 1 — x with equality iff x = 1, as shown in Fig. 4.24. Equation (4.107) then
becomes

K K
)= Spnt = Em(l - > Epk Eqk =0. (4.109)
k=1 Ak k=1 =1

In order for equality to hold in the above expression, we must have p, = ¢, for
k=1,...,K.

Let X be any random variable with Sy = {1,2,..., K} and pmf p. If we let
qr = 1/K in Eq. (4.108), then

H(p;q) =InK — Hy = Zpklnﬁ 0,

which implies that for any random variable X with Sy = {1,2,..., K},

1
Hy = InK with equality iff Pe= k=1,...,K. (4.110)

Thus the maximum entropy attainable by the random variable X is In K, and this maxi-
mum is attained when all the outcomes are equiprobable.

Equation (4.110) shows that the entropy of random variables with finite Sy is al-
ways finite. On the other hand, it also shows that as the size of Sy is increased, the en-
tropy can increase without bound. The following example shows that some countably
infinite random variables have finite entropy.

Example 4.61 Entropy of a Geometric Random Variable

The entropy of the geometric random variable with Sy = {0,1,2,... } is:

Hy

—kip(l - p)*In(p(1 = p)")

—Inp —In(1 —p Ekpl—

(1 - p)In(1 - p)
p

_opinp - (L-p)n(-p) A (4.111)
p p

=—-lnp —

where 4 (p) is the entropy of a binary random variable. Note that Hy = 2 bits when p = 1/2.

For continuous random variables we have that P[ X = x] = 0 for all x. Therefore
by Eq. (4.105) the uncertainty for every event { X = x} is infinite, and it follows from
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Eq. (4.106) that the entropy of continuous random variables is infinite. The next exam-
ple takes a look at how the notion of entropy may be applied to continuous random
variables.

Example 4.62 Entropy of a Quantized Continuous Random Variable

Let X be a continuous random variable that takes on values in the interval [a, b]. Suppose that
the interval [a, b] is divided into a large number K of subintervals of length A. Let Q (X) be the
midpoint of the subinterval that contains X. Find the entropy of Q.
Let x; be the midpoint of the kth subinterval, then P[Q = x;] = P[X is in kth subinterval ]
= Plxy — A2 < X < x; + A2] = fx(x;)A, and thus

K

Hp = > P[Q = x;]In P[Q = x,]

k=1

K

= =3 fr(x) A In(fx(x)A)

K

—In(A) = > fx(x) In(fx(xx)) A (4.112)

The above equation shows that there is a tradeoff between the entropy of O and the quantiza-
tion error X — Q(X). As A is decreased the error decreases, but the entropy increases with-
out bound, once again confirming the fact that the entropy of continuous random variables is
infinite.

In the final expression for Hy in Eq. (4.112), as A approaches zero, the first ex-
pression approaches infinity, but the second expression approaches an integral which
may be finite in some cases. The differential entropy is defined by this integral:

Hy = —Zoofx(x) In fx(x)dx = —E[ln fx(X)]. (4.113)

In the above expression, we reuse the term Hy with the understanding that we deal
with differential entropy when dealing with continuous random variables.

Example 4.63 Differential Entropy of a Uniform Random Variable

The differential entropy for X uniform in [a, b] is

Hy = —E{ln( )} = In(b — a). (4.114)

b—a
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Example 4.64 Differential Entropy of a Gaussian Random Variable

The differential entropy for X, a Gaussian random variable (see Eq. 4.47), is

Hy = —E[In fx(X)]
N2
= —E[ln ! - X Zm) }
2o’ 20
= *ln(2'n'0'2) + =
1 2
= Eln(Z'n'eO' )- (4.115)

The entropy function and the differential entropy function differ in several funda-
mental ways. In the next section we will see that the entropy of a random variable has a
very well defined operational interpretation as the average number of information bits re-
quired to specify the value of the random variable. Differential entropy does not possess
this operational interpretation. In addition, the entropy function does not change when
the random variable X is mapped into Y by an invertible transformation. Again, the dif-
ferential entropy does not possess this property. (See Problems 4.153 and 4.160.) Never-
theless, the differential entropy does possess some useful properties. The differential
entropy appears naturally in problems involving entropy reduction, as demonstrated in
Problem 4.159. In addition, the relative entropy of continuous random variables, which is

defined by
fx(x

fr(x) 0

o0
Hxif = [ e
does not change under invertible transformations.

Entropy as a Measure of Information

Let X be a discrete random variable with Sy = {1,2,..., K} and pmf p;, = P[X = k].
Suppose that the experiment that produces X is performed by John, and that he at-
tempts to communicate the outcome to Mary by answering a series of yes/no questions.
We are interested in characterizing the minimum average number of questions required
to identify X.

Example 4.65

An urn contains 16 balls: 4 balls are labeled “1”, 4 are labeled “2”,2 are labeled “3”,2 are labeled
“4” and the remaining balls are labeled “5”,“6”,“7”, and “8.” John picks a ball from the urn at
random, and he notes the number. Discuss what strategies Mary can use to find out the number
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of the ball through a series of yes/no questions. Compare the average number of questions asked
to the entropy of X.

If we let X be the random variable denoting the number of the ball, then Sy = {1,2,...,8}
and the pmf is p = (1/4, 1/4, 1/8, 1/8, 1/16, 1/16, 1/16, 1/16). We will compare the two strategies
shown in Figs. 4.26(a) and (b).

The series of questions in Fig. 4.26(a) uses the fact that the probability of {X = k} de-
creases with k. Thus it is reasonable to ask the question {“Was X equal to 1?”}, {“Was X equal to
277}, and so on, until the answer is yes. Let L be the number of questions asked until the answer
is yes, then the average number of questions asked is

= 1(5) + 2(3) +3(s) + 4(5) + 5(36) + 6(35) + 7(56) + 7(i5)
= 51/16.

E[L

—

The series of questions in Fig. 4.26(b) uses the observation made in Example 4.57 that
yes/no questions should be designed so that the two answers are equiprobable. The questions in

FIGURE 4.26
Two strategies for finding out the value of X through a series of yes/no questions.
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Fig. 4.26(b) meet this requirement. The average number of questions asked is
E[L] =2(3) +2(3) +3(2) + 3(3) + 4(%) + 4(%) + 4(&) + 4(%)
= 44/16.

Thus the second series of questions has the better performance.
Finally, we find that the entropy of X is

1 1

1 1 1 1 1 1
HX = —Zlogzz - Zlogzz - glogzg ———— Elogzﬁ = 44/16,

which is equal to the performance of the second series of questions.

The problem of designing the series of questions to identify the random variable
X is exactly the same as the problem of encoding the output of an information source.
Each output of an information source is a random variable X, and the task of the en-
coder is to map each possible output into a unique string of binary digits. We can see
this correspondence by taking the trees in Fig. 4.26 and identifying each yes/no answer
with a 0/1. The sequence of 0’s and 1’s from the top node to each terminal node then
defines the binary string (“codeword”) for each outcome. It then follows that the prob-
lem of finding the best series of yes/no questions is the same as finding the binary tree
code that minimizes the average codeword length.

In the remainder of this section we develop the following fundamental results
from information theory. First, the average codeword length of any code cannot be less
than the entropy. Second, if the pmf of X consists of powers of 1/2, then there is a tree
code that achieves the entropy. And finally, by encoding groups of outcomes of X we
can achieve average codeword length arbitrarily close to the entropy. Thus the entropy
of X represents the minimum average number of bits required to establish the outcome
of X.

First, let’s show that the average codeword length of any tree code cannot be less
than the entropy. Note from Fig. 4.26 that the set of lengths {/;} of the codewords for
every complete binary tree must satisfy

K
>2te=1. (4.116)
k=1

To see this, extend the tree to the same depth as the longest codeword, as shown in Fig. 4.27.
If we then “prune” the tree at a node of depth /;, we remove a fraction 2~ of the nodes at
the bottom of the tree. Note that the converse result is also true: If a set of codeword
lengths satisfies Eq. (4.116), then we can construct a tree code with these lengths.

Consider next the difference between the entropy and E[L] for any binary
tree code:

K K
E[L] — Hy = kE:llkP[X =k] + kE:lP[X = k]log, P[X = k]
= iP[X = k] logzP[X_Z k], (4.117)
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FIGURE 4.27

Extension of a binary tree code to a full tree.

where we have expressed the entropy in bits. Equation (4.17) is the relative entropy of
Eq. (4.107) with g, = 27" Thus by Eq. (4.108)

E[L] = Hy  withequalityiff P[X =k]=2"% (4.118)

Thus the average number of questions for any tree code (and in particular the best tree
code) cannot be less than the entropy of X. Therefore we can use the entropy Hy as a
baseline against which to test any code.

Equation (4.118) also implies that if the outcomes of X all have probabilities that
are integer powers of 1/2 (as in Example 4.63), then we can find a tree code that
achieves the entropy. If P[X = k] = 27, then we assign the outcome k a binary code-
word of length /. We can show that we can always find a tree code with these lengths
by using the fact that the probabilities add to one, and hence the codeword lengths sat-
isfy Eq. (4.116). Equation (4.118) then implies that E[L] = H.

It is clear that Eq. (4.117) will be nonzero if the p;’s are not integer powers of 1/2.
Thus in general the best tree code does not always have E[L] = Hy. However, it is
possible to show that the approach of grouping outcomes into sets that are approxi-
mately equiprobable leads to tree codes with lengths that are close to the entropy. Fur-
thermore, by encoding vectors of outcomes of X, it is possible to obtain average
codeword lengths that are arbitrarily close to the entropy. Problem 4.165 discusses how
this is done.

We have now reached our objective of showing that the entropy of a random
variable X represents the minimum average number of bits required to identify its
value. Before proceeding, let’s reconsider continuous random variables. A continuous
random variable can assume values from an uncountably infinite set, so in general an
infinite number of bits is required to specify its value. Thus, the interpretation of en-
tropy as the average number of bits required to specify a random variable immediate-
ly implies that continuous random variables have infinite entropy. This implies that any
representation of a continuous random variable that uses a finite number of bits will
inherently involve some approximation error.
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4.10.3 The Method of Maximum Entropy

Let X be a random variable with Sy = {x{, x,,..., xg} and unknown pmf p, =
P[X = x;]. Suppose that we are asked to estimate the pmf of X given the expected
value of some function g(X) of X:

K
g,lg(xk)P[X =x]=c (4.119)

For example, if g(X) = X then ¢ = E[g(X)] = E[X],and if g(X) = (X — E[X])?
then ¢ = VAR[X]. Clearly, this problem is underdetermined since knowledge of these
parameters is not sufficient to specify the pmf uniquely. The method of maximum en-
tropy approaches this problem by seeking the pmf that maximizes the entropy subject
to the constraint in Eq. (4.119).

Suppose we set up this maximization problem by using Lagrange multipliers:

P[X = x;]

o (4120)

K K
Hy + /\<k21P[X = x¢]g(xg) — c> = —kglP[X = x;]In

where C = ¢¢. Note that if {Ce *¢(*Y)} forms a pmf, then the above expression is the
negative value of the relative entropy of this pmf with respect to p. Equation (4.108)
then implies that the expression in Eq. (4.120) is always less than or equal to zero with
equality iff P[X = x;] = Ce (). We now show that this does indeed lead to the
maximum entropy solution.

Suppose that the random variable X has pmf p; = Ce *¢(*9), where C and A are
chosen so that Eq. (4.119) is satisfied and so that { p,} is a pmf. X then has entropy

Hy = E[-In P[X]] = [-In Ce (W] = —In C + AE[g(X)]
= —InC + Ac. (4.121)

Now let’s compare the entropy in Eq. (4.121) to that of some other pmf g, that also
satisfies the constraint in Eq. (4.119). Consider the relative entropy of p with re-
spect to q:

K K K
qdk

0=H(gp)= DaIn"—= Dgng + X q(-InC + Ag(xy))

k=1 Pk k=1 k=1

—InC + Ac — H(q) = Hy — H(q). (4.122)

Thus Hy = H(q), and p achieves the highest entropy.

Example 4.66

Let X be a random variable with Sy = {0, 1,...} and expected value E[ X ] = m. Find the pmf
of X that maximizes the entropy.
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In this example g(X) = X, so
pr = Ce™™ = CdoF,

where @ = ¢, Clearly, X is a geometric random variable with mean m = «/(1 — &) and thus
a=m/(m + 1). Itthenfollows that C = 1 — o = 1/(m + 1).

When dealing with continuous random variables, the method of maximum en-
tropy maximizes the differential entropy:

—/ fx(x)In fy(x) dx. (4.123)
The parameter information is in the form
¢ = Blg00] = [ g(0falx) v (“.124)

The relative entropy expression in Eq. (4.115) and the approach used for discrete ran-
dom variables can be used to show that the pdf fx(x) that maximizes the differential
entropy will have the form

fx(x) = Ce W), (4.125)

where C and A must be chosen so that Eq. (4.125) integrates to one and so that Eq. (4.124)
is satisfied.

Example 4.67

Suppose that the continuous random variable X has known variance o> = E[(X — m)?], where
the mean m is not specified. Find the pdf that maximizes the entropy of X.
Equation (4.125) implies that the pdf has the form

fx(x) = Ceremm
We can meet the constraint in Eq. (4.124) by picking
1 1

T2 7
270

A

(S}

We thus obtain a Gaussian pdf with variance 0. Note that the mean m is arbitrary; that is, any
choice of m yields a pdf that maximizes the differential entropy.

The method of maximum entropy can be extended to the case where several pa-
rameters of the random variable X are known. It can also be extended to the case of
vectors and sequences of random variables.
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The cumulative distribution function Fx(x) is the probability that X falls in the
interval (=00, x]. The probability of any event consisting of the union of inter-
vals can be expressed in terms of the cdf.

A random variable is continuous if its cdf can be written as the integral of a non-
negative function. A random variable is mixed if it is a mixture of a discrete and a
continuous random variable.

The probability of events involving a continuous random variable X can be ex-
pressed as integrals of the probability density function fx(x).

If X is a random variable,then Y = g(X) is also a random variable. The notion of
equivalent events allows us to derive expressions for the cdf and pdf of Y in terms
of the cdf and pdf of X.

The cdf and pdf of the random variable X are sufficient to compute all probabili-
ties involving X alone. The mean, variance, and moments of a random variable
summarize some of the information about the random variable X. These parame-
ters are useful in practice because they are easier to measure and estimate than
the cdf and pdf.

Conditional cdf’s or pdf’s incorporate partial knowledge about the outcome of an
experiment in the calculation of probabilities of events.

The Markov and Chebyshev inequalities allow us to bound probabilities involv-
ing X in terms of its first two moments only.

Transforms provide an alternative but equivalent representation of the pmf and
pdf. In certain types of problems it is preferable to work with the transforms
rather than the pmf or pdf. The moments of a random variable can be obtained
from the corresponding transform.

The reliability of a system is the probability that it is still functioning after ¢ hours
of operation. The reliability of a system can be determined from the reliability of
its subsystems.

There are a number of methods for generating random variables with prescribed
pmf’s or pdf’s in terms of a random variable that is uniformly distributed in the
unit interval. These methods include the transformation and the rejection meth-
ods as well as methods that simulate random experiments (e.g., functions of ran-
dom variables) and mixtures of random variables.

The entropy of a random variable X is a measure of the uncertainty of X in terms
of the average amount of information required to identify its value.

The maximum entropy method is a procedure for estimating the pmf or pdf of a
random variable when only partial information about X in the form of expected
values of functions of X is available.
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CHECKLIST OF IMPORTANT TERMS

Characteristic function
Chebyshev inequality
Chernoff bound

Conditional cdf, pdf
Continuous random variable
Cumulative distribution function
Differential entropy

Discrete random variable
Entropy

Equivalent event

Expected value of X

Failure rate function

Function of a random variable

Maximum entropy method
Mean time to failure (MTTF)
Moment theorem

nth moment of X

Probability density function
Probability generating function
Probability mass function
Random variable

Random variable of mixed type
Rejection method

Reliability

Standard deviation of X
Transformation method

Laplace transform of the pdf

Variance of X

Markov inequality
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Section 4.1: The Cumulative Distribution Function

4.1.

4.2.

4.3.

44,

4.5.

4.6.

4.7.

An information source produces binary pairs that we designate as Sy = {1, 2, 3,4} with
the following pmf’s:

(i) pi = pi/kforallkin Sy.
(i) pr+1 = pl2fork =2,3,4.
(i) preq = pu/2¥fork = 2,3, 4.
(a) Plot the cdf of these three random variables.
(b) Use the cdf to find the probability of the events: {X =1}, {X <25},
{05 < X =2},{1 < X <4}.
A die is tossed. Let X be the number of full pairs of dots in the face showing up, and Y be the
number of full or partial pairs of dots in the face showing up. Find and plot the cdf of X and Y.
The loose minute hand of a clock is spun hard. The coordinates (x, y) of the point where
the tip of the hand comes to rest is noted. Z is defined as the sgn function of the product
of x and y, where sgn(¢) is 1if r > 0,0if r = 0, and —1if r < 0.
(a) Find and plot the cdf of the random variable X.
(b) Does the cdf change if the clock hand has a propensity to stop at 3,6,9,and 12 o’clock?

An urn contains 8 $1 bills and two $5 bills. Let X be the total amount that results when
two bills are drawn from the urn without replacement, and let Y be the total amount that
results when two bills are drawn from the urn with replacement.

(a) Plot and compare the cdf’s of the random variables.

(b) Use the cdf to compare the probabilities of the following events in the two prob-
lems: {X = $2}, {X < $7}, {X = 6}.

Let Y be the difference between the number of heads and the number of tails in the 3

tosses of a fair coin.

(a) Plot the cdf of the random variable Y.

(b) Express P[|Y| < y]in terms of the cdf of Y.

A dart is equally likely to land at any point inside a circular target of radius 2. Let R be
the distance of the landing point from the origin.

(a) Find the sample space S and the sample space of R, Si.

(b) Show the mapping from § to Sg.

(c) The “bull’s eye” is the central disk in the target of radius 0.25. Find the event A in Sg
corresponding to “dart hits the bull’s eye.” Find the equivalent event in S and P[A].

(d) Find and plot the cdf of R.

A point is selected at random inside a square defined by {(x, y):0 = x = b,0 = y < b}.

Assume the point is equally likely to fall anywhere in the square. Let the random variable

Z be given by the minimum of the two coordinates of the point where the dart lands.

(a) Find the sample space S and the sample space of Z, S.
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48.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.
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(b) Show the mapping from S to S.

(¢) Find the region in the square corresponding to the event {Z = z}.

(d) Find and plot the cdf of Z.

(e) Use the cdfto find: P[Z > 0], P[Z > b], P[Z < b/2], P[Z > b/4].

Let { be a point selected at random from the unit interval. Consider the random variable
X=(1-¢""

(a) Sketch X as a function of £.

(b) Find and plot the cdf of X.

(¢) Find the probability of the events { X > 1}, {5 < X < 7}, {X = 20}.

The loose hand of a clock is spun hard and the outcome ¢ is the angle in the range [0, 277)
where the hand comes to rest. Consider the random variable X ({) = 2 sin(¢/4).

(a) Sketch X as a function of .
(b) Find and plot the cdf of X.
(¢) Find the probability of the events {X > 1}, {-12 < X < 12}, {X = 1/V2}.

Repeat Problem 4.9 if 80% of the time the hand comes to rest anywhere in the circle, but
20% of the time the hand comes to rest at 3, 6,9, or 12 o’clock.

The random variable X is uniformly distributed in the interval [—1, 2].

(a) Find and plot the cdf of X.

(b) Use the cdf to find the probabilities of the following events: {X = 0},
{IX — 05| <1},and C = {X > —0.5}.

The cdf of the random variable X is given by:

0 x < -1
05 “1=x=0
F =
X =V11092 o0=x=1
1 x=1.

(a) Plot the cdf and identify the type of random variable.

() Find P[X = —-1],P[X = —1],P[X < 05],P[-05 < X <05],P[X > —1],
P[X =2],P[X > 3].

A random variable X has cdf:

0 forx <0

_ 1
Fy(x) =41 Ze’zx forx = 0.

(a) Plot the cdf and identify the type of random variable.

(b) Find P[X =2],P[X =0],P[X <0],P[2< X <6],P[X > 10].

The random variable X has cdf shown in Fig. P4.1.

(a) What type of random variable is X?

(b) Find the following probabilities: P[X < —1],P[X = —1], P[-1 < X < —0.75],
P[-0.5 = X <0],P[-05 = X =05], P[|X — 0.5] <0.5)].

For B > 0 and A > 0, the Weibull random variable Y has cdf:

0 forx <0
Fx(x) = {1 — e for x = 0.
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Problems

FIGURE P4.1

(a) Plotthe cdfof Y for B8 = 0.5,1, and 2.

(b) Find the probability P[jA < X < (j + 1)A]and P[X > jA].
(¢) Plotlog P[X > x]vs.logx.

The random variable X has cdf:

0 x <0
Fy(x) =05 + csin’(mx2) 0=x=1
1 x > 1.

(a) What values can ¢ assume?
(b) Plot the cdf.
(¢) Find P[X > 0].

Section 4.2: The Probability Density Function

4.17.

4.18.

4.19.

4.20.

A random variable X has pdf:

e =5 -1l=x=1
Fx(x) = {O elsewhere.

(a) Find c and plot the pdf.

(b) Plot the cdf of X.

(¢) Find P[X =0], P[0 < X < 0.5],and P[|X — 0.5] < 0.25].
A random variable X has pdf:

~ex(1 = x?) 0=x=1
Fx(x) = {0 elsewhere.

(a) Find c and plot the pdf.
(b) Plot the cdf of X.
(¢) Find P[0 < X <0.5],P[X =1],P[25 < X <0.5].

217

(a) In Problem 4.6, find and plot the pdf of the random variable R, the distance from the

dart to the center of the target.
(b) Use the pdf to find the probability that the dart is outside the bull’s eye.
(a) Find and plot the pdf of the random variable Z in Problem 4.7.
(b) Use the pdf to find the probability that the minimum is greater than b/3.
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4.21.

4.22,

4.23.

4.24.

4.25.
4.26.

4.27.

4.28.
4.29.

4.30.

4.31.

4.32.
4.33.

4.34.

4.35.

4.36.
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(a) Find and plot the pdf in Problem 4.8.
(b) Use the pdf to find the probabilities of the events: { X > a} and {X > 2a}.
(a) Find and plot the pdf in Problem 4.12.
(b) Use the pdfto find P[—-1 = X < 0.25].
(a) Find and plot the pdf in Problem 4.13.
(b) Use the pdf to find P[ X = 0], P[X > 8].
(a) Find and plot the pdf of the random variable in Problem 4.14.
(b) Use the pdf to calculate the probabilities in Problem 4.14b.
Find and plot the pdf of the Weibull random variable in Problem 4.15a.
Find the cdf of the Cauchy random variable which has pdf:
fX(x) = xzafTaz

—00 < x < 00,

A voltage X is uniformly distributed in the set {—3, =2,...,3,4}.
(a) Find the pdf and cdf of the random variable X.

(b) Find the pdf and cdf of the random variable Y = —2X 2+ 3.
(¢) Find the pdf and cdf of the random variable W = cos(7X/8).
(d) Find the pdf and cdf of the random variable Z = cos?(7wX/8).
Find the pdf and cdf of the Zipf random variable in Problem 3.70.

Let C be an event for which P[C] > 0. Show that Fy(x|C) satisfies the eight properties of
acdf.

(a) In Problem 4.13,find Fy(x|C) where C = {X > 0}.

(b) Find Fy(x|C) where C = {X = 0}.

(a) In Problem 4.10, find Fy(x|B) where B = {hand does not stop at 3, 6, 9, or 12
o’clock}.

(b) Find Fy(x|B°).

In Problem 4.13, find fx (x| B) and Fx(x|B) where B = {X > 0.25}.

Let X be the exponential random variable.

(a) Find and plot Fx(x| X > t). How does Fx(x| X > t) differ from Fy(x)?

(b) Find and plot fy(x| X > 1).

(¢) Showthat P[X >t + x| X >t] = P[X > x]. Explain why this is called the mem-
oryless property.

The Pareto random variable X has cdf:

(a) Find and plot the pdf of X.

(b) Repeat Problem 4.33 parts a and b for the Pareto random variable.

(¢) What happens to P[X >t + x| X > t] as t becomes large? Interpret this result.
(a) Find and plot Fy(x|a = X = b). Compare Fy(x|a = X = b) to Fx(x).

(b) Find and plot fy(x|la = X = b).

In Problem 4.6, find Fg(r| R > 1) and fg(r| R > 1).
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(a) InProblem 4.7,find F,(z|b/4 = Z = b/2) and f,(z|b/4 = Z < b/2).

(b) Find F,(z|B) and f,(z|B), where B = {x > b/2}.

A binary transmission system sends a “0” bit using a —1 voltage signal and a “1” bit by
transmitting a +1. The received signal is corrupted by noise N that has a Laplacian distri-
bution with parameter «. Assume that “0” bits and “1” bits are equiprobable.

(a) Find the pdf of the received signal Y = X + N, where X is the transmitted signal,
given that a “0” was transmitted; that a “1” was transmitted.

(b) Suppose that the receiver decides a “0” was sent if Y < 0, and a “1” was sent if
Y = 0. What is the probability that the receiver makes an error given that a +1 was
transmitted? a —1 was transmitted?

(¢) What is the overall probability of error?

Section 4.3: The Expected Value of X

4.39.
4.40.
4.41.
4.42,
4.43.
4.44,
4.45.
4.46.

4.47.
4.48.
4.49.

4.50.
4.51.
4.52,
4.53.

4.54.

Find the mean and variance of X in Problem 4.17.

Find the mean and variance of X in Problem 4.18.

Find the mean and variance of Y, the distance from the dart to the origin, in Problem 4.19.
Find the mean and variance of Z, the minimum of the coordinates in a square, in Problem 4.20.
Find the mean and variance of X = (1 — ¢)™"2in Problem 4.21. Find E[X] using Eq. (4.28).
Find the mean and variance of X in Problems 4.12 and 4.22.

Find the mean and variance of X in Problems 4.13 and 4.23. Find E[X] using Eq. (4.28).
Find the mean and variance of the Gaussian random variable by direct integration of
Egs. (4.27) and (4.34).

Prove Egs. (4.28) and (4.29).

Find the variance of the exponential random variable.

(a) Show that the mean of the Weibull random variable in Problem 4.15is I'(1 + 1/8)
where I'(x) is the gamma function defined in Eq. (4.56).

(b) Find the second moment and the variance of the Weibull random variable.

Explain why the mean of the Cauchy random variable does not exist.

Show that E[X] does not exist for the Pareto random variable with @ = 1 and x,, = 1.
Verify Egs. (4.36), (4.37), and (4.38).

LetY = Acos(wt) + ¢ where A has mean m and variance o and o and c are constants.
Find the mean and variance of Y. Compare the results to those obtained in Example 4.15.

A limiter is shown in Fig. P4.2.

8(x)

—a

FIGURE P4.2
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4.55.

()

(b)
(©)
(d)

One Random Variable

Find an expression for the mean and variance of Y = g(X) for an arbitrary contin-
uous random variable X.

Evaluate the mean and variance if X is a Laplacian random variable with A = a = 1.
Repeat part (b) if X is from Problem 4.17 with a = 1/2.

Evaluate the mean and variance if X = U? where U is a uniform random variable in
the unit interval, [—1,1] and a = 1/2.

A limiter with center-level clipping is shown in Fig. P4.3.

(a)

(b)
()
(d)

Find an expression for the mean and variance of Y = g(X) for an arbitrary contin-
uous random variable X.

Evaluate the mean and variance if X is Laplacian withA = a = 1 and b = 2.
Repeat part (b) if X is from Problem 4.22,a = 1/2,b = 3/2.

Evaluate the mean and variance if X = b cos(27wU) where U is a uniform random
variable in the unit interval [—1, 1] and a = 3/4,b = 1/2.

FIGURE P4.3

4.56. LetY =3X + 2.

(a)
(b)
()
(d)

Find the mean and variance of Y in terms of the mean and variance of X.
Evaluate the mean and variance of Y if X is Laplacian.
Evaluate the mean and variance of Y if X is an arbitrary Gaussian random variable.

Evaluate the mean and variance of Yif X = b cos(2wU) where U is a uniform ran-
dom variable in the unit interval.

4.57. Find the nth moment of U, the uniform random variable in the unit interval. Repeat for X
uniform in [a, b].

4.58.

Consider the quantizer in Example 4.20.

(a)
(b)

Find the conditional pdf of X given that X is in the interval (d, 2d).

Find the conditional expected value and conditional variance of X given that X is in
the interval (d, 2d).
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(¢) Now suppose that when X falls in (d, 2d), it is mapped onto the point ¢ where
d < ¢ < 2d. Find an expression for the expected value of the mean square error:
E[(X — ¢)?ld < X < 2d)].

(d) Find the value ¢ that minimizes the above mean square error. Is ¢ the midpoint of
the interval? Explain why or why not by sketching possible conditional pdf shapes.

(e) Find an expression for the overall mean square error using the approach in parts c and d.

Section 4.4: Important Continuous Random Variables

4.59.
4.60.

4.61.

4.62.

4.63.

4.64.
4.65.
4.66.

4.67.

Let X be a uniform random variable in the interval [—2, 2]. Find and plot P[| X| > x].
In Example 4.20, let the input to the quantizer be a uniform random variable in the inter-
val [—4d, 4d]. Show that Z = X — Q(X) is uniformly distributed in [ —d/2, d/2].

Let X be an exponential random variable with parameter A.

(a) Ford > 0 and k a nonnegative integer, find P[kd < X < (k + 1)d].

(b) Segment the positive real line into four equiprobable disjoint intervals.

The rth percentile, 7w (r), of a random variable X is defined by P[ X =< = (r)] = r/100.

(a) Find the 90%, 95%, and 99% percentiles of the exponential random variable with
parameter A.

(b) Repeat part a for the Gaussian random variable with parameters m = 0 and o2,
Let X be a Gaussian random variable with m = 5 and o2 = 16.

(@) FindP[X > 4],P[X =7],P[6.72 < X <10.16],P[2 < X <7],P[6 = X =8].
(b) P[X < a] = 0.8869, find a.

(¢) P[X > b] = 0.11131, find b.

(d) P[13 < X =c¢] = 0.0123, find c.

Show that the Q-function for the Gaussian random variable satisfies Q(—x) = 1 — Q(x).
Use Octave to generate Tables 4.2 and 4.3.

Let X be a Gaussian random variable with mean m and variance o2
(a) Find P[X = m].

(b) Find P[|X — m| < ko], fork =1,2,3,4,5,6.

(¢) Find the value of k for which Q(k) = P[X > m + ko] = 107/ forj=1,2,3,4,5,6.
A binary transmission system transmits a signal X (—1 to send a “0” bit; +1 to send a “1”

bit). The received signalis Y = X + N where noise N has a zero-mean Gaussian distrib-
ution with variance 2. Assume that “0” bits are three times as likely as “1” bits.

(a) Find the conditional pdf of Y given the input value: fy(y|X = +1) and
fr(yl X = -1).
(b) The receiver decides a “0” was transmitted if the observed value of y satisfies

HYIX = -DPIX = 1] > fy(y| X = +1)P[X = +1]

and it decides a “1” was transmitted otherwise. Use the results from part a to show
that this decision rule is equivalent to: If y < T decide “0”;if y = T decide “1”.

(c) What is the probability that the receiver makes an error given that a +1 was trans-
mitted? a —1 was transmitted? Assume o = 1/16.

(d) What is the overall probability of error?
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4.68.

4.69.

4.70.

4.71.

4.72.

4.73.

4.74.

4.75.

One Random Variable

Two chips are being considered for use in a certain system. The lifetime of chip 1 is mod-
eled by a Gaussian random variable with mean 20,000 hours and standard deviation
5000 hours. (The probability of negative lifetime is negligible.) The lifetime of chip 2 is
also a Gaussian random variable but with mean 22,000 hours and standard deviation
1000 hours. Which chip is preferred if the target lifetime of the system is 20,000 hours?
24,000 hours?

Passengers arrive at a taxi stand at an airport at a rate of one passenger per minute. The
taxi driver will not leave until seven passengers arrive to fill his van. Suppose that pas-
senger interarrival times are exponential random variables, and let X be the time to fill a
van. Find the probability that more than 10 minutes elapse until the van is full.

(a) Show that the gamma random variable has mean:
E[X] = a/A
(b) Show that the gamma random variable has second moment, and variance given by:
E[X?] = a(a + 1)/A? and VAR[ X ] = /A%

(¢) Use parts a and b to obtain the mean and variance of an m-Erlang random variable.

(d) Use parts a and b to obtain the mean and variance of a chi-square random variable.

The time X to complete a transaction in a system is a gamma random variable with mean

4 and variance 8. Use Octave to plot P[X > x] as a function of x. Note: Octave uses

B =1/2.

(a) Plot the pdf of an m-Erlang random variable for m = 1,2,3 and A = 1.

(b) Plot the chi-square pdf for k = 1,2, 3.

A repair person keeps four widgets in stock. What is the probability that the widgets in

stock will last 15 days if the repair person needs to replace widgets at an average rate of

one widget every three days, where the time between widget failures is an exponential

random variable?

(a) Find the cdf of the m-Erlang random variable by integration of the pdf. Hint: Use in-
tegration by parts.

(b) Show that the derivative of the cdf given by Eq. (4.58) gives the pdf of an m-Erlang
random variable.

Plot the pdf of a beta random variable with:a = b = 1/4,1,4,8;a = 5,b = 1;a = 1,b = 3;

a=12,b=5.

Section 4.5: Functions of a Random Variable

4.76.

4.71.

4.78.

Let X be a Gaussian random variable with mean 2 and variance 4. The reward in a system
is given by Y = (X)*. Find the pdf of Y.
The amplitude of a radio signal X is a Rayleigh random variable with pdf:

X
fx(x) =S x>0, a>0.
64

(a) Findthepdfof Z = (X — r)*.

(b) Find the pdf of Z = X2

A wire has length X, an exponential random variable with mean 57 cm. The wire is cut to
make rings of diameter 1 cm. Find the probability for the number of complete rings pro-
duced by each length of wire.



4.79.

4.80.

4.81.

4.82.
4.83.

4.84.

4.85.

4.86.

4.87.
4.88.

4.89.
4.90.

4.91.

4.92.

4.93.

4.94.
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A signal that has amplitudes with a Gaussian pdf with zero mean and unit variance is ap-
plied to the quantizer in Example 4.27.

(a) Pick d so that the probability that X falls outside the range of the quantizer is 1%.
(b) Find the probability of the output levels of the quantizer.

The signal X is amplified and shifted as follows: Y = 2X + 3, where X is the random
variable in Problem 4.12. Find the cdf and pdf of Y.

The net profit in a transaction is given by Y = 2 — 4X where X is the random variable in
Problem 4.13. Find the cdf and pdf of Y.

Find the cdf and pdf of the output of the limiter in Problem 4.54 parts b, c, and d.

Find the cdf and pdf of the output of the limiter with center-level clipping in Problem 4.55
parts b, c,and d.

Find the cdf and pdf of Y = 3X + 2 in Problem 4.56 parts b, ¢, and d.

The exam grades in a certain class have a Gaussian pdf with mean m and standard devia-
tion o. Find the constants a and b so that the random variable y = aX + b has a Gauss-
ian pdf with mean m' and standard deviation o”'.

Let X = U" where n is a positive integer and U is a uniform random variable in the unit
interval. Find the cdf and pdf of X.

Repeat Problem 4.86 if U is uniform in the interval [—1, 1].
Let Y = |X| be the output of a full-wave rectifier with input voltage X.

(a) Find the cdf of Y by finding the equivalent event of {Y =< y}. Find the pdf of Y by
differentiation of the cdf.

(b) Find the pdf of Y by finding the equivalent event of {y <Y = y + dy}. Does the
answer agree with part a?

(¢) What is the pdf of Y if the fx(x) is an even function of x?
Find and plot the cdf of Y in Example 4.34.

A voltage X is a Gaussian random variable with mean 1 and variance 2. Find the pdf of
the power dissipated by an R-ohm resistor P = RX?.

LetY = e*.
(a) Find the cdf and pdf of Y in terms of the cdf and pdf of X.

(b) Find the pdf of Y when X is a Gaussian random variable. In this case Y is said to be
a lognormal random variable. Plot the pdf and cdf of Y when X is zero-mean with
variance 1/8; repeat with variance 8.

Let a radius be given by the random variable X in Problem 4.18.
(a) Find the pdf of the area covered by a disc with radius X.
(b) Find the pdf of the volume of a sphere with radius X.

(¢) Find the pdf of the volume of a sphere in R™:

(2m)n=V2 X132 X 4 X --- X n)  for neven
2027)" D2 X1 X 3 X -~ X n) for nodd.

In the quantizer in Example 4.20,let Z = X — g(X). Find the pdf of Z if X is a Lapla-
cian random variable with parameter a = d/2.

LetY = atan w.X, where X is uniformly distributed in the interval (—1, 1).
(a) Show that Y is a Cauchy random variable.
(b) Findthe pdfofY = 1/X.
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4.95. Let X be a Weibull random variable in Problem 4.15. Let Y = (X/A)?. Find the cdf and
pdf of Y.

4.96. Find the pdf of X = —In(1 — U), where U is a uniform random variable in (0, 1).

Section 4.6: The Markov and Chebyshev Inequalities

4.97. Compare the Markov inequality and the exact probability for the event { X > ¢} as a func-
tion of ¢ for:
(a) Xis a uniform random variable in the interval [0, b].
(b) Xis an exponential random variable with parameter A.
(¢) Xisa Pareto random variable with a > 1.
(d) Xis a Rayleigh random variable.

4.98. Compare the Markov inequality and the exact probability for the event { X > c} as a func-
tion of ¢ for:

(a) Xis a uniform random variable in {1,2,..., L}.

(b) Xis a geometric random variable.

(¢) Xisa Zipf random variable with L. = 10; L = 100.

(d) Xis abinomial random variable with n = 10, p = 0.5;n = 50, p = 0.5.

4.99. Compare the Chebyshev inequality and the exact probability for the event {| X — m| > ¢}
as a function of ¢ for:

(a) X is a uniform random variable in the interval [—b, b].

(b) Xis a Laplacian random variable with parameter «.

(¢) Xisazero-mean Gaussian random variable.

(d) X is a binomial random variable with n = 10, p = 0.5;n = 50, p = 0.5.

4.100. Let X be the number of successes in n Bernoulli trials where the probability of success is
p.Let Y = X/n be the average number of successes per trial. Apply the Chebyshev in-
equality to the event {|Y — p| > a}. What happens as n — 00?

4.101. Suppose that light bulbs have exponentially distributed lifetimes with unknown mean
E[X]. Suppose we measure the lifetime of n light bulbs, and we estimate the mean E[X]
by the arithmetic average Y of the measurements. Apply the Chebyshev inequality to the
event {|Y — E[X]| > a}. What happens as n — 00? Hint: Use the m-Erlang random
variable.

Section 4.7: Transform Methods

4.102. (a) Find the characteristic function of the uniform random variable in [—b, b].
(b) Find the mean and variance of X by applying the moment theorem.

4.103. (a) Find the characteristic function of the Laplacian random variable.
(b) Find the mean and variance of X by applying the moment theorem.

4.104. Let @ x(w) be the characteristic function of an exponential random variable. What ran-
dom variable does ®’(w) correspond to?



4.105.

4.106.

4.107.
4.108.

4.109.

4.110.

4.111.

4.112.

4.113.

4.114.

4.115.

4.116.
4.117.

4.118.

4.119.

4.120.

4.121.
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Find the mean and variance of the Gaussian random variable by applying the moment
theorem to the characteristic function given in Table 4.1.

Find the characteristic function of Y = aX + b where X is a Gaussian random variable.
Hint: Use Eq. (4.79).
Show that the characteristic function for the Cauchy random variable is e,

Find the Chernoff bound for the exponential random variable with A = 1. Compare the
bound to the exact value for P[ X > 5].

(a) Find the probability generating function of the geometric random variable.
(b) Find the mean and variance of the geometric random variable from its pgf.
(a) Find the pgf for the binomial random variable X with parameters n and p.
(b) Find the mean and variance of X from the pgf.

Let Gx(z) be the pgf for a binomial random variable with parameters »n and p, and let
Gy(z) be the pgf for a binomial random variable with parameters /2 and p. Consider the
function Gx(z) Gy(z). Is this a valid pgf? If so, to what random variable does it corre-
spond?

Let Gy(z) be the pgf for a Poisson random variable with parameter «, and let G,(z) be
the pgf for a Poisson random variable with parameters B. Consider the function
Gn(z) Gy(z). Is this a valid pgf? If so, to what random variable does it correspond?

Let N be a Poisson random variable with parameter « = 1. Compare the Chernoff bound
and the exact value for P[ X = 5].

(a) Find the pgf Gy (z) for the discrete uniform random variable U.
(b) Find the mean and variance from the pgf.

(¢) Consider Gy(z)% Does this function correspond to a pgf? If so, find the mean of the
corresponding random variable.

(a) Find P[X = r] for the negative binomial random variable from the pgf in Table 3.1.
(b) Find the mean of X.

Derive Eq. (4.89).

Obtain the nth moment of a gamma random variable from the Laplace transform of
its pdf.

Let X be the mixture of two exponential random variables (see Example 4.58). Find the
Laplace transform of the pdf of X.

The Laplace transform of the pdf of a random variable X is given by:

a b
s+as+b

X*(s) =

Find the pdf of X. Hint: Use a partial fraction expansion of X *(s).

Find a relationship between the Laplace transform of a gamma random variable pdf with

parameters « and A and the Laplace transform of a gamma random variable with para-

meters o — 1 and A. What does this imply if X is an m-Erlang random variable?

(a) Find the Chernoff bound for P[ X > ¢] for the gamma random variable.

(b) Compare the bound to the exact value of P[X = 9] for an m = 3, A = 1 Erlang
random variable.
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Section 4.8: Basic Reliability Calculations

4.122.

4.123.

4.124.

4.125.

4.126.

4.127.

4.128.

The lifetime 7 of a device has pdf
1/107;, 0<t<Ty
fr(t) =< 092e 20T ¢ =T,
0 t <Ty.

(a) Find the reliability and MTTF of the device.

(b) Find the failure rate function.

(¢) How many hours of operation can be considered to achieve 99% reliability?
The lifetime 7 of a device has pdf

1/T0 as=t=a+ TO
t =
fr(0) {O elsewhere.

(a) Find the reliability and MTTF of the device.

(b) Find the failure rate function.

(¢) How many hours of operation can be considered to achieve 99% reliability?
The lifetime 7 of a device is a Rayleigh random variable.

(a) Find the reliability of the device.

(b) Find the failure rate function. Does r(¢) increase with time?

(¢) Find the reliability of two devices that are in series.

(d) Find the reliability of two devices that are in parallel.

The lifetime T of a device is a Weibull random variable.

(a) Plot the failure rates fora = 1 and B = 0.5;fora = 1 and B = 2.
(b) Plot the reliability functions in part a.

(c) Plot the reliability of two devices that are in series.

(d) Plot the reliability of two devices that are in parallel.

A system starts with m devices, 1 active and m — 1 on standby. Each device has an expo-
nential lifetime. When a device fails it is immediately replaced with another device (if one
is still available).

(a) Find the reliability of the system.
(b) Find the failure rate function.

Find the failure rate function of the memory chips discussed in Example 2.28. Plot
In(r(¢)) versus at.

A device comes from two sources. Devices from source 1 have mean m and exponentially
distributed lifetimes. Devices from source 2 have mean m and Pareto-distributed lifetimes
with @ > 1. Assume a fraction p is from source 1 and a fraction 1 — p from source 2.

(a) Find the reliability of an arbitrarily selected device.
(b) Find the failure rate function.
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4.130.

4.131.
4.132.

4.133.
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A device has the failure rate function:

1+9(1 —1) 0=r<1
r(t) =41 1=tr<10
1+ 10(r — 10) t = 10.

Find the reliability function and the pdf of the device.

A system has three identical components and the system is functioning if two or more

components are functioning.

(a) Find the reliability and MTTF of the system if the component lifetimes are expo-
nential random variables with mean 1.

(b) Find the reliability of the system if one of the components has mean 2.

Repeat Problem 4.130 if the component lifetimes are Weibull distributed with 8 = 3.

A system consists of two processors and three peripheral units. The system is functioning

as long as one processor and two peripherals are functioning.

(a) Find the system reliability and MTTF if the processor lifetimes are exponential ran-
dom variables with mean 5 and the peripheral lifetimes are Rayleigh random vari-
ables with mean 10.

(b) Find the system reliability and MTTF if the processor lifetimes are exponential ran-
dom variables with mean 10 and the peripheral lifetimes are exponential random
variables with mean 5.

An operation is carried out by a subsystem consisting of three units that operate in a se-

ries configuration.

(a) The units have exponentially distributed lifetimes with mean 1. How many subsys-
tems should be operated in parallel to achieve a reliability of 99% in T hours of
operation?

(b) Repeat part a with Rayleigh-distributed lifetimes.

(c¢) Repeat part a with Weibull-distributed lifetimes with g = 3.

Section 4.9: Computer Methods for Generating Random Variables

4.134.

4.135.

Octave provides function calls to evaluate the pdf and cdf of important continuous ran-

dom variables. For example, the functions \normal_cdf (x, m, var) and normal_pdf (x, m,

var) compute the cdf and pdf, respectively, at x for a Gaussian random variable with

mean m and variance var.

(a) Plot the conditional pdfs in Example 4.11 if v = +2 and the noise is zero-mean and
unit variance.

(b) Compare the cdf of the Gaussian random variable with the Chernoff bound ob-
tained in Example 4.44.

Plot the pdf and cdf of the gamma random variable for the following cases.

(@ A=1landa=1,24.

(b) Ar=12anda = 1/2,1, 3/2, 5/2.
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4.136.

4.137.

4.138.

4.139.

4.140.

4.141.

4.142.

The random variable X has the triangular pdf shown in Fig. P4.4.
(a) Find the transformation needed to generate X.

(b) Use Octave to generate 100 samples of X. Compare the empirical pdf of the samples
with the desired pdf.

Jx(x)

—a 0 a
FIGURE P4.4

For each of the following random variables: Find the transformation needed to generate
the random variable X; use Octave to generate 1000 samples of Xj; Plot the sequence of
outcomes; compare the empirical pdf of the samples with the desired pdf.

(a) Laplacian random variable with & = 1.

(b) Pareto random variable with o = 1.5, 2, 2.5.

(¢) Weibull random variable with 8 = 0.5,2,3 and A = 1.
A random variable Y of mixed type has pdf

fr(x) = pd(x) + (1 = p)fy(x),
where X is a Laplacian random variable and p is a number between zero and one. Find

the transformation required to generate Y.

Specify the transformation method needed to generate the geometric random variable
with parameter p = 1/2. Find the average number of comparisons needed in the search
to determine each outcome.

Specify the transformation method needed to generate the Poisson random variable with
small parameter o. Compute the average number of comparisons needed in the search.

The following rejection method can be used to generate Gaussian random variables:
1. Generate U;, a uniform random variable in the unit interval.
2. Let X; = —In(Uj).
3. Generate U,, a uniform random variable in the unit interval. If U, <
exp{—(X; — 1)%2}, accept X,. Otherwise, reject X; and go to step 1.
4. Generate a random sign (+ or —) with equal probability. Output X equal to X,
with the resulting sign.

(a) Show that if X is accepted, then its pdf corresponds to the pdf of the absolute value
of a Gaussian random variable with mean 0 and variance 1.

(b) Show that X is a Gaussian random variable with mean 0 and variance 1.

Cheng (1977) has shown that the function Kf,(x) bounds the pdf of a gamma random
variable with « > 1, where
At 1
fz(x) = m and K = (20[ - 1) .

Find the cdf of f;(x) and the corresponding transformation needed to generate Z.



4.143.

4.144.

4.145.

4.146.
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(a) Show that in the modified rejection method, the probability of accepting X is 1/K.
Hint: Use conditional probability.

(b) Show that Z has the desired pdf.

Two methods for generating binomial random variables are: (1) Generate n Bernoulli

random variables and add the outcomes; (2) Divide the unit interval according to bino-

mial probabilities. Compare the methods under the following conditions:

(@ p=1/2,n=>5,25,50;

() p=01,n=25,25,50.

(¢) Use Octave to implement the two methods by generating 1000 binomially distrib-
uted samples.

Let the number of event occurrences in a time interval be a Poisson random variable. In

Section 3.4, it was found that the time between events for a Poisson random variable is an

exponentially distributed random variable.

(a) Explain how one can generate Poisson random variables from a sequence of expo-
nentially distributed random variables.

(b) How does this method compare with the one presented in Problem 4.140?

(¢) Use Octave to implement the two methods when & = 3, & = 25, and a = 100.

Write a program to generate the gamma pdf with « > 1 using the rejection method dis-

cussed in Problem 4.142. Use this method to generate m-Erlang random variables with

m = 2,10 and A = 1 and compare the method to the straightforward generation of m ex-

ponential random variables as discussed in Example 4.57.

*Section 4.10: Entropy

4.147.

4.148.

4.149.

4.150.

4.151.

4.152.

Let X be the outcome of the toss of a fair die.

(a) Find the entropy of X.

(b) Suppose you are told that X is even. What is the reduction in entropy?

A biased coin is tossed three times.

(a) Find the entropy of the outcome if the sequence of heads and tails is noted.

(b) Find the entropy of the outcome if the number of heads is noted.

(¢) Explain the difference between the entropies in parts a and b.

Let X be the number of tails until the first heads in a sequence of tosses of a biased coin.
(a) Find the entropy of X given that X = k.

(b) Find the entropy of X given that X = k.

One of two coins is selected at random: Coin A has P[heads] = 1/10 and coin B has
Plheads] = 9/10.

(a) Suppose the coin is tossed once. Find the entropy of the outcome.

(b) Suppose the coin is tossed twice and the sequence of heads and tails is observed.
Find the entropy of the outcome.

Suppose that the randomly selected coin in Problem 4.150 is tossed until the first occur-
rence of heads. Suppose that heads occurs in the kth toss. Find the entropy regarding the
identity of the coin.

A communication channel accepts input / from the set {0, 1,2, 3,4, 5, 6}. The channel
outputis X = I + N mod 7, where N is equally likely to be +1 or —1.

(a) Find the entropy of 7 if all inputs are equiprobable.
(b) Find the entropy of 7 given that X = 4.
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4.153.

4.154.

4.155.

4.156.

4.157.

4.158.

4.159.

4.160.

4.161.

4.162.

4.163.

4.164.
4.165.

4.166.

One Random Variable

Let X be a discrete random variable with entropy Hy.

(a) Find the entropyof Y = 2.X.

(b) Find the entropy of any invertible transformation of X.

Let (X, Y) be the pair of outcomes from two independent tosses of a die.

(a) Find the entropy of X.

(b) Find the entropy of the pair (X, Y).

(¢) Find the entropy in n independent tosses of a die. Explain why entropy is additive in
this case.

Let X be the outcome of the toss of a die, and let Y be a randomly selected integer less

than or equal to X.

(a) Find the entropy of Y.

(b) Find the entropy of the pair (X, Y) and denote it by H(X, Y).

(¢) Find the entropy of Y given X = k and denote it by g(k) = H(Y | X = k). Find
E[g(X)] = E[H(Y|X)].

(d) Show that H(X,Y) = Hy + E[H(Y | X)]. Explain the meaning of this equation.

Let X take on values from {1,2,..., K}. Suppose that P[ X = K] = p, and let Hy be the

entropy of X given that X is not equal to K. Show that Hy = —plnp — (1 — p)

In(1 = p) + (1 — p)Hy.

Let X be a uniform random variable in Example 4.62. Find and plot the entropy of Q as a

function of the variance of the error X — Q(X). Hint: Express the variance of the error
in terms of d and substitute into the expression for the entropy of Q.

A communication channel accepts as input either 000 or 111. The channel transmits each
binary input correctly with probability 1 — p and erroneously with probability p. Find
the entropy of the input given that the output is 000; given that the output is 010.

Let X be a uniform random variable in the interval [ —a, a]. Suppose we are told that the
X is positive. Use the approach in Example 4.62 to find the reduction in entropy. Show
that this is equal to the difference of the differential entropy of X and the differential en-
tropy of X given {X > 0}.

Let X be uniform in [a, ], and let Y = 2X. Compare the differential entropies of X and
Y. How does this result differ from the result in Problem 4.153?

Find the pmf for the random variable X for which the sequence of questions in Fig. 4.26(a)
is optimum.

Let the random variable X have Sy = {1,2,3,4,5,6} and pmf (3/8, 3/8, 1/8, 1/16, 1/32,
1/32). Find the entropy of X. What is the best code you can find for X?

Seven cards are drawn from a deck of 52 distinct cards. How many bits are required to
represent all possible outcomes?

Find the optimum encoding for the geometric random variable with p = 1/2.

An urn experiment has 10 equiprobable distinct outcomes. Find the performance of the
best tree code for encoding (a) a single outcome of the experiment; (b) a sequence of n
outcomes of the experiment.

A binary information source produces n outputs. Suppose we are told that there are k 1’s
in these n outputs.

(a) What is the best code to indicate which pattern of k 1’s and n — k 0’s occurred?

(b) How many bits are required to specify the value of k using a code with a fixed num-
ber of bits?
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The random variable X takes on values from the set {1, 2, 3, 4}. Find the maximum en-
tropy pmf for X given that E[ X ]| = 2.

The random variable X is nonnegative. Find the maximum entropy pdf for X given that
E[X] = 10.
Find the maximum entropy pdf of X given that E[ X?] = c.
Suppose we are given two parameters of the random variable X, E[g(X)] = ¢; and
E[g(X)] = ¢
(a) Show that the maximum entropy pdf for X has the form
fx(x) = Ce M81(%) = 2a82(x)
(b) Find the entropy of X.
Find the maximum entropy pdf of X given that E[X] = m and VAR[X] = ¢,

Problems Requiring Cumulative Knowledge

4.172.

4.173.

4.174.

4.175.

Three types of customers arrive at a service station. The time required to service type 1
customers is an exponential random variable with mean 2. Type 2 customers have a Pare-
to distribution with @« = 3 and x,, = 1. Type 3 customers require a constant service time
of 2 seconds. Suppose that the proportion of type 1,2, and 3 customers is 1/2, 1/8, and 3/8,
respectively. Find the probability that an arbitrary customer requires more than 15 sec-
onds of service time. Compare the above probability to the bound provided by the
Markov inequality.

The lifetime X of a light bulb is a random variable with
P[X >t]=2/2 +t)fort > 0.

Suppose three new light bulbs are installed at time ¢t = 0. At time ¢ = 1 all three light

bulbs are still working. Find the probability that at least one light bulb is still working at

timet = 9.

The random variable X is uniformly distributed in the interval [0, a]. Suppose a is un-

known, so we estimate a by the maximum value observed in # independent repetitions of

the experiment; that is, we estimate a by Y = max{X{, X5,..., X,,}.

(a) Find P[Y = y].

(b) Find the mean and variance of Y, and explain why Y is a good estimate for « when N
is large.

The sample X of a signal is a Gaussian random variable with m = 0 and o> = 1. Suppose

that X is quantized by a nonuniform quantizer consisting of four intervals:

(=00, —a], (—a,0], (0, a], and (a, o).

(a) Find the value of a so that X is equally likely to fall in each of the four intervals.

(b) Find the representation point x; = g(X) for X in (0, a] that minimizes the mean-
squared error, that is,

/ (x — x1)? fx(x) dx is minimized.
0

Hint: Differentiate the above expression with respect to x;. Find the representation
points for the other intervals.

(¢) Evaluate the mean-squared error of the quantizer E[(X — ¢q(X)?].
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4.176. The output Y of a binary communication system is a unit-variance Gaussian random with
mean zero when the input is “0” and mean one when the input is “one”. Assume the input
is 1 with probability p.
(a) Find Plinputis 1|y <Y < y + h]and P[inputisO0|y <Y <y + h].
(b) The receiver uses the following decision rule:
If Plinputis 1|y <Y < y + h] > P[inputis 0|y < Y < y + h], decide input
was 1; otherwise, decide input was 0.
Show that this decision rule leads to the following threshold rule:
If Y > T, decide input was 1; otherwise, decide input was 0.
(c) What is the probability of error for the above decision rule?



Pairs of Random
Variables

CHAPTER

5.1

Many random experiments involve several random variables. In some experiments a
number of different quantities are measured. For example, the voltage signals at sever-
al points in a circuit at some specific time may be of interest. Other experiments in-
volve the repeated measurement of a certain quantity such as the repeated
measurement (“sampling”) of the amplitude of an audio or video signal that varies
with time. In Chapter 4 we developed techniques for calculating the probabilities of
events involving a single random variable in isolation. In this chapter, we extend the
concepts already introduced to two random variables:

e We use the joint pmf, cdf, and pdf to calculate the probabilities of events that in-
volve the joint behavior of two random variables;

® We use expected value to define joint moments that summarize the behavior of
two random variables;

e We determine when two random variables are independent, and we quantify
their degree of “correlation” when they are not independent;

* We obtain conditional probabilities involving a pair of random variables.

In a sense we have already covered all the fundamental concepts of probability
and random variables, and we are “simply” elaborating on the case of two or more ran-
dom variables. Nevertheless, there are significant analytical techniques that need to be
learned, e.g., double summations of pmf’s and double integration of pdf’s, so we first
discuss the case of two random variables in detail because we can draw on our geomet-
ric intuition. Chapter 6 considers the general case of vector random variables. Through-
out these two chapters you should be mindful of the forest (fundamental concepts) and
the trees (specific techniques)!

TWO RANDOM VARIABLES

The notion of a random variable as a mapping is easily generalized to the case where
two quantities are of interest. Consider a random experiment with sample space S and
event class F. We are interested in a function that assigns a pair of real numbers
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FIGURE 5.1

(a) A function assigns a pair of real numbers to each outcome
in S. (b) Equivalent events for two random variables.

X({) = (X(£),Y({)) to each outcome ¢ in S. Basically we are dealing with a vector
function that maps S into R, the real plane, as shown in Fig. 5.1(a). We are ultimately in-
terested in events involving the pair (X, Y).

Example 5.1

Let a random experiment consist of selecting a student’s name from an urn. Let { denote the
outcome of this experiment, and define the following two functions:

H({) = height of student { in centimeters

W({) = weight of student ¢ in kilograms

(H(Z), W(Z)) assigns a pair of numbers to each { in S.

We are interested in events involving the pair (H, W). For example, the event
B = {H = 183, W = 82} represents students with height less that 183 cm (6 feet) and weight less
than 82 kg (180 1b).

Example 5.2

A Web page provides the user with a choice either to watch a brief ad or to move directly to the
requested page. Let { be the patterns of user arrivals in 7 seconds, e.g., number of arrivals, and
listing of arrival times and types. Let N;({) be the number of times the Web page is directly re-
quested and let N,({) be the number of times that the ad is chosen. (N;({), N,(¢)) assigns a pair
of nonnegative integers to each ¢ in S. Suppose that a type 1 request brings 0.001¢ in revenue
and a type 2 request brings in 1¢. Find the event “revenue in T seconds is less than $100.”

The total revenue in T seconds is 0.001 N; + 1N,, and so the event of interest is
B = {0.001N; + 1N, < 10,000}.
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Example 5.3

Let the outcome ¢ in a random experiment be the length of a randomly selected message. Sup-
pose that messages are broken into packets of maximum length M bytes. Let O be the number of
full packets in a message and let R be the number of bytes left over. (Q(¢), R({)) assigns a pair
of numbers to each ¢ in S. O takes on values in the range 0, 1, 2,. .., and R takes on values in the
range 0,1,..., M — 1. An event of interest may be B = {R < M/2}, “the last packet is less than
half full.”

Example 5.4

Let the outcome of a random experiment result in a pair { = ({1, {3) that results from two in-
dependent spins of a wheel. Each spin of the wheel results in a number in the interval (0, 27].
Define the pair of numbers (X, Y) in the plane as follows:

12 12
X() = (21n2;> cos £, Y() = <21n2;> sin ;.

1 1

The vector function (X ({),Y({)) assigns a pair of numbers in the plane to each { in S. The
square root term corresponds to a radius and to ¢, an angle.

We will see that (X, Y) models the noise voltages encountered in digital communication
systems. An event of interest here may be B = {X? + Y? < r?}, “total noise power is less
than r=.”

The events involving a pair of random variables (X, Y) are specified by conditions
that we are interested in and can be represented by regions in the plane. Figure 5.2
shows three examples of events:

A={X+Y =10}
B = {min(X,Y) = 5}
C = {X?+Y? = 100}.

Event A divides the plane into two regions according to a straight line. Note that the
event in Example 5.2 is of this type. Event C identifies a disk centered at the origin and

10, 10)
0, 10) G.3)
(10, 0)

X

(10, 0)

FIGURE 5.2
Examples of two-dimensional events.
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it corresponds to the event in Example 5.4. Event B is found by noting that
{min(X,Y) =5} = {X =5} U{Y = 5}, that is, the minimum of X and Y is less
than or equal to 5 if either X and/or Y is less than or equal to 5.

To determine the probability that the pair X = (X, Y) is in some region B in the
plane, we proceed as in Chapter 3 to find the equivalent event for B in the underlying
sample space S:

A =X"(B) = {¢:(X(0), Y({)) in B}. (5.1a)

The relationship between A = X !(B) and B is shown in Fig. 5.1(b). If A is in , then
it has a probability assigned to it, and we obtain:

PLX in B] = P[A] = P[{&: (X(£), Y(¢)) in B}]. (5.1b)

The approach is identical to what we followed in the case of a single random variable.
The only difference is that we are considering the joint behavior of X and Y that is in-
duced by the underlying random experiment.

A scattergram can be used to deduce the joint behavior of two random variables.
A scattergram plot simply places a dot at every observation pair (x, y) that results from
performing the experiment that generates (X, Y). Figure 5.3 shows the scattergram for
200 observations of four different pairs of random variables. The pairs in Fig. 5.3(a) ap-
pear to be uniformly distributed in the unit square. The pairs in Fig. 5.3(b) are clearly
confined to a disc of unit radius and appear to be more concentrated near the origin.
The pairs in Fig. 5.3(c) are concentrated near the origin, and appear to have circular
symmetry, but are not bounded to an enclosed region. The pairs in Fig. 5.3(d) again are
concentrated near the origin and appear to have a clear linear relationship of some
sort, that is, larger values of x tend to have linearly proportional increasing values of y.
We later introduce various functions and moments to characterize the behavior of
pairs of random variables illustrated in these examples.

The joint probability mass function, joint cumulative distribution function, and
joint probability density function provide approaches to specifying the probability law
that governs the behavior of the pair (X, Y). Our general approach is as follows. We
first focus on events that correspond to rectangles in the plane:

where Ay is a one-dimensional event (i.e., subset of the real line). We say that these
events are of product form. The event B occurs when both {X in A} and {Y in A,}
occur jointly. Figure 5.4 shows some two-dimensional product-form events. We use Eq.
(5.1b) to find the probability of product-form events:

P[B] = P[{XinA;}N{YinA,}] 2 P[XinA;,YinA,). (5.3)

By defining A appropriately we then obtain the joint pmf, joint cdf, and joint pdf of
(X, Y).

PAIRS OF DISCRETE RANDOM VARIABLES

Let the vector random variable X = (X, Y) assume values from some countable set
Sxy = {(xj,%),j = 1,2,...,k = 1,2,... }. The joint probability mass function of X
specifies the probabilities of the event {X = x} N {Y = y}:
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FIGURE 5.4

Some two-dimensional product-form events.

1 3 03 > P > . 1.5
* . *
.0 . MRS - ‘. - .00 1.0 -
0.8 1 .0. . ® ey . s ’ *
e (R4 . *
¢ . 3 e . C % 1% . *
- - * . *® *®
* . . 0.5 . . .
06 e * * . e 4 e *% "”000",00000 ce
X Ps ° S o e%e o LR 2 ! w $
* LN * o * S o * - " So .0.
y * & o ) o e ARG y o - :
RS ¢ Yoo o, %e’e SR 9% %
| Y o . ° S8 ecutty e
0.4 s e ® . . & o O ° .
o * | - te 05— % s & ¢ 000000
2%+ o * 3
b MR o* 3R 4 « * ¢ A 0‘
*® *
0.2 ® 00 *%e | o S . 71 . o
* o o
., 0: ot e * . &
% 8 S o . -
0 e - * e -15
0 0.2 0.4 0.6 0.8 -1.5 -1 0.5 0 0.5
X X
(@) (b)
4 4
3 * * 3
*
* * *
2 ’500 * . 2 «
$ * e * *
TXS -
1 23l aRSS 1 A28
* e S %, Roo 2*
e 0.‘ O' *' 0} LI 4 RN
y o PR SO P IV N AR U %
- =N
o *% aoe o8 o e {) N
L ve "00 LNORR A 4 4’
-1 * * . Q:‘ 0‘ :0 ¢ -1 % j’.?'
. P °*
2 & * - Py 3 o0
2 L 3 LANPN -2 g *
* * *
*
-3 -3
4 4
4 3 2 1 0 1 2 3 4 -+ 3 =2 10 ! 2
x X
(© (d)
FIGURE 5.3
A scattergram for 200 observations of four different pairs of random variables.
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pxy(x,y) = P[{X = x} N{Y = y}]
P[X =x,Y =y] for(x,y)eR% (5.4a)

[le

The values of the pmf on the set Sy y provide the essential information:

Pxy(xj, ) = P{X = x;} N{Y = y}]
P[X = Xj,Y = yk] (Xj,yk)ESny. (54b)

[le

There are several ways of showing the pmf graphically: (1) For small sample
spaces we can present the pmf in the form of a table as shown in Fig. 5.5(a). (2) We can
present the pmf using arrows of height py y(x;, y) placed at the points {(x;, y;)} in
the plane, as shown in Fig. 5.5(b), but this can be difficult to draw. (3) We can place dots
at the points {(x;, y¢)} and label these with the corresponding pmf value as shown in
Fig. 5.5(c).

The probability of any event B is the sum of the pmf over the outcomes in B:

P[XinB] = > > pxy(xj, ) (5.5)
(xj,yx) in B

Frequently it is helpful to sketch the region that contains the points in B as shown, for
example, in Fig. 5.6. When the event B is the entire sample space Sy y, we have:

EPX,Y(xj’ ye) = 1. (5.6)
j=1k=1

Example 5.5

A packet switch has two input ports and two output ports. At a given time slot a packet arrives at
each input port with probability 1/2, and is equally likely to be destined to output port 1 or 2. Let
X and Y be the number of packets destined for output ports 1 and 2, respectively. Find the pmf
of X and Y, and show the pmf graphically.

The outcome [; for an input port j can take the following values: “n”, no packet arrival
(with probability 1/2);“al”, packet arrival destined for output port 1 (with probability 1/4); “a2”,
packet arrival destined for output port 2 (with probability 1/4). The underlying sample space S
consists of the pair of input outcomes { = ([;, I,). The mapping for (X, Y) is shown in the table
below:

14 (n,n) | (n,al) | (n,a2) | (al,n) | (al,al) (al,a2) (a2,n) | (a2,al) (a2,a2)

X,Y|(0,0) | (1,0) 0,1) (1,0) (2,0) (1,1) 0,1) 1,1) 0,2)

The pmf of (X, Y) is then:
11 1
px(0.0) = Pl = (nm)] = 11 = %

pxr(0.1) = PIEe{(n,a2), (2. mH) = 25 =
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FIGURE 5.5

Graphical representations of pmf’s: (a) in table format; (b) use of arrows to show height;
(c) labeled dots corresponding to pmf value.
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FIGURE 5.6
Showing the pmf via a sketch containing the points in B.

Pxy(1,0) = PlLe {(na1). (al.m)}] = 7.

pxy(1,1) = P[{e{(al,a2), (a2,al)}] = %,

prr(0.2) = P[ = (a2.22)] = -,
Py(2,0) = PI¢ = (al,al)] = 1.

Figure 5.5(a) shows the pmf in tabular form where the number of rows and columns ac-
commodate the range of X and Y respectively. Each entry in the table gives the pmf value for the
corresponding x and y. Figure 5.5(b) shows the pmf using arrows in the plane. An arrow of height
pxy(j, k) is placed at each of the points in Syy = {(0,0), (0,1), (1,0), (1,1), (0,2), (2,0)}.
Figure 5.5(c) shows the pmf using labeled dots in the plane. A dot with label py y(j, k) is placed
at each of the pointsin Sy y.

Example 5.6

A random experiment consists of tossing two “loaded” dice and noting the pair of numbers
(X, Y) facing up. The joint pmf py y(j, k) forj =1,...,6 and k = 1,..., 6 is given by the two-
dimensional table shown in Fig. 5.6. The (j, k) entry in the table contains the value py y(j, k).
Find the P[min(X,Y) = 3].

Figure 5.6 shows the region that corresponds to the set {min(x, y) = 3}. The probability
of this event is given by:
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Plmin(X,Y) = 3] = pxy(6,3) + pxy(5,3) + pxy(4.3)
+ pxy(3,3) + pxy(3,4) + pxy(3,5) + pxy(3,6)

<1) 2 8
=6 )+ =—.
2) 2 &

Marginal Probability Mass Function

The joint pmf of X provides the information about the joint behavior of X and Y. We
are also interested in the probabilities of events involving each of the random variables
in isolation. These can be found in terms of the marginal probability mass functions:

px(xj) = P[X = xj]
= P[X = x;,Y = anything]
P[{X = xjandY = y]}U{X = xjandY = yz}U]

];PX,Y(XJ', Vi) (5.7a)

and similarly,

py(y) = PIY = y]

= E;pX,Y(xj7 Vi)- (5.7b)
=

The marginal pmf’s satisfy all the properties of one-dimensional pmf’s, and they
supply the information required to compute the probability of events involving the
corresponding random variable.

The probability py y(x;, yx) can be interpreted as the long-term relative frequency
of the joint event {X = X;} N {Y = Y,} in a sequence of repetitions of the random
experiment. Equation (5.7a) corresponds to the fact that the relative frequency of the
event { X = X;} is found by adding the relative frequencies of all outcome pairs in which
X appears. In general, it is impossible to deduce the relative frequencies of pairs of values
X and Y from the relative frequencies of X and Y in isolation. The same is true for pmf’s:
In general, knowledge of the marginal pmf’s is insufficient to specify the joint pmf.

Example 5.7

Find the marginal pmf for the output ports (X, Y) in Example 5.2.
Figure 5.5(a) shows that the marginal pmf is found by adding entries along a row or column
in the table. For example, by adding along the x = 1 column we have:

1 1 3
px(1) = P[X = 1] = pxy(1,0) + pxy(1,1) = 4 + 8 8
Similarly, by adding along the y = 0 row:
1 1 1 9
py(0) = P[Y = 0] = pxy(0,0) + pxy(1,0) + pxy(2,0) = 4 + 4 + 16 16

Figure 5.5(b) shows the marginal pmf using arrows on the real line.
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Example 5.8

Find the marginal pmf’s in the loaded dice experiment in Example 5.2.
The probability that X = 1 is found by summing over the first row:

2 1 1 1
=1]=—4—++-——=—
PLX =1] 42 42 42 6
Similarly, we find that P[X = j] = 1/6 for j = 2,..., 6. The probability that Y = k is found by
summing over the kth column. We then find that P[Y = k] = 1/6 for k = 1,2,..., 6. Thus each
die, in isolation, appears to be fair in the sense that each face is equiprobable. If we knew only
these marginal pmf’s we would have no idea that the dice are loaded.

Example 5.9

In Example 5.3, let the number of bytes N in a message have a geometric distribution with para-
meter 1 — pandrange Sy = {0, 1,2,... }. Find the joint pmf and the marginal pmf’s of Q and R.

If a message has N bytes, then the number of full packets is the quotient Q in the division
of N by M, and the number of remaining bytes is the remainder R. The probability of the pair

{(g, r)} is given by
PIO=q.R=r]=PIN =qM +r]= (1~ p)p™™.
The marginal pmf of Q is

P[Q = q] = P[Nin{gM,gM + 1,....,gM + (M — 1)}]
(

S

= (1 = p)pt™**
k=0
Ml_pM My M
=@ =pp T = ATt g =012

The marginal pmf of Q is geometric with parameter p™. The marginal pmf of R is:
P[R=r]=P[Nin{r,M + r,2M +r,...}]

=>01- p)qu“:%p’ r=01,...,M — 1.
7=0 1-p

R has a truncated geometric pmf. As an exercise, you should verify that all the above marginal
pmf’s add to 1.

THE JOINT CDF OF XAND Y

In Chapter 3 we saw that semi-infinite intervals of the form (—00, x] are a basic build-
ing block from which other one-dimensional events can be built. By defining the cdf
Fx(x) as the probability of (—00, x], we were then able to express the probabilities of
other events in terms of the cdf. In this section we repeat the above development for
two-dimensional random variables.
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y FX,Y(XI,VI) =P X=ux, Y=yl

e, 1)

FIGURE 5.7

The joint cumulative distribution function is defined as
the probability of the semi-infinite rectangle defined by
the point (x1,y1).

A basic building block for events involving two-dimensional random variables is
the semi-infinite rectangle defined by {(x, y): x < x; and y =< y,}, as shown in Fig.5.7.
We also use the more compact notation {x =< x;,y = y;} to refer to this region. The
joint cumulative distribution function of X and Y is defined as the probability of the
event {X = x} N{Y = y }:

Fxy(x1,n) = P[X = x1,Y = y]. (5.8)

In terms of relative frequency, Fy y(x;, y;) represents the long-term proportion
of time in which the outcome of the random experiment yields a point X that falls in
the rectangular region shown in Fig. 5.7. In terms of probability “mass,” Fy y(x1, 1)
represents the amount of mass contained in the rectangular region.

The joint cdf satisfies the following properties.

(i) The joint cdf is a nondecreasing function of x and y:
FX,Y(xl s )’1) = FX,y(xZ, y2) if X1 = X> and N = Y2, (593)
(i) Fyy(x;,—0) =0,  Fyy(=00,y) =0,  Fyy(c0,00) =1 (5.9b)

(iii) We obtain the marginal cumulative distribution functions by removing the
constraint on one of the variables. The marginal cdf’s are the probabilities of
the regions shown in Fig. 5.8:

Fx(x1) = Fxy(x;,00) and Fy(y) = Fxy(00, y1). (5.9¢)
(iv) The joint cdf is continuous from the “north” and from the “east,” that is,
xli_)HaLFx,Y(an’) = Fyy(a,y) and yli_PI}FX,Y(xv)’) = Fxy(x,b). (5.9d)
(v) The probability of the rectangle {x; < x = x,, y; < y =< y,} is given by:
Pxi<X=x,,n<Y=y]=
Fxy(x2,y2) = Fxy(x2, »1) = Fxy(x1, ) + Fxy(x1, y1). (5.9¢)
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M

X1

Fy(x) = PIX=1x,Y <% Fy(y) = PIX <x, Y=<y]

FIGURE 5.8
The marginal cdf’s are the probabilities of these half-planes.

Property (i) follows by noting that the semi-infinite rectangle defined by (xy, y;) is
contained in that defined by (x,, y,) and applying Corollary 7. Properties (ii) to (iv)
are obtained by limiting arguments. For example, the sequence {x =< x;and y =< —n}
is decreasing and approaches the empty set (J, so

Fxy(xy,—0) = li_)ngoFX,Y(xl’ —n) = P[J] = 0.

For property (iii) we take the sequence {x = x;and y =< n} which increases to
{x = xi}, 50

lim Fy y(x1,n) = P[X = x1] = Fx(x1).

n—>00
For property (v) note in Fig. 5.9(a) that B = {x; < x = x5,y = y;} = {X = xp,
Y=y} —{X =x,Y =yn}soP[B] =Plx <X =x,Y=yn]=Fylnn
— Fxy(x1, y1). In Fig. 5.9(b), note that Fx y(xz,y,) = P[A] + P[B] + Fxy(x1, »).
Property (v) follows by solving for P[A] and substituting the expression for P[B].

y y
X1 X2 X1 X2
| | X | | X
() (o, )

N Gy (e, y) Vs bt A
? ’ Aol o (X2, y1)
] (x> yp)

B B
(a) (b)
FIGURE 5.9

The joint cdf can be used to determine the probability of various events.
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FIGURE 5.10

Joint cdf for packet switch example.

Example 5.10

Plot the joint cdf of X and Y from Example 5.6. Find the marginal cdf of X.
To find the cdf of X, we identify the regions in the plane according to which pointsin Sy y
are included in the rectangular region defined by (x, y). For example,

¢ The regions outside the first quadrant do not include any of the points, so Fy y(x, y) = 0.
e Theregion {0 = x < 1,0 = y < 1} contains the point (0,0),so Fy y(x, y) = 1/4.

Figure 5.10 shows the cdf after all possible regions are examined.

We need to consider several cases to find Fy(x). For x < 0, we have Fy(x) = 0. For
0=x <1, we have Fy(x) = Fxy(x,00) =9/16. For 1 = x <2, we have Fy(x) = Fyy
(x, 00) = 15/16. Finally, for x = 1, we have Fy(x) = Fyy(x, o) = 1. Therefore Fy(x) is a
staircase function and X is a discrete random variable with py(0) = 9/16, px(1) = 6/16, and
px(2) = 1/16.

Example 5.11
The joint cdf for the pair of random variables X = (X, Y) is given by

0 x<O0ory<o0

xy 0=x=10=y=1

x 0=x=1ly>1 (5.10)
y O0=y=1x>1

1 x=1ly=1

Fyy(x,y) =

Plot the joint cdf and find the marginal cdf of X.

Figure 5.11 shows a plot of the joint cdf of X and Y. Fy y(x, y) is continuous for all points
in the plane. Fy y(x,y) = 1 for all x = 1 and y = 1, which implies that X and Y each assume
values less than or equal to one.
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Joint cdf for two uniform random variables.

The marginal cdf of X is:
0 x<O0
Fx(x) = Fyy(x,0)=qx 0=x=1
1 x=1

X is uniformly distributed in the unit interval.

Example 5.12

The joint cdf for the vector of random variable X = (X, Y) is given by

(1 _ efax)(l _ e*ﬁ)’) x=0,y=0
F =
xy(x,y) {0 elsewhere.

Find the marginal cdf’s.
The marginal cdf’s are obtained by letting one of the variables approach infinity:

Fy(x) = lim Fyy(x,y) =1—¢* x=0
yﬁOO
Fy(y) = lim FX’y(x, y) =1- C‘_By y = (.

X and Y individually have exponential distributions with parameters « and S, respectively.
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Example 5.13

Find the probability of the events A = {X = 1,Y =1}, B={X > x,Y > y}, where x > 0
andy > 0,and D = {1 < X =2,2 <Y = 5} in Example 5.12.
The probability of A is given directly by the cdf:

P[A] = P[X = 1,Y = 1] = Fyy(1,1) = (1 — e*)(1 — eP).
The probability of B requires more work. By DeMorgan’s rule:
B = ({X>x}N{Y >y} ) ={X =x}U{Y =y}
Corollary 5 in Section 2.2 gives the probability of the union of two events:
P[B°l=P[X =x]+PlY =y]- P X =x,Y =y]
=(l—-e™+(1—-eP)—(1-e*)(1-eP)
=1— e %P,
Finally we obtain the probability of B:
P[B]=1— P[B] = e e ™.

You should sketch the region B on the plane and identify the events involved in the calculation
of the probability of B*.
The probability of event D is found by applying property (vi) of the joint cdf:

Pll<X =22<Y =75]
= Fxy(2,5) = Fxy(2,2) = Fxy(1,5) + Fxy(1,2)
=(1—-e2)(1 —eF) - (1 -e2(1 — )
-1 =-e*(1 - 6753) + (1 —e*)(1 - 672‘3).

Random Variables That Differ in Type

In some problems it is necessary to work with joint random variables that differ in
type, that is, one is discrete and the other is continuous. Usually it is rather clumsy to
work with the joint cdf, and so it is preferable to work with either P[X = k,Y = y]or
P[X = k,y; <Y = y]. These probabilities are sufficient to compute the joint cdf
should we have to.

Example 5.14 Communication Channel with Discrete Input and Continuous Output

The input X to a communication channel is +1 volt or —1 volt with equal probability. The output
Y of the channel is the input plus a noise voltage N that is uniformly distributed in the interval
from —2 volts to +2 volts. Find P[X = +1,Y = 0].

This problem lends itself to the use of conditional probability:

P[X = +1,Y = y] = P[Y = y| X = +1]P[X = +1],
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where P[ X = +1] = 1/2. When the input X = 1, the output Y is uniformly distributed in the
interval [ —1, 3]; therefore

y+1

PlY =y|lX =+1]= for—1 =y = 3.

Thus P[X = +1,Y = 0] = P[Y = 0| X = +1]P[X = +1] = (12)(1/4) = 1/8.

THE JOINT PDF OF TWO CONTINUOUS RANDOM VARIABLES

The joint cdf allows us to compute the probability of events that correspond to “rectangu-
lar” shapes in the plane. To compute the probability of events corresponding to regions
other than rectangles, we note that any reasonable shape (i.e., disk, polygon, or half-plane)
can be approximated by the union of disjoint infinitesimal rectangles, B; ;. For example,
Fig. 5.12 shows how the events A = {X + Y =1} and B = {X?> + X?> =< 1} are
approximated by rectangles of infinitesimal width. The probability of such events can
therefore be approximated by the sum of the probabilities of infinitesimal rectangles, and
if the cdf is sufficiently smooth, the probability of each rectangle can be expressed in
terms of a density function:

P[B] ~ ;;P[Bj,k] = (22 xy(xj, yi) AxAy.

Xj, yi)eB

As Ax and Ay approach zero, the above equation becomes an integral of a probability
density function over the region B.

We say that the random variables X and Y are jointly continuous if the probabil-
ities of events involving (X, Y) can be expressed as an integral of a probability density
function. In other words, there is a nonnegative function fyx y(x, y), called the joint

y
y
~ _
>> 44 >>
N L
™
> —
h\ ||
S -
X X
B; [
Bjy ]
|| | LF
FIGURE 5.12

Some two-dimensional non-product form events.
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FIGURE 5.13
The probability of A is the integral of fy y(x, y) over the region
defined by A.

probability density function, that is defined on the real plane such that for every event
B, a subset of the plane,

P[Xin B] = A/fxy(x',y’) dx' dy’, (5.11)

as shown in Fig. 5.13. Note the similarity to Eq. (5.5) for discrete random variables.
When B is the entire plane, the integral must equal one:

1:/ / fxy(x',y')dx"dy'. (5.12)

Equations (5.11) and (5.12) again suggest that the probability “mass” of an event is
found by integrating the density of probability mass over the region corresponding to
the event.

The joint cdf can be obtained in terms of the joint pdf of jointly continuous ran-
dom variables by integrating over the semi-infinite rectangle defined by (x, y):

x oy
Fyy(x,y) = / / Fey(xsy') dx' dy. (5.13)

It then follows that if X and Y are jointly continuous random variables, then the pdf
can be obtained from the cdf by differentiation:

#Fyy(x,y)

Ixy(x,y) = T axay (5.14)
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Note that if X and Y are not jointly continuous, then it is possible that the above partial
derivative does not exist. In particular, if the Fx y(x, y) is discontinuous or if its partial de-
rivatives are discontinuous, then the joint pdf as defined by Eq. (5.14) will not exist.

The probability of a rectangular region is obtained by letting B = {(x, y):a; < x =
biand a, < y = by} in Eq.(5.11):

b b
Play, < X =b,a <Y = b)) = / fxy(x',y")dx"dy'. (5.15)
a Jay

It then follows that the probability of an infinitesimal rectangle is the product of the
pdf and the area of the rectangle:

x+dx py+dy
Plx<X=x+dx,y<Y=y+dy]= / / Fxy(x',y")dx" dy'
x y

=~ fxy(x,y)dxdy. (5.16)

Equation (5.16) can be interpreted as stating that the joint pdf specifies the probability
of the product-form events

{x<X=x+dx}N{y<Y =y+dy}

The marginal pdf’s fy(x) and fy(y) are obtained by taking the derivative of the
corresponding marginal cdf’s, Fy(x) = Fy y(x,00) and Fy(y) = Fy y(00, y). Thus

el =4 [ m{ [ urteor) dy'} ax

= / fxy(xy')dy'. (5.17a)
Similarly,

o) = [ et ax (5:170)

Thus the marginal pdf’s are obtained by integrating out the variables that are not of
interest.

Note that fy(x)dx = P[x < X = x + dx,Y < o0] is the probability of the
infinitesimal strip shown in Fig. 5.14(a). This reminds us of the interpretation of
the marginal pmf’s as the probabilities of columns and rows in the case of discrete
random variables. It is not surprising then that Eqgs. (5.17a) and (5.17b) for the
marginal pdf’s and Egs. (5.7a) and (5.7b) for the marginal pmf’s are identical
except for the fact that one contains an integral and the other a summation. As in
the case of pmf’s, we note that, in general, the joint pdf cannot be obtained from
the marginal pdf’s.
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Xt x + dx

fxXdx=Plx <Xsx+dx, Y <] fyOdy =PX <o,y <Y<y+ dy]
(@) (b)

FIGURE 5.14
Interpretation of marginal pdf’s.

Example 5.15 Jointly Uniform Random Variables

A randomly selected point (X, Y) in the unit square has the uniform joint pdf given by

1 0=x=land0=y=1
fx,y(xa)’):{o

elsewhere.

The scattergram in Fig. 5.3(a) corresponds to this pair of random variables. Find the joint cdf of
XandY.

The cdf is found by evaluating Eq. (5.13). You must be careful with the limits of the integral:
The limits should define the region consisting of the intersection of the semi-infinite rectangle
defined by (x, y) and the region where the pdf is nonzero. There are five cases in this problem, cor-
responding to the five regions shown in Fig. 5.15.

1. Ifx < Oory <0, the pdfis zero and Eq. (5.14) implies
Fxy(x,y) = 0.

2. If (x, y) is inside the unit interval,

X py
Fxy(x,y) = Z [ 1dx' dy' = xy.

3. fO=x=1landy>1,

x prl
Fxy(x,y) = A Aldx’ dy' = x.

4. Similarly,if x > land0 =y = 1,

Fyy(x,y) =y.
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FIGURE 5.15

Regions that need to be considered separately in computing cdf
in Example 5.15.

5. Finally,ifx > landy > 1,

1,
Fyy(x,y) = Aﬁldx’dy’ =1

We see that this is the joint cdf of Example 5.11.

Example 5.16
Find the normalization constant ¢ and the marginal pdf’s for the following joint pdf:

ce¥e? 0=y=x<o0

fxy(x,y) = {

0 elsewhere.

The pdf is nonzero in the shaded region shown in Fig. 5.16(a). The constant c is found from
the normalization condition specified by Eq. (5.12):

1= / / ce e Vdydx = / ce* (1 —e¥)dx = <
o Jo 0 2

Therefore ¢ = 2. The marginal pdf’s are found by evaluating Egs. (5.17a) and (5.17b):
[ee] X
fr(x) = / Frr(xy)dy = / 2¢ eV dy =2 (1~ ¢¥)  0=x< o0
0 0
and

() = / Fry(x,y)dx = / 2eedx =20 0=y < oo
0 y

You should fill in the steps in the evaluation of the integrals as well as verify that the marginal
pdf’s integrate to 1.
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FIGURE 5.16
The random variables X and Y in Examples 5.16 and 5.17 have a pdf that is nonzero only in the shaded
region shown in part (a).

Example 5.17

Find P[X + Y = 1]in Example 5.16.

Figure 5.16(b) shows the intersection of the event { X + Y = 1} and the region where the
pdf is nonzero. We obtain the probability of the event by “adding” (actually integrating) infini-
tesimal rectangles of width dy as indicated in the figure:

5 1oy 5
PIX+Y=1]= / / 2e eV dxdy = / 2e7V[e — eI dy
0 y 0

=1-2¢"

Example 5.18 Jointly Gaussian Random Variables

The joint pdf of X and Y, shown in Fig. 5.17, is

1 e~ (¥ =2pxy+y")2(1-p%) —00 < x,y < 00, (5.18)

fxy(x,y) = m

We say that X and Y are jointly Gaussian.! Find the marginal pdf’s.
The marginal pdf of X is found by integrating fx y(x, y) over y:

) —n2 o0
o FR2(1=p)

_277\/1—p2 —00

IThis is an important special case of jointly Gaussian random variables. The general case is discussed in Section 5.9.

(¥ —=2pxy)2(1-p%) dy.

Ix(x)
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FIGURE 5.17
Joint pdf of two jointly Gaussian random variables.

We complete the square of the argument of the exponent by adding and subtracting p®x?, that is,
y? = 2pxy + p*x? — p*x? = (y — px)?* — p?x% Therefore

e—xz/z(l—pz) 00
27V1 — p? S
B e—xz/Z Ooe—(y—px)2/2(1—p2)
V2 J-o V2m(1 — p?)

_ 2
ex/2

\/277’

where we have noted that the last integral equals one since its integrand is a Gaussian pdf with
mean px and variance 1 — p? The marginal pdf of X is therefore a one-dimensional Gaussian
pdf with mean 0 and variance 1. From the symmetry of fx y(x, y) in x and y, we conclude that the
marginal pdf of Y is also a one-dimensional Gaussian pdf with zero mean and unit variance.

e L=px)’=p*]2(1=p%) dy

fx(x)

dy

INDEPENDENCE OF TWO RANDOM VARIABLES

X and Y are independent random variables if any event A, defined in terms of X is in-
dependent of any event A, defined in terms of Y; that is,

P[Xin A,,Y in A,)] = P[X in A{]P[Y in A,]. (5.19)

In this section we present a simple set of conditions for determining when X and Y are
independent.

Suppose that X and Y are a pair of discrete random variables, and suppose we
are interested in the probability of the event A = A; M A,, where A, involves only
X and A, involves only Y. In particular, if X and Y are independent, then A; and
A, are independent events. If we let Ay = {X = x;} and A, = {Y = y}, then the
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independence of X and Y implies that
PX,Y(X;,)’k) = P[X = xj,Y = W]
= P[X = x;]P[Y = y]
= px(x;)py(¥k) for all x; and y;. (5.20)

Therefore, if X and Y are independent discrete random variables, then the joint pmf is
equal to the product of the marginal pmf’s.

Now suppose that we don’t know if X and Y are independent, but we do know that
the pmf satisfies Eq. (5.20). Let A = A; N A, be a product-form event as above, then

P[A] = 2 E PX,Y(xj,)’k)

Xjin Ay in A,

2 2 Px(xj)PY()’k)

X;in Ay y,in A,

= > px(x) X py()

X;jin A; yiin Ay

P[A{]P[A,], (5.21)

which implies that A; and A, are independent events. Therefore, if the joint pmf of X
and Y equals the product of the marginal pmf’s, then X and Y are independent. We have
just proved that the statement “X and Y are independent” is equivalent to the state-
ment “the joint pmf is equal to the product of the marginal pmf’s.” In mathematical
language, we say, the “discrete random variables X and Y are independent if and only if
the joint pmf is equal to the product of the marginal pmf’s for all x;, y.”

Example 5.19

Is the pmf in Example 5.6 consistent with an experiment that consists of the independent tosses
of two fair dice?

The probability of each face in a toss of a fair die is 1/6. If two fair dice are tossed and if the
tosses are independent, then the probability of any pair of faces, say j and %, is:

P[X=j,Y=k]=P[X=j]P[Y=k]=31—6.

Thus all possible pairs of outcomes should be equiprobable. This is not the case for the joint pmf
given in Example 5.6. Therefore the tosses in Example 5.6 are not independent.

Example 5.20
Are Q and R in Example 5.9 independent? From Example 5.9 we have

(1-p)
1- pMp
Mq+r

r

P[Q =q]P[R=r] = (1 - p")(pM)*

=(1-pp
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=P[0=¢q,R=r] forallg = 0,1,...
r=0,....M — 1.

Therefore Q and R are independent.

In general, it can be shown that the random variables X and Y are independent if
and only if their joint cdf is equal to the product of its marginal cdf’s:

Fxy(x,y) = Fx(x)Fy(y) for all x and y. (5.22)

Similarly, if X and Y are jointly continuous, then X and Y are independent if and
only if their joint pdf is equal to the product of the marginal pdf’s:
fxxy(x,y) = fx(x)fy(y)  forallxand y. (5.23)

Equation (5.23) is obtained from Eq. (5.22) by differentiation. Conversely, Eq. (5.22) is
obtained from Eq. (5.23) by integration.

Example 5.21

Are the random variables X and Y in Example 5.16 independent?

Note that fy(x) and fy(y) are nonzero for all x > 0 and all y > 0. Hence fx(x)fy(y) is
nonzero in the entire positive quadrant. However fx y(x, y) is nonzero only in the region y < x
inside the positive quadrant. Hence Eq. (5.23) does not hold for all x, y and the random variables
are not independent. You should note that in this example the joint pdf appears to factor, but
nevertheless it is not the product of the marginal pdf’s.

Example 5.22

Are the random variables X and Y in Example 5.18 independent? The product of the marginal
pdf’s of X and Y in Example 5.18 is

Ix(X)fy(y) = %37(x2+y2)/2 —00 < x,y < 00,
T

By comparing to Eq. (5.18) we see that the product of the marginals is equal to the joint pdf if
and only if p = 0. Therefore the jointly Gaussian random variables X and Y are independent if
and only if p = 0. We see in a later section that p is the correlation coefficient between X and Y.

Example 5.23

Are the random variables X and Y independent in Example 5.12? If we multiply the marginal
cdf’s found in Example 5.12 we find

Fx(x)Fy(y) = (1 — e®)(1 — e ) = Fyy(x,y) for all x and y.
Therefore Eq. (5.22) is satisfied so X and Y are independent.

If X and Y are independent random variables, then the random variables defined
by any pair of functions g(X) and A(Y) are also independent. To show this, consider the
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one-dimensional events A and B. Let A’ be the set of all values of x such that if x is in
A’ then g(x) is in A, and let B’ be the set of all values of y such that if y is in B’ then
h(y)isin B. (In Chapter 3 we called A’ and B’ the equivalent events of A and B.) Then

Plg(X)in A,h(Y)inB] = P[Xin A", Y in B']
— P[X in A’']P[Y in B']
= P[g(X)in A]P[h(Y) in B]. (5.24)

The first and third equalities follow from the fact that A and A’ and B and B’ are
equivalent events. The second equality follows from the independence of X and Y.
Thus g(X) and A(Y) are independent random variables.

JOINT MOMENTS AND EXPECTED VALUES OF A FUNCTION OF TWO RANDOM
VARIABLES

The expected value of X identifies the center of mass of the distribution of X. The
variance, which is defined as the expected value of (X — m)?, provides a measure of
the spread of the distribution. In the case of two random variables we are interested
in how X and Y vary together. In particular, we are interested in whether the varia-
tion of X and Y are correlated. For example, if X increases does Y tend to increase or
to decrease? The joint moments of X and Y, which are defined as expected values of
functions of X and Y, provide this information.

Expected Value of a Function of Two Random Variables

The problem of finding the expected value of a function of two or more random vari-
ables is similar to that of finding the expected value of a function of a single random
variable. It can be shown that the expected value of Z = g(X,Y) can be found using
the following expressions:

/ / g(x, y)fxy(x,y)dxdy X, Y jointly continuous
E[Z] =70 (5.25)

> 280, ya) Px oy (Xis ) X, Y discrete.
L n

Example 5.24 Sum of Random Variables

Let Z = X + Y. Find E[Z].

E[Z] = E[X + Y]

/ / x4y ) fxy(x',y')dx dy'
//x'fx,y(x’,y/)d)"dxur/ / Y fxy(x',y') dx" dy'

- / Ofe)dx / VR &y = BIX] + E[Y] (5.26)
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Thus the expected value of the sum of two random variables is equal to the sum of the individual
expected values. Note that X and Y need not be independent.

The result in Example 5.24 and a simple induction argument show that the ex-
pected value of a sum of n random variables is equal to the sum of the expected values:

E[X,+ X, + -+ X,] = E[X;] + -+ + E[X,]. (5.27)

Note that the random variables do not have to be independent.

Example 5.25 Product of Functions of Independent Random Variables

Suppose that X and Y are independent random variables, and let g(X,Y) = g1(X)g(Y). Find
E[g(X,Y)] = E[g1(X)&(Y)].

Ela(X0e0 = [ [ at)n0)i60m ) av ay

- { / () () dx/}{ / @0 dy'}

= E[g1(X)]E[g(Y)].

5.6.2 Joint Moments, Correlation, and Covariance

The joint moments of two random variables X and Y summarize information about
their joint behavior. The jkth joint moment of X and Y is defined by

/ / Xy*fxy(x, y) dx dy X, Y jointly continuous
E[XIYK]) = ¢ 77707 (5.28)

E EX{J’5PX,Y(XI', Vn) X, Y discrete.

14

If j = 0, we obtain the moments of Y, and if k¥ = 0, we obtain the moments of X. In
electrical engineering, it is customary to call the j = 1 k = 1 moment, E[XY], the
correlation of X and Y. If E[ XY] = 0, then we say that X and Y are orthogonal.

The jkth central moment of X and Y is defined as the joint moment of the cen-
tered random variables, X — E[X]andY — E[Y]:

E[(X — E[X])(Y — E[Y])"].

Note that j = 2 k = 0 gives VAR(X) and j = 0 k = 2 gives VAR(Y).
The covariance of X and Y is defined as the j = k = 1 central moment:

COV(X,Y) = E[(X — E[X]))(Y — E[Y]] (5.29)
The following form for COV(X, Y) is sometimes more convenient to work with:

COV(X,Y) = E[XY — XE[Y] - YE[X] + E[X]E[Y]]
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= E[XY] - 2E[X]E[Y] + E[X]E[Y]
= E[XY] - E[X]E]Y]. (5.30)

Note that COV(X, Y) = E[ XY if either of the random variables has mean zero.

Example 5.26 Covariance of Independent Random Variables
Let X and Y be independent random variables. Find their covariance.
COV(X,Y) = E[(X — E[X])(Y — E[Y))]
= E[X — E[X]]E[Y — E[Y]]
=0,

where the second equality follows from the fact that X and Y are independent, and the third
equality follows from E[X — E[X]] = E[X] — E[X] = 0. Therefore pairs of independent
random variables have covariance zero.

Let’s see how the covariance measures the correlation between X and Y. The covari-
ance measures the deviation from my = E[X] and my = E[Y]. If a positive value of
(X — my) tends to be accompanied by a positive values of (Y — my), and negative
(X — my) tend to be accompanied by negative (Y — my); then (X — my)(Y — my)
will tend to be a positive value, and its expected value, COV(X, Y), will be positive. This is
the case for the scattergram in Fig. 5.3(d) where the observed points tend to cluster along a
line of positive slope. On the other hand,if (X — my) and (Y — my) tend to have oppo-
site signs, then COV (X, Y) will be negative. A scattergram for this case would have obser-
vation points cluster along a line of negative slope. Finally if (X — my) and (Y — my)
sometimes have the same sign and sometimes have opposite signs, then COV (X, Y) will be
close to zero. The three scattergrams in Figs. 5.3(a), (b), and (c) fall into this category.

Multiplying either X or Y by a large number will increase the covariance, so we
need to normalize the covariance to measure the correlation in an absolute scale. The
correlation coefficient of X and Y is defined by

COV(X,Y E/XY] — E|[X]|E|Y
oy = COVEXY) _ ELXY] - E[X]E[Y] 530

O x0Oy O x0Oy

where oy = VVAR(X) and oy = VVAR(Y) are the standard deviations of X and
Y, respectively.
The correlation coefficient is a number that is at most 1 in magnitude:

To show Eq. (5.32), we begin with an inequality that results from the fact that the
expected value of the square of a random variable is nonnegative:

0= E{(X — E[X] s Y — E[Y])Z}
Ox Oy
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=14+ sz’y +1
2(1 £ pxy).

The last equation implies Eq. (5.32).

The extreme values of pyy are achieved when X and Y are related linearly,
Y =aX +b;pxy =1ifa>0and pyy = —1if a < 0. In Section 6.5 we show that
px .y can be viewed as a statistical measure of the extent to which Y can be predicted by
a linear function of X.

X and Y are said to be uncorrelated if py yy = 0. If X and Y are independent, then
COV(X,Y) =0,s0 pxy = 0. Thus if X and Y are independent, then X and Y are un-
correlated. In Example 5.22, we saw that if X and Y are jointly Gaussian and px y = 0,
then X and Y are independent random variables. Example 5.27 shows that this is not al-
ways true for non-Gaussian random variables: It is possible for X and Y to be uncorre-
lated but not independent.

Example 5.27 Uncorrelated but Dependent Random Variables
Let © be uniformly distributed in the interval (0, 277). Let
X =cos O and Y =sin 0.

The point (X, Y) then corresponds to the point on the unit circle specified by the angle ®, as shown
in Fig. 5.18. In Example 4.36, we saw that the marginal pdf’s of X and Y are arcsine pdf’s, which are
nonzero in the interval (—1, 1). The product of the marginals is nonzero in the square defined by
—1=x=1land -1 = y = 1,s0if X and Y were independent the point (X, Y) would assume all
values in this square. This is not the case, so X and Y are dependent.

We now show that X and Y are uncorrelated:

27
E[XY] = E[sin®cos O] = i/ sin ¢ cos ¢ d¢p
0

1 2m
2—/ sin 2¢p d¢p = 0.
4’77 0

Since E[X] = E[Y] = 0, Eq. (5.30) then implies that X and Y are uncorrelated.

Example 5.28

Let X and Y be the random variables discussed in Example 5.16. Find E[XY], COV(X, Y), and
Pxy-

Equations (5.30) and (5.31) require that we find the mean, variance, and correlation of
X and Y. From the marginal pdf’s of X and Y obtained in Example 5.16, we find that
E[X] = 3/2and VAR[X] = 5/4, and that E[Y] = 1/2 and VAR[Y] = 1/4. The correlation of
Xand Yis

0 px
E[XY] = / / xy2e*e Y dy dx
0o Jo

= / 2x¢ (1 —e™* —xe¥)dx = 1.
0
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(cos IH, sin @)

FIGURE 5.18
(X,Y) is a point selected at random on the unit circle. X and Y
are uncorrelated but not independent.

Thus the correlation coefficient is given by

31

e

Pxy § l \@
A

CONDITIONAL PROBABILITY AND CONDITIONAL EXPECTATION

Many random variables of practical interest are not independent: The output Y of a com-
munication channel must depend on the input X in order to convey information; consec-
utive samples of a waveform that varies slowly are likely to be close in value and hence
are not independent. In this section we are interested in computing the probability of
events concerning the random variable Y given that we know X = x. We are also inter-
ested in the expected value of Y given X = x. We show that the notions of conditional
probability and conditional expectation are extremely useful tools in solving problems,
even in situations where we are only concerned with one of the random variables.

Conditional Probability

The definition of conditional probability in Section 2.4 allows us to compute the prob-
ability that Yis in A given that we know that X = x:

P[Yin A, X = x]
P[X = x]

P[YinA|X =x] = for P[X = x] > 0. (5.33)
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Case 1: X Is a Discrete Random Variable
For X and Y discrete random variables, the conditional pmf of Y given X = x is defined by:

PX =xY=y] Pxy(x,)
P[X = x] px(x)

py(ylx) = PlY = y| X = x] = (5.34)

for x such that P[X = x] > 0. We define py(y|x) = 0 for x such that P[X = x] = 0.
Note that py(y|x) is a function of y over the real line, and that py(y|x) > 0 only for
y in a discrete set {y, ¥»,... }.

The conditional pmf satisfies all the properties of a pmf, that is, it assigns non-
negative values to every y and these values add to 1. Note from Eq. (5.34) that
py(y | x;) is simply the cross section of px y(x;,y) along the X = x; column in Fig. 5.6,
but normalized by the probability py(x;).

The probability of an event A given X = x, is found by adding the pmf values of
the outcomes in A:

PlYinAlX = x] = > py(ylx). (5.35)
yjin A

If X and Y are independent, then using Eq (5.20)

P[X = x,Y = yj]
P[X = Xk]

PY()’j|xk) = = P[Y = )’j] = PY(Yj)- (5.36)

In other words, knowledge that X = x; does not affect the probability of events A
involving Y.

Equation (5.34) implies that the joint pmf py y(x, y) can be expressed as the
product of a conditional pmf and a marginal pmf:

Px.y (X, J’j) = PY(Y,’|xk)PX(Xk) and py y(x, )’j) = PX(Xk|Yj)PY()’j)- (5.37)

This expression is very useful when we can view the pair (X, Y) as being generated sequen-
tially, e.g., first X, and then Y given X = x. We find the probability that Yis in A as follows:

P[YinA] = E E PX,Y(xk,y]‘)
all x; y;in A

E 2 pY(yj|xk)pX(xk)

all x; y;in A

= > px(x) X PY(}’j|xk)

all x;, yjin A

all x;

Equation (5.38) is simply a restatement of the theorem on total probability discussed
in Chapter 2. In other words, to compute P[Y in A] we can first compute
P[Y in A| X = x,] and then “average” over X.
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Example 5.29 Loaded Dice

Find py(y|5) in the loaded dice experiment considered in Examples 5.6 and 5.8.
In Example 5.8 we found that py(5) = 1/6. Therefore:

_ pX,Y(57 y)

py(115) = py(215) = py(315) = py(415) = py(615) = 1/7.

and so py(515) = 2/7 and

Clearly this die is loaded.

Example 5.30 Number of Defects in a Region; Random Splitting of Poisson Counts

The total number of defects X on a chip is a Poisson random variable with mean «. Each defect
has a probability p of falling in a specific region R and the location of each defect is independent
of the locations of other defects. Find the pmf of the number of defects Y that fall in the region R.

We can imagine performing a Bernoulli trial each time a defect occurs with a “success”
occurring when the defect falls in the region R. If the total number of defects is X = k, then Y
is a binomial random variable with parameters k and p:

0 j>k
py(jlk) = (]f)pj(l —p)ki 0=j=k
]

From Eq. (5.38) and noting that k = j, we have

oS} [} k
) = i1 — p)k—i%
py(J) kgo py(jlk)px(k Z k_],p (1= p)ige”
B (ap)’e’“i{(l = p)a}*’
& (k=)
Jo—a j
T
J! J!

Thus Y is a Poisson random variable with mean ap.

Suppose Y is a continuous random variable. Eq. (5.33) can be used to define the
conditional cdf of Y given X = x;:

PlY =y, X = x;]
PIX =x]

Fy(ylxe) = for P[X = x;] > 0. (5.39)

It is easy to show that Fy(y | x;) satisfies all the properties of a cdf. The conditional pdf
of Y given X = x;, if the derivative exists, is given by

Mﬂm=$&mm» (5.40)
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If X and Y are independent, P[Y = y, X = X;] = P[Y = y]P[X = X;]so Fy(y|x) =
Fy(y) and fy(y|x) = fy(y). The probability of event A given X = x, is obtained by
integrating the conditional pdf:

P[Yin Al X = x;] = fr(ylxp) dy. (5.41)
yin A

We obtain P[Y in A] using Eq. (5.38).

Example 5.31 Binary Communications System

The input X to a communication channel assumes the values +1 or —1 with probabilities 1/3 and
2/3.The output Y of the channel is given by Y = X + N, where N is a zero-mean, unit variance
Gaussian random variable. Find the conditional pdf of Y given X = +1, and given X = —1.
Find P[X = +1|Y > 0].

The conditional cdf of Y given X = +1is:

Fy(yl+1) =P[Y = y|X =+1]=P[N + 1 = y]

y—1
1 2
=P[N5y71]=/ ——e ¥ dx
o V2w
where we noted thatif X = +1,then Y = N + 1 and Y depends only on N