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Preface

This book provides a carefully motivated, accessible, and interesting introduction to
probability, statistics, and random processes for electrical and computer engineers. The
complexity of the systems encountered in engineering practice calls for an understand-
ing of probability concepts and a facility in the use of probability tools. The goal of the
introductory course should therefore be to teach both the basic theoretical concepts
and techniques for solving problems that arise in practice. The third edition of this
book achieves this goal by retaining the proven features of previous editions:

• Relevance to engineering practice
• Clear and accessible introduction to probability
• Computer exercises to develop intuition for randomness
• Large number and variety of problems
• Curriculum flexibility through rich choice of topics
• Careful development of random process concepts.

This edition also introduces two major new features:

• Introduction to statistics
• Extensive use of MATLAB©/Octave.

RELEVANCE TO ENGINEERING PRACTICE

Motivating students is a major challenge in introductory probability courses. Instructors
need to respond by showing students the relevance of probability theory to engineering
practice. Chapter 1 addresses this challenge by discussing the role of probability models
in engineering design. Practical current applications from various areas of electrical and
computer engineering are used to show how averages and relative frequencies provide
the proper tools for handling the design of systems that involve randomness. These ap-
plication areas include wireless and digital communications, digital media and signal
processing, system reliability, computer networks, and Web systems. These areas are
used in examples and problems throughout the text.

ACCESSIBLE INTRODUCTION TO PROBABILITY THEORY

Probability theory is an inherently mathematical subject so concepts must be presented
carefully, simply, and gradually.The axioms of probability and their corollaries are devel-
oped in a clear and deliberate manner. The model-building aspect is introduced through
the assignment of probability laws to discrete and continuous sample spaces. The notion
of a single discrete random variable is developed in its entirety, allowing the student to
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focus on the basic probability concepts without analytical complications. Similarly, pairs
of random variables and vector random variables are discussed in separate chapters.

The most important random variables and random processes are developed in
systematic fashion using model-building arguments. For example, a systematic devel-
opment of concepts can be traced across every chapter from the initial discussions on
coin tossing and Bernoulli trials, through the Gaussian random variable, central limit
theorem, and confidence intervals in the middle chapters, and on to the Wiener process
and the analysis of simulation data at the end of the book. The goal is to teach the stu-
dent not only the fundamental concepts and methods of probability, but to also devel-
op an awareness of the key models and their interrelationships.

COMPUTER EXERCISES TO DEVELOP INTUITION FOR RANDOMNESS

A true understanding of probability requires developing an intuition for variability
and randomness. The development of an intuition for randomness can be aided by the
presentation and analysis of random data. Where applicable, important concepts are
motivated and reinforced using empirical data. Every chapter introduces one or more
numerical or simulation techniques that enable the student to apply and validate the
concepts. Topics covered include: Generation of random numbers, random variables,
and random vectors; linear transformations and application of FFT; application of sta-
tistical tests; simulation of random processes, Markov chains, and queueing models; sta-
tistical signal processing; and analysis of simulation data.

The sections on computer methods are optional. However, we have found that
computer generated data is very effective in motivating each new topic and that the
computer methods can be incorporated into existing lectures. The computer exercises
can be done using MATLAB or Octave. We opted to use Octave in the examples be-
cause it is sufficient to perform our exercises and it is free and readily available on the
Web. Students with access can use MATLAB instead.

STATISTICS TO LINK PROBABILITY MODELS TO THE REAL WORLD

Statistics plays the key role of bridging probability models to the real world, and for this
reason there is a trend in introductory undergraduate probability courses to include an
introduction to statistics. This edition includes a new chapter that covers all the main
topics in an introduction to statistics: Sampling distributions, parameter estimation,
maximum likelihood estimation, confidence intervals, hypothesis testing, Bayesian deci-
sion methods and goodness of fit tests.The foundation of random variables from earlier
chapters allows us to develop statistical methods in a rigorous manner rather than pre-
sent them in “cookbook” fashion. In this chapter MATLAB/Octave prove extremely
useful in the generation of random data and the application of statistical methods.

EXAMPLES AND PROBLEMS

Numerous examples in every section are used to demonstrate analytical and problem-
solving techniques, develop concepts using simplified cases, and illustrate applications.
The text includes 1200 problems, nearly double the number in the previous edition. A
large number of new problems involve the use of MATLAB or Octave to obtain
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numerical or simulation results. Problems are identified by section to help the instruc-
tor select homework problems. Additional problems requiring cumulative knowledge
are provided at the end of each chapter. Answers to selected problems are included in
the book website. A Student Solutions Manual accompanies this text to develop prob-
lem-solving skills. A sampling of 25% of carefully worked out problems has been se-
lected to help students understand concepts presented in the text. An Instructor
Solutions Manual with complete solutions is also available on the book website.

http://www.prenhall.com/leongarcia

FROM RANDOM VARIABLES TO RANDOM PROCESSES

Discrete-time random processes provide a crucial “bridge” in going from random vari-
ables to continuous-time random processes. Care is taken in the first seven chapters to
lay the proper groundwork for this transition.Thus sequences of dependent experiments
are discussed in Chapter 2 as a preview of Markov chains. In Chapter 6, emphasis is
placed on how a joint distribution generates a consistent family of marginal distributions.
Chapter 7 introduces sequences of independent identically distributed (iid) random vari-
ables. Chapter 8 uses the sum of an iid sequence to develop important examples of ran-
dom processes.

The traditional introductory course in random processes has focused on applica-
tions from linear systems and random signal analysis. However, many courses now also
include an introduction to Markov chains and some examples from queueing theory.
We provide sufficient material in both topic areas to give the instructor leeway in strik-
ing a balance between these two areas. Here we continue our systematic development
of related concepts. Thus, the development of random signal analysis includes a discus-
sion of the sampling theorem which is used to relate discrete-time signal processing to
continuous-time signal processing. In a similar vein, the embedded chain formulation
of continuous-time Markov chains is emphasized and later used to develop simulation
models for continuous-time queueing systems.

FLEXIBILITY THROUGH RICH CHOICE OF TOPICS

The textbook is designed to allow the instructor maximum flexibility in the selection of
topics. In addition to the standard topics taught in introductory courses on probability,
random variables, statistics and random processes, the book includes sections on mod-
eling, computer simulation, reliability, estimation and entropy, as well as chapters that
provide introductions to Markov chains and queueing theory.

SUGGESTED SYLLABI

A variety of syllabi for undergraduate and graduate courses are supported by the text.
The flow chart below shows the basic chapter dependencies, and the table of contents
provides a detailed description of the sections in each chapter.

The first five chapters (without the starred or optional sections) form the basis for
a one-semester undergraduate introduction to probability. A course on probability and
statistics would proceed from Chapter 5 to the first three sections of Chapter 7 and then

http://www.prenhall.com/leongarcia
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to Chapter 8.A first course on probability with a brief introduction to random processes
would go from Chapter 5 to Sections 6.1, 7.1 – 7.3, and then the first few sections in Chap-
ter 9, as time allows. Many other syllabi are possible using the various optional sections.

A first-level graduate course in random processes would begin with a quick re-
view of the axioms of probability and the notion of a random variable, including the
starred sections on event classes (2.8), Borel fields and continuity of probability (2.9),
the formal definition of a random variable (3.1), and the limiting properties of the cdf
(4.1). The material in Chapter 6 on vector random variables, their joint distributions,
and their transformations would be covered next. The discussion in Chapter 7 would
include the central limit theorem and convergence concepts. The course would then
cover Chapters 9, 10, and 11. A statistical signal processing emphasis can be given to
the course by including the sections on estimation of random variables (6.5), maxi-
mum likelihood estimation and Cramer-Rao lower bound (8.3) and Bayesian decision
methods (8.6). An emphasis on queueing models is possible by including renewal
processes (7.5) and Chapter 12. We note in particular that the last section in Chapter
12 provides an introduction to simulation models and output data analysis not found
in most textbooks.

CHANGES IN THE THIRD EDITION

This edition of the text has undergone several major changes:

• The introduction to the notion of a random variable is now carried out in two
phases: discrete random variables (Chapter 3) and continuous random variables
(Chapter 4).

1. Probability Models
2. Basic Concepts
3. Discrete Random Variables
4. Continuous Random Variables
5. Pairs of Random Variables

7. Sums of Random Variables

8. Statistics 9. Random Processes 9. Random Processes

10. Analysis & Processing
of Random Signals

11. Markov Chains

6. Vector Random Variables

1.    Review Chapters 1-5
2.8 *Event Classes
2.9 *Borel Fields
3.1 *Random Variable
4.1 *Limiting Properties of CDF

7.   Sums of Random Variables
7.4 Sequences of Random Variables

6. Vector Random Variables

12. Queueing Theory
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• Pairs of random variables and vector random variables are now covered in sepa-
rate chapters (Chapters 5 and 6). More advanced topics have been placed in
Chapter 6, e.g., general transformations, joint characteristic functions.

• Chapter 8, a new chapter, provides an introduction to all of the standard topics on
statistics.

• Chapter 9 now provides separate and more detailed development of the random
walk, Poisson, and Wiener processes.

• Chapter 10 has expanded the coverage of discrete-time linear systems, and the
link between discrete-time and continuous-time processing is bridged through
the discussion of the sampling theorem.

• Chapter 11 now provides a complete coverage of discrete-time Markov chains be-
fore introducing continuous-time Markov chains. A new section shows how tran-
sient behavior can be investigated through numerical and simulation techniques.

• Chapter 12 now provides detailed discussions on the simulation of queueing sys-
tems and the analysis of simulation data.
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Electrical and computer engineers have played a central role in the design of modern
information and communications systems. These highly successful systems work reli-
ably and predictably in highly variable and chaotic environments:

• Wireless communication networks provide voice and data communications to
mobile users in severe interference environments.

• The vast majority of media signals, voice, audio, images, and video are processed
digitally.

• Huge Web server farms deliver vast amounts of highly specific information to
users.

Because of these successes, designers today face even greater challenges.The sys-
tems they build are unprecedented in scale and the chaotic environments in which they
must operate are untrodden terrritory:

• Web information is created and posted at an accelerating rate; future search ap-
plications must become more discerning to extract the required response from a
vast ocean of information.

• Information-age scoundrels hijack computers and exploit these for illicit purpos-
es, so methods are needed to identify and contain these threats.

• Machine learning systems must move beyond browsing and purchasing applica-
tions to real-time monitoring of health and the environment.

• Massively distributed systems in the form of peer-to-peer and grid computing
communities have emerged and changed the nature of media delivery, gaming,
and social interaction; yet we do not understand or know how to control and
manage such systems.

Probability models are one of the tools that enable the designer to make sense
out of the chaos and to successfully build systems that are efficient, reliable, and cost
effective. This book is an introduction to the theory underlying probability models as
well as to the basic techniques used in the development of such models.

1

Probability Models 
in Electrical and
Computer Engineering

1
CHAPTER
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This chapter introduces probability models and shows how they differ from the
deterministic models that are pervasive in engineering. The key properties of the no-
tion of probability are developed, and various examples from electrical and computer
engineering, where probability models play a key role, are presented. Section 1.6 gives
an overview of the book.

1.1 MATHEMATICAL MODELS AS TOOLS IN ANALYSIS AND DESIGN

The design or modification of any complex system involves the making of choices from
various feasible alternatives. Choices are made on the basis of criteria such as cost, re-
liability, and performance. The quantitative evaluation of these criteria is seldom made
through the actual implementation and experimental evaluation of the alternative con-
figurations. Instead, decisions are made based on estimates that are obtained using
models of the alternatives.

A model is an approximate representation of a physical situation. A model at-
tempts to explain observed behavior using a set of simple and understandable rules.
These rules can be used to predict the outcome of experiments involving the given
physical situation. A useful model explains all relevant aspects of a given situation.
Such models can be used instead of experiments to answer questions regarding the
given situation. Models therefore allow the engineer to avoid the costs of experimenta-
tion, namely, labor, equipment, and time.

Mathematical models are used when the observational phenomenon has measur-
able properties. A mathematical model consists of a set of assumptions about how a
system or physical process works. These assumptions are stated in the form of mathe-
matical relations involving the important parameters and variables of the system. The
conditions under which an experiment involving the system is carried out determine the
“givens” in the mathematical relations, and the solution of these relations allows us to
predict the measurements that would be obtained if the experiment were performed.

Mathematical models are used extensively by engineers in guiding system design
and modification decisions. Intuition and rules of thumb are not always reliable in pre-
dicting the performance of complex and novel systems, and experimentation is not pos-
sible during the initial phases of a system design. Furthermore, the cost of extensive
experimentation in existing systems frequently proves to be prohibitive. The availabil-
ity of adequate models for the components of a complex system combined with a
knowledge of their interactions allows the scientist and engineer to develop an overall
mathematical model for the system. It is then possible to quickly and inexpensively an-
swer questions about the performance of complex systems. Indeed, computer pro-
grams for obtaining the solution of mathematical models form the basis of many
computer-aided analysis and design systems.

In order to be useful, a model must fit the facts of a given situation.Therefore the
process of developing and validating a model necessarily consists of a series of experi-
ments and model modifications as shown in Fig. 1.1. Each experiment investigates a
certain aspect of the phenomenon under investigation and involves the taking of ob-
servations and measurements under a specified set of conditions. The model is used
to predict the outcome of the experiment, and these predictions are compared with
the actual observations that result when the experiment is carried out. If there is a
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Formulate
hypothesis

Define experiment to
test hypothesis

Physical
process/system

Model
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agreement?
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of interest

investigated?

Stop

Observations

FIGURE 1.1
The modeling process.

significant discrepancy, the model is then modified to account for it. The modeling
process continues until the investigator is satisfied that the behavior of all relevant as-
pects of the phenomenon can be predicted to within a desired accuracy. It should be
emphasized that the decision of when to stop the modeling process depends on the im-
mediate objectives of the investigator. Thus a model that is adequate for one applica-
tion may prove to be completely inadequate in another setting.

The predictions of a mathematical model should be treated as hypothetical until
the model has been validated through a comparison with experimental measure-
ments. A dilemma arises in a system design situation: The model cannot be validated
experimentally because the real system does not exist. Computer simulation models
play a useful role in this situation by presenting an alternative means of predicting sys-
tem behavior, and thus a means of checking the predictions made by a mathematical
model.A computer simulation model consists of a computer program that simulates or
mimics the dynamics of a system. Incorporated into the program are instructions that
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“measure” the relevant performance parameters. In general, simulation models are
capable of representing systems in greater detail than mathematical models. Howev-
er, they tend to be less flexible and usually require more computation time than math-
ematical models.

In the following two sections we discuss the two basic types of mathematical
models, deterministic models and probability models.

1.2 DETERMINISTIC MODELS

In deterministic models the conditions under which an experiment is carried out deter-
mine the exact outcome of the experiment. In deterministic mathematical models, the
solution of a set of mathematical equations specifies the exact outcome of the experi-
ment. Circuit theory is an example of a deterministic mathematical model.

Circuit theory models the interconnection of electronic devices by ideal circuits
that consist of discrete components with idealized voltage-current characteristics. The
theory assumes that the interaction between these idealized components is completely
described by Kirchhoff’s voltage and current laws. For example, Ohm’s law states that
the voltage-current characteristic of a resistor is The voltages and currents in
any circuit consisting of an interconnection of batteries and resistors can be found by
solving a system of simultaneous linear equations that is found by applying Kirchhoff’s
laws and Ohm’s law.

If an experiment involving the measurement of a set of voltages is repeated a
number of times under the same conditions, circuit theory predicts that the observa-
tions will always be exactly the same. In practice there will be some variation in the ob-
servations due to measurement errors and uncontrolled factors. Nevertheless, this
deterministic model will be adequate as long as the deviation about the predicted val-
ues remains small.

1.3 PROBABILITY MODELS

Many systems of interest involve phenomena that exhibit unpredictable variation and
randomness. We define a random experiment to be an experiment in which the out-
come varies in an unpredictable fashion when the experiment is repeated under the
same conditions. Deterministic models are not appropriate for random experiments
since they predict the same outcome for each repetition of an experiment. In this sec-
tion we introduce probability models that are intended for random experiments.

As an example of a random experiment, suppose a ball is selected from an urn
containing three identical balls, labeled 0, 1, and 2. The urn is first shaken to random-
ize the position of the balls, and a ball is then selected.The number of the ball is noted,
and the ball is then returned to the urn. The outcome of this experiment is a number
from the set We call the set S of all possible outcomes the sample space.
Figure 1.2 shows the outcomes in 100 repetitions (trials) of a computer simulation of
this urn experiment. It is clear that the outcome of this experiment cannot consistent-
ly be predicted correctly.

S = 50, 1, 26.

I = V>R.
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1.3.1 Statistical Regularity

In order to be useful, a model must enable us to make predictions about the future be-
havior of a system, and in order to be predictable, a phenomenon must exhibit regu-
larity in its behavior. Many probability models in engineering are based on the fact
that averages obtained in long sequences of repetitions (trials) of random experi-
ments consistently yield approximately the same value. This property is called
statistical regularity.

Suppose that the above urn experiment is repeated n times under identical condi-
tions. Let and be the number of times in which the outcomes are
balls 0, 1, and 2, respectively, and let the relative frequency of outcome k be defined by

(1.1)

By statistical regularity we mean that varies less and less about a constant value
as n is made large, that is,

(1.2)

The constant is called the probability of the outcome k. Equation (1.2) states that
the probability of an outcome is the long-term proportion of times it arises in a long se-
quence of trials. We will see throughout the book that Eq. (1.2) provides the key con-
nection in going from the measurement of physical quantities to the probability
models discussed in this book.

Figures 1.3 and 1.4 show the relative frequencies for the three outcomes in the
above urn experiment as the number of trials n is increased. It is clear that all the relative

pk

lim
n:q

fk1n2 = pk .

fk1n2
fk1n2 =

Nk1n2
n

.

N21n2N01n2,N11n2,
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frequencies are converging to the value 1/3. This is in agreement with our intuition that
the three outcomes are equiprobable.

Suppose we alter the above urn experiment by placing in the urn a fourth identi-
cal ball with the number 0.The probability of the outcome 0 is now 2/4 since two of the
four balls in the urn have the number 0. The probabilities of the outcomes 1 and 2
would be reduced to 1/4 each. This demonstrates a key property of probability models,
namely, the conditions under which a random experiment is performed determine the
probabilities of the outcomes of an experiment.

1.3.2 Properties of Relative Frequency

We now present several properties of relative frequency. Suppose that a random exper-
iment has K possible outcomes, that is, Since the number of occur-
rences of any outcome in n trials is a number between zero and n, we have that

and thus dividing the above equation by n, we find that the relative frequencies are a
number between zero and one:

(1.3)

The sum of the number of occurrences of all possible outcomes must be n:

If we divide both sides of the above equation by n, we find that the sum of all the rela-
tive frequencies equals one:

(1.4)

Sometimes we are interested in the occurrence of events associated with the out-
comes of an experiment. For example, consider the event “an even-numbered ball is se-
lected” in the above urn experiment. What is the relative frequency of this event? The
event will occur whenever the number of the ball is 0 or 2. The number of experiments
in which the outcome is an even-numbered ball is therefore 
The relative frequency of the event is thus

This example shows that the relative frequency of an event is the sum of the relative
frequencies of the associated outcomes. More generally, let C be the event “A or B oc-
curs,” where A and B are two events that cannot occur simultaneously, then the num-
ber of times when C occurs is so

(1.5)

Equations (1.3), (1.4), and (1.5) are the three basic properties of relative frequency
from which we can derive many other useful results.

fC1n2 = fA1n2 + fB1n2.
NC1n2 = NA1n2 + NB1n2,

fE1n2 =
NE1n2
n

=
N01n2 + N21n2

n
= f01n2 + f21n2.

NE1n2 = N01n2 + N21n2.

a
K

k=1
fk1n2 = 1.

a
K

k=1
Nk1n2 = n.

0 … fk1n2 … 1 for k = 1, 2, Á ,K.

0 … Nk1n2 … n for k = 1, 2, Á ,K,

S = 51, 2, Á ,K6.
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1.3.3 The Axiomatic Approach to a Theory of Probability

Equation (1.2) suggests that we define the probability of an event by its long-term rel-
ative frequency.There are problems with using this definition of probability to develop
a mathematical theory of probability. First of all, it is not clear when and in what math-
ematical sense the limit in Eq. (1.2) exists. Second, we can never perform an experi-
ment an infinite number of times, so we can never know the probabilities exactly.
Finally, the use of relative frequency to define probability would rule out the applica-
bility of probability theory to situations in which an experiment cannot be repeated.
Thus it makes practical sense to develop a mathematical theory of probability that is
not tied to any particular application or to any particular notion of what probability
means. On the other hand, we must insist that, when appropriate, the theory should
allow us to use our intuition and interpret probability as relative frequency.

In order to be consistent with the relative frequency interpretation, any definition
of “probability of an event” must satisfy the properties in Eqs. (1.3) through (1.5). The
modern theory of probability begins with a construction of a set of axioms that specify
that probability assignments must satisfy these properties. It supposes that: (1) a ran-
dom experiment has been defined, and a set S of all possible outcomes has been identi-
fied; (2) a class of subsets of S called events has been specified; and (3) each event A has
been assigned a number, P[A], in such a way that the following axioms are satisfied:

1.
2.
3. If A and B are events that cannot occur simultaneously,

then

The correspondence between the three axioms and the properties of relative frequen-
cy stated in Eqs. (1.3) through (1.5) is apparent. These three axioms lead to many use-
ful and powerful results. Indeed, we will spend the remainder of this book developing
many of these results.

Note that the theory of probability does not concern itself with how the proba-
bilities are obtained or with what they mean.Any assignment of probabilities to events
that satisfies the above axioms is legitimate. It is up to the user of the theory, the model
builder, to determine what the probability assignment should be and what interpreta-
tion of probability makes sense in any given application.

1.3.4 Building a Probability Model

Let us consider how we proceed from a real-world problem that involves randomness
to a probability model for the problem. The theory requires that we identify the ele-
ments in the above axioms. This involves (1) defining the random experiment inherent
in the application, (2) specifying the set S of all possible outcomes and the events of in-
terest, and (3) specifying a probability assignment from which the probabilities of all
events of interest can be computed.The challenge is to develop the simplest model that
explains all the relevant aspects of the real-world problem.

As an example, suppose that we test a telephone conversation to determine
whether a speaker is currently speaking or silent. We know that on the average the
typical speaker is active only 1/3 of the time; the rest of the time he is listening to the

P[A or B] =P[A] + P[B].

P[S] = 1.
0 … P[A] … 1.

pk
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other party or pausing between words and phrases. We can model this physical situa-
tion as an urn experiment in which we select a ball from an urn containing two white
balls (silence) and one black ball (active speech).We are making a great simplification
here; not all speakers are the same, not all languages have the same silence-activity
behavior, and so forth. The usefulness and power of this simplification becomes ap-
parent when we begin asking questions that arise in system design, such as: What is
the probability that more than 24 speakers out of 48 independent speakers are active
at the same time? This question is equivalent to: What is the probability that more
than 24 black balls are selected in 48 independent repetitions of the above urn exper-
iment? By the end of Chapter 2 you will be able to answer the latter question and all
the real-world problems that can be reduced to it!

1.4 A DETAILED EXAMPLE: A PACKET VOICE TRANSMISSION SYSTEM

In the beginning of this chapter we claimed that probability models provide a tool that
enables the designer to successfully design systems that must operate in a random en-
vironment, but that nevertheless are efficient, reliable, and cost effective. In this sec-
tion, we present a detailed example of such a system. Our objective here is to convince
you of the power and usefulness of probability theory. The presentation intentionally
draws upon your intuition. Many of the derivation steps that may appear nonrigorous
now will be made precise later in the book.

Suppose that a communication system is required to transmit 48 simultaneous
conversations from site A to site B using “packets” of voice information.The speech of
each speaker is converted into voltage waveforms that are first digitized (i.e., convert-
ed into a sequence of binary numbers) and then bundled into packets of information
that correspond to 10-millisecond (ms) segments of speech. A source and destination
address is appended to each voice packet before it is transmitted (see Fig. 1.5).

The simplest design for the communication system would transmit 48 packets
every 10 ms in each direction. This is an inefficient design, however, since it is known
that on the average about 2/3 of all packets contain silence and hence no speech infor-
mation. In other words, on the average the 48 speakers only produce about 
active (nonsilence) packets per 10-ms period. We therefore consider another system
that transmits only packets every 10 ms.

Every 10 ms, the new system determines which speakers have produced packets
with active speech. Let the outcome of this random experiment be A, the number of ac-
tive packets produced in a given 10-ms segment. The quantity A takes on values in the
range from 0 (all speakers silent) to 48 (all speakers active). If then all the active
packets are transmitted. However, if then the system is unable to transmit all
the active packets, so of the active packets are selected at random and discarded.
The discarding of active packets results in the loss of speech, so we would like to keep the
fraction of discarded active packets at a level that the speakers do not find objectionable.

First consider the relative frequencies of A. Suppose the above experiment is re-
peated n times. Let A( j) be the outcome in the jth trial. Let be the number of trials
in which the number of active packets is k.The relative frequency of the outcome k in the
first n trials is then which we suppose converges to a probability 

(1.6)lim
n:q

fk1n2 = pk 0 … k … 48.

pk:fk1n2 = Nk1n2>n,

Nk1n2

A - M
A 7 M,

A … M,

M 6 48

48>3 = 16
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In Chapter 2 we will derive the probability that k speakers are active. Figure 1.6
shows versus k. It can be seen that the most frequent number of active speakers is 16
and that the number of active speakers is seldom above 24 or so.

Next consider the rate at which active packets are produced.The average number
of active packets produced per 10-ms interval is given by the sample mean of the num-
ber of active packets:

(1.7)

(1.8)

The first expression adds the number of active packets produced in the first n trials in the
order in which the observations were recorded.The second expression counts how many
of these observations had k active packets for each possible value of k, and then com-
putes the total.1 As n gets large, the ratio in the second expression approaches

Thus the average number of active packets produced per 10-ms segment approaches

(1.9)8A9n: a
48

k=0
kpk ! E[A].

pk .
Nk1n2>n

=
1
na

48

k=0
kNk1n2.

8A9n =
1
na
n

j=1
A1j2

pk

pk

1Suppose you pull out the following change from your pocket: 1 quarter, 1 dime, 1 quarter, 1 nickel. Equa-
tion (1.7) says your total is cents. Equation (1.8) says your total is 

cents.1221252 = 65
11210 +1125 +25 + 10 + 25 + 5 = 65

Multiplexer

Silence

Active

Site A

To site B

M packets/
10 ms

N packets/10 ms

N

1

FIGURE 1.5
A packet voice transmission system.
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FIGURE 1.6
Probabilities for number of active speakers in a group of 48.

The expression on the right-hand side will be defined as the expected value of A in
Section 3.3. E[A] is completely determined by the probabilities and in Chapter 3 we
will show that Equation (1.9) states that the long-term average
number of active packets produced per 10-ms period is speakers per 10 ms.

The information provided by the probabilities allows us to design systems that
are efficient and that provide good voice quality. For example, we can reduce the trans-
mission capacity in half to 24 packets per 10-ms period, while discarding an impercep-
tible number of active packets.

Let us summarize what we have done in this section. We have presented an ex-
ample in which the system behavior is intrinsically random, and in which the system
performance measures are stated in terms of long-term averages. We have shown how
these long-term measures lead to expressions involving the probabilities of the various
outcomes. Finally we have indicated that, in some cases, probability theory allows us to
derive these probabilities. We are then able to predict the long-term averages of vari-
ous quantities of interest and proceed with the system design.

1.5 OTHER EXAMPLES

In this section we present further examples from electrical and computer engineering,
where probability models are used to design systems that work in a random environ-
ment. Our intention here is to show how probabilities and long-term averages arise
naturally as performance measures in many systems. We hasten to add, however, that

pk

E[A] = 16
E[A] = 48 * 1>3 = 16.

pk



Input

(a)

Output

0 0

1 1

1 � ε

ε

ε

1 � ε

12 Chapter 1 Probability Models in Electrical and Computer Engineering

this book is intended to present the basic concepts of probability theory and not de-
tailed applications. For the interested reader, references for further reading are provid-
ed at the end of this and other chapters.

1.5.1 Communication over Unreliable Channels

Many communication systems operate in the following way. Every T seconds, the
transmitter accepts a binary input, namely, a 0 or a 1, and transmits a corresponding sig-
nal.At the end of the T seconds, the receiver makes a decision as to what the input was,
based on the signal it has received. Most communications systems are unreliable in the
sense that the decision of the receiver is not always the same as the transmitter input.
Figure 1.7(a) models systems in which transmission errors occur at random with prob-
ability As indicated in the figure, the output is not equal to the input with probabili-
ty Thus is the long-term proportion of bits delivered in error by the receiver. In
situations where this error rate is not acceptable, error-control techniques are intro-
duced to reduce the error rate in the delivered information.

One method of reducing the error rate in the delivered information is to use
error-correcting codes as shown in Fig. 1.7(b). As a simple example, consider a repeti-
tion code where each information bit is transmitted three times:

If we suppose that the decoder makes a decision on the information bit by taking a ma-
jority vote of the three bits output by the receiver, then the decoder will make the
wrong decision only if two or three of the bits are in error. In Example 2.37, we show
that this occurs with probability Thus if the bit error rate of the channel
without coding is then the delivered bit error with the above simple code will be

a reduction of three orders of magnitude! This improvement is obtained at a3 * 10-6,
10-3,

3e2 - 2e3.

0: 000
1: 111.

ee.
e.

Delivered
information

Decoder
Binary
channel

Coder
Binary
information

(b)

FIGURE 1.7
(a) A model for a binary communication channel. (b) Error control system.
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cost, however: The rate of transmission of information has been slowed down to 1 bit
every 3T seconds. By going to longer, more complicated codes, it is possible to obtain
reductions in error rate without the drastic reduction in transmission rate of this simple
example.

Error detection and correction methods play a key role in making reliable
communications possible over radio and other noisy channels. Probability plays a
role in determining the error patterns that are likely to occur and that hence must
be corrected.

1.5.2 Compression of Signals

The outcome of a random experiment need not be a single number, but can also be an
entire function of time. For example, the outcome of an experiment could be a voltage
waveform corresponding to speech or music. In these situations we are interested in
the properties of a signal and of processed versions of the signal.

For example, suppose we are interested in compressing a music signal S(t). This
involves representing the signal by a sequence of bits. Compression techniques provide
efficient representations by using prediction, where the next value of the signal is pre-
dicted using past encoded values. Only the error in the prediction needs to be encoded
so the number of bits can be reduced.

In order to work, prediction systems require that we know how the signal values
are correlated with each other. Given this correlation structure we can then design op-
timum prediction systems. Probability plays a key role in solving these problems. Com-
pression systems have been highly successful and are found in cell phones, digital
cameras, and camcorders.

1.5.3 Reliability of Systems

Reliability is a major concern in the design of modern systems. A prime example is the
system of computers and communication networks that support the electronic transfer
of funds between banks. It is of critical importance that this system continues operating
even in the face of subsystem failures.The key question is, How does one build reliable
systems from unreliable components? Probability models provide us with the tools to
address this question in a quantitative way.

The operation of a system requires the operation of some or all of its compo-
nents. For example, Fig. 1.8(a) shows a system that functions only when all of its com-
ponents are functioning, and Fig. 1.8(b) shows a system that functions as long as at least
one of its components is functioning. More complex systems can be obtained as combi-
nations of these two basic configurations.

We all know from experience that it is not possible to predict exactly when a
component will fail. Probability theory allows us to evaluate measures of reliability
such as the average time to failure and the probability that a component is still func-
tioning after a certain time has elapsed. Furthermore, we will see in Chapters 2 and 4
that probability theory enables us to determine these averages and probabilities for an
entire system in terms of the probabilities and averages of its components. This allows
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us to evaluate system configurations in terms of their reliability, and thus to select sys-
tem designs that are reliable.

1.5.4 Resource-Sharing Systems

Many applications involve sharing resources that are subject to unsteady and random
demand. Clients intersperse demands for short periods of service between relatively
long idle periods. The demands of the clients can be met by dedicating sufficient re-
sources to each individual client, but this approach can be wasteful because the re-
sources go unused when a client is idle. A better approach is to configure systems
where client demands are met through dynamic sharing of resources.

For example, many Web server systems operate as shown in Fig. 1.9. These sys-
tems allow up to c clients to be connected to a server at any given time. Clients submit
queries to the server. The query is placed in a waiting line and then processed by the
server. After receiving the response from the server, each client spends some time

Queue

Clients

1

c

Server

FIGURE 1.9
Simple model for Web server system.

C1

C1

C2

C2

Cn Cn

(a)  Series configuration of components. (b)  Parallel configuration of components.

FIGURE 1.8
Systems with n components.
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Internet

FIGURE 1.10
A large community of users interacting across the Internet.

thinking before placing the next query. The system closes an existing client’s connec-
tion after a timeout period, and replaces it with a new client.

The system needs to be configured to provide rapid responses to clients, to avoid
premature closing of connections, and to utilize the computing resources effectively.
This requires the probabilistic characterization of the query processing time, the num-
ber of clicks per connection, and the time between clicks (think time). These parame-
ters are then used to determine the optimum value of c as well as the timeout value.

1.5.5 Internet Scale Systems

One of the major current challenges today is the design of Internet-scale systems as the
client-server systems of Fig. 1.9 evolve into massively distributed systems, as in Fig. 1.10.
In these new systems the number of users who are online at the same time can be in the
tens of thousands and in the case of peer-to-peer systems in the millions.

The interactions among users of the Internet are much more complex than those
of clients accessing a server. For example, the links in Web pages that point to other
Web pages create a vast web of interconnected documents. The development of
graphing and mapping techniques to represent these logical relationships is key to un-
derstanding user behavior. A variety of Web crawling techniques have been devel-
oped to produce such graphs [Broder]. Probabilistic techniques can assess the relative
importance of nodes in these graphs and, indeed, play a central role in the operation
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of search engines. New applications, such as peer-to-peer file sharing and content dis-
tribution, create new communities with their own interconnectivity patterns and
graphs. The behavior of users in these communities can have dramatic impact on the
volume, patterns, and dynamics of traffic flows in the Internet. Probabilistic methods
are playing an important role in understanding these systems and in developing meth-
ods to manage and control resources so that they operate in reliable and predictable
fashion [15].

1.6 OVERVIEW OF BOOK

In this chapter we have discussed the important role that probability models play in the
design of systems that involve randomness. The principal objective of this book is to in-
troduce the student to the basic concepts of probability theory that are required to under-
stand probability models used in electrical and computer engineering. The book is not
intended to cover applications per se; there are far too many applications, with each one
requiring its own detailed discussion. On the other hand, we do attempt to keep the ex-
amples relevant to the intended audience by drawing from relevant application areas.

Another objective of the book is to present some of the basic techniques required to
develop probability models. The discussion in this chapter has made it clear that the
probabilities used in a model must be determined experimentally. Statistical techniques
are required to do this, so we have included an introduction to the basic but essential
statistical techniques. We have also alluded to the usefulness of computer simulation
models in validating probability models. Most chapters include a section that presents
some useful computer method.These sections are optional and can be skipped without
loss of continuity. However, the student is encouraged to explore these techniques.
They are fun to play with, and they will provide insight into the nature of randomness.

The remainder of the book is organized as follows:

• Chapter 2 presents the basic concepts of probability theory.We begin with the ax-
ioms of probability that were stated in Section 1.3 and discuss their implications.
Several basic probability models are introduced in Chapter 2.

• In general, probability theory does not require that the outcomes of random ex-
periments be numbers. Thus the outcomes can be objects (e.g., black or white
balls) or conditions (e.g., computer system up or down). However, we are usually
interested in experiments where the outcomes are numbers. The notion of a ran-
dom variable addresses this situation. Chapters 3 and 4 discuss experiments
where the outcome is a single number from a discrete set or a continuous set, re-
spectively. In these two chapters we develop several extremely useful problem-
solving techniques.

• Chapter 5 discusses pairs of random variables and introduces methods for de-
scribing the correlation of interdependence between random variables. Chapter 6
extends these methods to vector random variables.

• Chapter 7 presents mathematical results (limit theorems) that answer the ques-
tion of what happens in a very long sequence of independent repetitions of an
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experiment. The results presented will justify our extensive use of relative fre-
quency to motivate the notion of probability.

• Chapter 8 provides an introduction to basic statistical methods.
• Chapter 9 introduces the notion of a random or stochastic process, which is sim-

ply an experiment in which the outcome is a function of time.
• Chapter 10 introduces the notion of the power spectral density and its use in the

analysis and processing of random signals.
• Chapter 11 discusses Markov chains, which are random processes that allow us to

model sequences of nonindependent experiments.
• Chapter 12 presents an introduction to queueing theory and various applications.

SUMMARY

• Mathematical models relate important system parameters and variables using
mathematical relations. They allow system designers to predict system perfor-
mance by using equations when experimentation is not feasible or too costly.

• Computer simulation models are an alternative means of predicting system per-
formance. They can be used to validate mathematical models.

• In deterministic models the conditions under which an experiment is performed
determine the exact outcome. The equations in deterministic models predict an
exact outcome.

• In probability models the conditions under which a random experiment is per-
formed determine the probabilities of the possible outcomes. The solution of the
equations in probability models yields the probabilities of outcomes and events
as well as various types of averages.

• The probabilities and averages for a random experiment can be found experi-
mentally by computing relative frequencies and sample averages in a large num-
ber of repetitions of a random experiment.

• The performance measures in many systems of practical interest involve relative
frequencies and long-term averages. Probability models are used in the design of
these systems.

CHECKLIST OF IMPORTANT TERMS 

Deterministic model
Event
Expected value
Probability
Probability model

Random experiment
Relative frequency
Sample mean
Sample space
Statistical regularity
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PROBLEMS

1.1. Consider the following three random experiments:
Experiment 1: Toss a coin.
Experiment 2: Toss a die.
Experiment 3: Select a ball at random from an urn containing balls numbered 0 to 9.
(a) Specify the sample space of each experiment.
(b) Find the relative frequency of each outcome in each of the above experiments in a

large number of repetitions of the experiment. Explain your answer.
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1.2. Explain how the following experiments are equivalent to random urn experiments:
(a) Flip a fair coin twice.
(b) Toss a pair of fair dice.
(c) Draw two cards from a deck of 52 distinct cards, with replacement after the first

draw; without replacement after the first draw.
1.3. Explain under what conditions the following experiments are equivalent to a random

coin toss. What is the probability of heads in the experiment?
(a) Observe a pixel (dot) in a scanned black-and-white document.
(b) Receive a binary signal in a communication system.
(c) Test whether a device is working.
(d) Determine whether your friend Joe is online.
(e) Determine whether a bit error has occurred in a transmission over a noisy communi-

cation channel.
1.4. An urn contains three electronically labeled balls with labels 00, 01, 10. Lisa, Homer, and

Bart are asked to characterize the random experiment that involves selecting a ball at ran-
dom and reading the label. Lisa’s label reader works fine; Homer’s label reader has the
most significant digit stuck at 1; Bart’s label reader’s least significant digit is stuck at 0.
(a) What is the sample space determined by Lisa, Homer, and Bart?
(b) What are the relative frequencies observed by Lisa, Homer, and Bart in a large num-

ber of repetitions of the experiment?
1.5. A random experiment has sample space with probabilities 

(a) Describe how this random experiment can be simulated using tosses of a fair coin.
(b) Describe how this random experiment can be simulated using an urn experiment.
(c) Describe how this experiment can be simulated using a deck of 52 distinct cards.

1.6. A random experiment consists of selecting two balls in succession from an urn containing
two black balls and and one white ball.
(a) Specify the sample space for this experiment.
(b) Suppose that the experiment is modified so that the ball is immediately put back into

the urn after the first selection. What is the sample space now?
(c) What is the relative frequency of the outcome (white, white) in a large number of

repetitions of the experiment in part a? In part b?
(d) Does the outcome of the second draw from the urn depend in any way on the out-

come of the first draw in either of these experiments?
1.7. Let A be an event associated with outcomes of a random experiment, and let the event B

be defined as “event A does not occur.” Show that 
1.8. Let A, B, and C be events that cannot occur simultaneously as pairs or triplets, and let D

be the event “A or B or C occurs.” Show that

1.9. The sample mean for a series of numerical outcomes of a se-
quence of random experiments is defined by

8X9n =
1
na
n

j=1
X1j2.

X1n2Á ,X122,X112,
fD1n2 = fA1n2 + fB1n2 + fC1n2.

fB1n2 = 1 - fA1n2.

p4 = 1>8.p3 = 1>8,p2 = 1>4,
p1 = 1>2,S = 51, 2, 3, 46
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Show that the sample mean satisfies the recursion formula:

1.10. Suppose that the signal is sampled at random instants of time.
(a) Find the long-term sample mean.
(b) Find the long-term relative frequency of the events “voltage is positive”; “voltage is

less than ”
(c) Do the answers to parts a and b change if the sampling times are periodic and taken

every seconds?
1.11. In order to generate a random sequence of random numbers you take a column of tele-

phone numbers and output a “0” if the last digit in the telephone number is even and a
“1” if the digit is odd. Discuss how one could determine if the resulting sequence is “ran-
dom.”What test would you apply to the relative frequencies of single outcomes? Of pairs
of outcomes?

t

-2.

2 cos 2pt

8X9n = 8X9n-1 +
X1n2 - 8X9n-1

n
, 8X90 = 0.



This chapter presents the basic concepts of probability theory. In the remainder of the
book, we will usually be further developing or elaborating the basic concepts present-
ed here. You will be well prepared to deal with the rest of the book if you have a good
understanding of these basic concepts when you complete the chapter.

The following basic concepts will be presented. First, set theory is used to specify
the sample space and the events of a random experiment. Second, the axioms of prob-
ability specify rules for computing the probabilities of events. Third, the notion of con-
ditional probability allows us to determine how partial information about the outcome
of an experiment affects the probabilities of events. Conditional probability also allows
us to formulate the notion of “independence” of events and of experiments. Finally, we
consider “sequential” random experiments that consist of performing a sequence of
simple random subexperiments.We show how the probabilities of events in these exper-
iments can be derived from the probabilities of the simpler subexperiments.Throughout
the book it is shown that complex random experiments can be analyzed by decompos-
ing them into simple subexperiments.

2.1 SPECIFYING RANDOM EXPERIMENTS

A random experiment is an experiment in which the outcome varies in an unpre-
dictable fashion when the experiment is repeated under the same conditions. A ran-
dom experiment is specified by stating an experimental procedure and a set of one or
more measurements or observations.

Example 2.1

Experiment Select a ball from an urn containing balls numbered 1 to 50. Note the number of
the ball.
Experiment Select a ball from an urn containing balls numbered 1 to 4. Suppose that balls 1
and 2 are black and that balls 3 and 4 are white. Note the number and color of the ball you select.
Experiment Toss a coin three times and note the sequence of heads and tails.
Experiment Toss a coin three times and note the number of heads.
Experiment Count the number of voice packets containing only silence produced from a
group of N speakers in a 10-ms period.

E5:
E4:
E3:

E2:

E1:
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Experiment A block of information is transmitted repeatedly over a noisy channel until an
error-free block arrives at the receiver. Count the number of transmissions required.
Experiment Pick a number at random between zero and one.
Experiment Measure the time between page requests in a Web server.
Experiment Measure the lifetime of a given computer memory chip in a specified environment.
Experiment Determine the value of an audio signal at time 
Experiment Determine the values of an audio signal at times and 
Experiment Pick two numbers at random between zero and one.
Experiment Pick a number X at random between zero and one, then pick a number Y at
random between zero and X.
Experiment A system component is installed at time For let as long
as the component is functioning, and let after the component fails.

The specification of a random experiment must include an unambiguous statement
of exactly what is measured or observed. For example, random experiments may consist
of the same procedure but differ in the observations made, as illustrated by and 

A random experiment may involve more than one measurement or observation,
as illustrated by and A random experiment may even involve a
continuum of measurements, as shown by 

Experiments and are examples of sequential experi-
ments that can be viewed as consisting of a sequence of simple subexperiments. Can
you identify the subexperiments in each of these? Note that in the second subex-
periment depends on the outcome of the first subexperiment.

2.1.1 The Sample Space

Since random experiments do not consistently yield the same result, it is necessary to
determine the set of possible results. We define an outcome or sample point of a ran-
dom experiment as a result that cannot be decomposed into other results. When we
perform a random experiment, one and only one outcome occurs. Thus outcomes are
mutually exclusive in the sense that they cannot occur simultaneously. The sample
space S of a random experiment is defined as the set of all possible outcomes.

We will denote an outcome of an experiment by where is an element or point
in S. Each performance of a random experiment can then be viewed as the selection at
random of a single point (outcome) from S.

The sample space S can be specified compactly by using set notation. It can be visu-
alized by drawing tables, diagrams, intervals of the real line, or regions of the plane.There
are two basic ways to specify a set:

1. List all the elements, separated by commas, inside a pair of braces:

2. Give a property that specifies the elements of the set:

Note that the order in which items are listed does not change the set, e.g.,
and are the same set.51, 2, 3, 06 50, 1, 2, 36

A = 5x : x is an integer such that 0 … x … 36.

A = 50, 1, 2, 36,

zz,

E13

E13E3 , E4 , E5 , E6 , E12 ,
E14 .

E13 .E2 , E3 , E11 , E12 ,

E4 .E3

X1t2 = 0
X1t2 = 1t Ú 0t = 0.E14:

E13:
E12:

t2 .t1E11:
t1 .E10:

E9:
E8:
E7:

E6:
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Example 2.2

The sample spaces corresponding to the experiments in Example 2.1 are given below using set
notation:

See Fig. 2.1(a).

See Fig. 2.1(b).

See Fig. 2.1(c).

See Fig. 2.1(d).

for which for and for 

where is the time when the component fails.

Random experiments involving the same experimental procedure may have dif-
ferent sample spaces as shown by Experiments and Thus the purpose of an ex-
periment affects the choice of sample space.

E4 .E3

t0 7 0

t Ú t0 ,X1t2 = 00 … t 6 t0X1t2 = 1S14 = set of functions X1t2
S13 = 51x, y2 : 0 … y … x … 16
S12 = 51x, y2 : 0 … x … 1 and 0 … y … 16
S11 = 51v1 , v22 : -q 6 v1 6 q  and -q 6 v2 6 q6
S10 = 5v : -q 6 v 6 q6 = 1-q , q2
S9 = 5t : t Ú 06 = 30, q2
S8 = 5t : t Ú 06 = 30, q2
S7 = 5x : 0 … x … 16 = 30, 14
S6 = 51, 2, 3, Á 6
S5 = 50, 1, 2, Á ,N6
S4 = 50, 1, 2, 36
S3 = 5HHH, HHT, HTH, THH, TTH, THT, HTT, TTT6
S2 = 511, b2, 12, b2, 13, w2, 14, w26
S1 = 51, 2, Á , 506

(a) Sample space for Experiment E7.

S7
x

0 1

(b) Sample space for Experiment E9.

S9

t
0

(c) Sample space for Experiment E12.

x

y

1

0 1

S12

(d) Sample space for Experiment E13.

x

y

1

0 1

S13

FIGURE 2.1
Sample spaces for Experiments and E13 .E7 , E9 , E12 ,
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1The Cartesian product of the sets A and B consists of the set of all ordered pairs (a, b), where the first ele-
ment is taken from A and the second from B.

There are three possibilities for the number of outcomes in a sample space. A
sample space can be finite, countably infinite, or uncountably infinite. We call S a
discrete sample space if S is countable; that is, its outcomes can be put into one-to-one
correspondence with the positive integers. We call S a continuous sample space if S is
not countable. Experiments and have finite discrete sample spaces.
Experiment has a countably infinite discrete sample space. Experiments through

have continuous sample spaces.
Since an outcome of an experiment can consist of one or more observations or

measurements, the sample space S can be multi-dimensional. For example, the out-
comes in Experiments and are two-dimensional, and those in Experi-
ment are three-dimensional. In some instances, the sample space can be written as
the Cartesian product of other sets.1 For example, where R is the set of
real numbers, and where 

It is sometimes convenient to let the sample space include outcomes that are
impossible. For example, in Experiment it is convenient to define the sample
space as the positive real line, even though a device cannot have an infinite life-
time.

2.1.2 Events

We are usually not interested in the occurrence of specific outcomes, but rather in
the occurrence of some event (i.e., whether the outcome satisfies certain condi-
tions). This requires that we consider subsets of S. We say that A is a subset of B if
every element of A also belongs to B. For example, in Experiment which in-
volves the measurement of a voltage, we might be interested in the event “signal
voltage is negative.” The conditions of interest define a subset of the sample space,
namely, the set of points from S that satisfy the given conditions. For example,
“voltage is negative” corresponds to the set The event occurs if
and only if the outcome of the experiment is in this subset. For this reason events
correspond to subsets of S.

Two events of special interest are the certain event, S, which consists of all out-
comes and hence always occurs, and the impossible or null event, which contains no
outcomes and hence never occurs.

Example 2.3

In the following examples, refers to an event corresponding to Experiment in Example 2.1.

“An even-numbered ball is selected,”
“The ball is white and even-numbered,”
“The three tosses give the same outcome,”
“The number of heads equals the number of tails,”
“No active packets are produced,”A5 = 506.E5:

A4 = �.E4:
A3 = 5HHH, TTT6.E3:

A2 = 514, w26.E2:
A1 = 52, 4, Á , 48, 506.E1:

EkAk

�,

z

5z : -q 6 z 6 06.z

E10 ,

E9

S = 5H, T6.S3 = S * S * S,
S11 = R * R,

E3

E13E2 , E11 , E12 ,

E13

E7E6

E5E1 , E2 , E3 , E4 ,
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“Fewer than 10 transmissions are required,”
“The number selected is nonnegative,”
“Less than seconds elapse between page requests,”
“The chip lasts more than 1000 hours but fewer than 1500 hours,”

“The absolute value of the voltage is less than 1 volt,”
“The two voltages have opposite polarities,”

“The two numbers differ by less than 1/10,”
“The two numbers differ by less than 1/10,”
“The system is functioning at time ” for which 

An event may consist of a single outcome, as in and An event from a
discrete sample space that consists of a single outcome is called an elementary event.
Events and are elementary events. An event may also consist of the entire sam-
ple space, as in The null event, arises when none of the outcomes satisfy the con-
ditions that specify a given event, as in 

2.1.3 Review of Set Theory

In random experiments we are interested in the occurrence of events that are repre-
sented by sets. We can combine events using set operations to obtain other events. We
can also express complicated events as combinations of simple events. Before proceed-
ing with further discussion of events and random experiments, we present some essen-
tial concepts from set theory.

A set is a collection of objects and will be denoted by capital letters 
We define U as the universal set that consists of all possible objects of interest in a
given setting or application. In the context of random experiments we refer to the uni-
versal set as the sample space. For example, the universal set in Experiment is

A set A is a collection of objects from U, and these objects are called
the elements or points of the set A and will be denoted by lowercase letters,

We use the notation:

to indicate that “x is an element of A” or “x is not an element of A,” respectively.
We use Venn diagrams when discussing sets. A Venn diagram is an illustration of

sets and their interrelationships. The universal set U is usually represented as the set of
all points within a rectangle as shown in Fig. 2.2(a). The set A is then the set of points
within an enclosed region inside the rectangle.

We say A is a subset of B if every element of A also belongs to B, that is, if 
implies We say that “A is contained in B” and we write:

If A is a subset of B, then the Venn diagram shows the region for A to be inside the
region for B as shown in Fig. 2.2(e).

A( B.

x H B.
x H A

x H A and x x A

z, a, b, x, y, Á .

U = 51, 2, Á 6. E6

S, A, B, Á .

A4 .
�,A7 .

A5A2

A5 .A2

X1t12 = 1.A14 = subset of S14t1 ,E14:
A13 = 51x, y2 : 1x, y2 in S13 and ƒx - y ƒ 6 1/106.E13:
A12 = 51x, y2 : 1x, y2 in S12 and ƒx - y ƒ 6 1/106.E12:

and v2 6 026.
A11 = 51v1 , v22 : 1v1 6 0 and v2 7 02 or 1v1 7 0E11:

A10 = 5v : -1 6 v 6 16 = 1-1, 12.E10:
= 11000, 15002.

A9 = 5t : 1000 6 t 6 15006E9:
A8 = 5t : 0 … t 6 t06 = 30, t02.t0E8:

A7 = S7 .E7:
A6 = 51, Á , 96.E6:
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U

(a) A � B (b) A � B

A B

A B

A B

(g) (A � B)c

(c) Ac (d) A � B � �

(e) A � B (f) A � B

A B

AA B

A

B

(h) Ac � Bc

Ac

FIGURE 2.2
Set operations and set relations.

Example 2.4

In Experiment three sets of interest might be that is, 10 or
more transmissions are required; , the number of transmissions is an even num-
ber; and Which of these sets are subsets of the others?

Clearly, C is a subset of However, C is not a subset of B, and B is not a subset
of C, because both sets contain elements the other set does not contain. Similarly, B is not a sub-
set of A, and A is not a subset of B.

The empty set is defined as the set with no elements. The empty set is a sub-
set of every set, that is, for any set A,

We say sets A and B are equal if they contain the same elements. Since every ele-
ment in A is also in B, then implies so Similarly every element in B
is also in A, so implies and so Therefore:

The standard method to show that two sets, A and B, are equal is to show that
and A second method is to list all the items in A and all the items in B,

and to show that the items are the same. A variation of this second method is to use a
B( A.A( B

A = B if and only if  A( B and B( A.

B( A.x H Ax H B
A( B.x H B,x H A

� ( A.
��

A1C( A2.
C = 5x: x Ú 206 = 520, 21, Á 6.

B = 52, 4, 6, Á 6
A = 5x : x Ú 106 = 510, 11, Á 6,E6
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Venn diagram to identify the region that corresponds to A and to then show that the
Venn diagram for B occupies the same region. We provide examples of both methods
shortly.

We will use three basic operations on sets. The union and the intersection opera-
tions are applied to two sets and produce a third set. The complement operation is ap-
plied to a single set to produce another set.

The union of two sets A and B is denoted by and is defined as the set of
outcomes that are either in A or in B, or both:

The operation corresponds to the logical “or” of the properties that define set A
and set B, that is, x is in if x satisfies the property that defines A, or x satisfies the
property that defines B, or both. The Venn diagram for consists of the shaded
region in Fig. 2.2(a).

The intersection of two sets A and B is denoted by and is defined as the set
of outcomes that are in both A and B:

The operation corresponds to the logical “and” of the properties that define
set A and set B. The Venn diagram for consists of the double shaded region
in Fig. 2.2(b). Two sets are said to be disjoint or mutually exclusive if their intersec-
tion is the null set, Figure 2.2(d) shows two mutually exclusive sets A
and B.

The complement of a set A is denoted by and is defined as the set of all ele-
ments not in A:

The operation corresponds to the logical “not” of the property that defines set A.
Figure 2.2(c) shows Note that and 

The relative complement or difference of sets A and B is the set of elements in A
that are not in B:

is obtained by removing from A all the elements that are also in B, as illustrat-
ed in Fig. 2.2(f). Note that Note also that 

Example 2.5

Let A, B, and C be the events from Experiment in Example 2.4. Find the following events:
and

Bc = 51, 3, 5, Á 6;
Ac = 5x : x 6 106 = 51, 2, Á , 96;
A ¨ B = 510, 12, 14, Á 6;
A ´ B = 52, 4, 6, 8, 10, 11, 12, Á 6;

B - A.A ´ B, A ¨ B, Ac, Bc, A - B,
E6

Bc = S - B.A - B = A ¨ Bc.
A - B

A - B = 5x : x H A and x x B6.

�c = S.Sc = �Ac.
Ac

Ac = 5x : x x A6.
Ac

A ¨ B = �.

A ¨ B
A ¨ B

A ¨ B = 5x : x H A and x H B6.
A ¨ B

A ´ B
A ´ B

A ´ B

A ´ B = 5x : x H A or x H B6.
A ´ B
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The three basic set operations can be combined to form other sets.The following
properties of set operations are useful in deriving new expressions for combinations
of sets:

Commutative properties:

(2.1)

Associative properties:

(2.2)

Distributive properties:

(2.3)

By applying the above properties we can derive new identities. DeMorgan’s rules pro-
vide an important such example:

DeMorgan’s rules:

(2.4)

Example 2.6

Prove DeMorgan’s rules by using Venn diagrams and by demonstrating set equality.
First we will use a Venn diagram to show the first equality. The shaded region in Fig. 2.2(g)

shows the complement of the left-hand side of the equation. The cross-hatched region in
Fig. 2.2(h) shows the intersection of and The two regions are the same and so the sets are
equal. Try sketching the Venn diagrams for the second equality in Eq. (2.4).

Next we prove DeMorgan’s rules by proving set equality.The proof has two parts: First we
show that then we show that Together these results
imply

First, suppose that then In particular, we have which im-
plies Similarly, we have which implies Hence x is in both and that is,

We have shown that 
To prove inclusion in the other direction, suppose that This implies that
so Similarly, and so Therefore, and so We

have shown that . This proves that .
To prove the second DeMorgan rule, apply the first DeMorgan rule to and to

obtain:

where we used the identity Now take complements of both sides of the above
equation:

Ac ´ Bc = 1A ¨ B2c.

A = 1Ac2c.
1Ac ´ Bc2c = 1Ac2c ¨ 1Bc2c = A ¨ B,

BcAc
1A ´ B2c = Ac ¨ BcAc ¨ Bc ( 1A ´ B2c

x H 1A ´ B2c.x x 1A ´ B2x x B.x H Bcx x A.x H Ac,
x H Ac ¨ Bc.

1A ´ B2c( Ac ¨ Bc.x H Ac ¨ Bc.
Bc,Acx H Bc.x x B,x H Ac.

x x A,x x A ´ B.x H 1A ´ B2c,
1A ´ B2c = Ac ¨ Bc.

Ac ¨ Bc ( 1A ´ B2c.1A ´ B2c( Ac ¨ Bc;

Bc.Ac
A ´ B,

1A ´ B2c = Ac ¨ Bc and 1A ¨ B2c = Ac ´ Bc

A ¨ 1B ´ C2 = 1A ¨ B2 ´ 1A ¨ C2.
A ´ 1B ¨ C2 = 1A ´ B2 ¨ 1A ´ C2 and

A ´ 1B ´ C2 = 1A ´ B2 ´ C and A ¨ 1B ¨ C2 = 1A ¨ B2 ¨ C.

A ´ B = B ´ A and A ¨ B = B ¨ A.

and B - A = 52, 4, 6, 86.
A - B = 511, 13, 15, Á 6;
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Example 2.7

For Experiment let the sets A, B, and C be defined by

You should then verify that

The union and intersection operations can be repeated for an arbitrary number
of sets. Thus the union of n sets

(2.5)

is the set that consists of all elements that are in for at least one value of k.The same
definition applies to the union of a countably infinite sequence of sets:

(2.6)

The intersection of n sets

(2.7)

is the set that consists of elements that are in all of the sets The same defi-
nition applies to the intersection of a countably infinite sequence of sets:

(2.8)

We will see that countable unions and intersections of sets are essential in dealing with
sample spaces that are not finite.

2.1.4 Event Classes

We have introduced the sample space S as the set of all possible outcomes of the ran-
dom experiment. We have also introduced events as subsets of S. Probability theory
also requires that we state the class of events of interest. Only events in this classF

t
q

k=1
Ak .

A1 , Á , An .

t
n

k=1
Ak = A1 ¨ A2 ¨ Á ¨ An

d
q

k=1
Ak .

Ak

d
n

k=1
Ak = A1 ´ A2 ´ Á ´ An

1A ´ B2c = 5v : -5 … v … 106.
A ¨ B ¨ C = �, and

1A ´ B2 ¨ C = 5v : v 7 106,
Cc = 5v : v … 06,
A ¨ B = 5v : v 6 -106,
A ´ B = 5v : v 6 -5 or v 7 106,

C = 5v : v 7 06,            “v is positive.”

B = 5v : v 6 -56,   “v is less than -5 volts,”

A = 5v : ƒv ƒ 7 106, “magnitude of v is greater than 10 volts,”

E10 ,
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are assigned probabilities. We expect that any set operation on events in will pro-
duce a set that is also an event in In particular, we insist that complements, as well
as countable unions and intersections of events in i.e., Eqs. (2.1) and (2.5) through
(2.8), result in events in When the sample space S is finite or countable, we simply
let consist of all subsets of S and we can proceed without further concerns about 
However, when S is the real line R (or an interval of the real line), we cannot let be
all possible subsets of R and still satisfy the axioms of probability. Fortunately, we can
obtain all the events of practical interest by letting be of the class of events ob-
tained as complements and countable unions and intersections of intervals of the real
line, e.g., (a, b] or We will refer to this class of events as the Borel field. In the
remainder of the book, we will refer to the event class from time to time. For the in-
troductory-level course in probability you will not need to know more than what is
stated in this paragraph.

When we speak of a class of events we are referring to a collection (set) of events
(sets), that is, we are speaking of a “set of sets.” We refer to the collection of sets as a
class to remind us that the elements of the class are sets. We use script capital letters to
refer to a class, e.g., If the class consists of the collection of sets 
then we write 

Example 2.8

Let be the outcome of a coin toss. Let every subset of S be an event. Find all possi-
ble events of S.

An event is a subset of S, so we need to find all possible subsets of S. These are:

Note that includes both the empty set and S. Let and be binary numbers where in-
dicates that the corresponding element of S is in a given subset. We generate all possible subsets
by taking all possible values of the pair and Thus corresponds to the set

Clearly there are possible subsets as listed above.

For a finite sample space, 2 we usually allow all subsets of S to be
events.This class of events is called the power set of S and we will denote it by We can
index all possible subsets of S with binary numbers and we find that the
power set of S has members. Because of this, the power set is also denoted by 

Section 2.8 discusses some of the fine points on event classes.

2.2 THE AXIOMS OF PROBABILITY

Probabilities are numbers assigned to events that indicate how “likely” it is that the
events will occur when an experiment is performed.A probability law for a random ex-
periment is a rule that assigns probabilities to the events of the experiment that belong
to the event class Thus a probability law is a function that assigns a number to sets
(events). In Section 1.3 we found a number of properties of relative frequency that any
definition of probability should satisfy. The axioms of probability formally state that a

F.

S = 2S.2k
i1 , i2, Á , ik ,

S.
S = 51, 2, Á , k6,

225H6.
iT = 0, iH = 1iH.iT

i = 1iHiTS

S = 5�, 5H6, 5T6, 5H, T66.

S = 5T, H6

C = 5A1 , Á , Ak6.
A1 , Á , Ak ,CC,F, G.

F
1-q , b].

F

F
F.F

F.
F,

F.
F

2The discussion applies to any finite sample space with arbitrary objects but we consider
for notational simplicity.51, 2, Á , k6

S = 5x1 , Á , xk6,
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probability law must satisfy these properties. In this section, we develop a number of
results that follow from this set of axioms.

Let E be a random experiment with sample space S and event class A
probability law for the experiment E is a rule that assigns to each event a
number P[A], called the probability of A, that satisfies the following axioms:

Axioms I, II, and III are enough to deal with experiments with finite sample
spaces. In order to handle experiments with infinite sample spaces, Axiom III needs to
be replaced by Note that includes Axiom III as a special case,
by letting for Thus we really only need Axioms I, II, and Never-
theless we will gain greater insight by starting with Axioms I, II, and III.

The axioms allow us to view events as objects possessing a property (i.e., their
probability) that has attributes similar to physical mass. Axiom I states that the proba-
bility (mass) is nonnegative, and Axiom II states that there is a fixed total amount of
probability (mass), namely 1 unit. Axiom III states that the total probability (mass) in
two disjoint objects is the sum of the individual probabilities (masses).

The axioms provide us with a set of consistency rules that any valid probability
assignment must satisfy.We now develop several properties stemming from the axioms
that are useful in the computation of probabilities.

The first result states that if we partition the sample space into two mutually ex-
clusive events, A and then the probabilities of these two events add up to one.

Corollary 1

Proof: Since an event A and its complement are mutually exclusive, we have
from Axiom III that

Since by Axiom II,

The corollary follows after solving for 

The next corollary states that the probability of an event is always less than or
equal to one. Corollary 2 combined with Axiom I provide good checks in problem

P3Ac4.
1 = P3S4 = P3A ´ Ac4 = P3A4 + P3Ac4.

S = A ´ Ac,

P3A ´ Ac4 = P3A4 + P3Ac4.

A ¨ Ac = �,Ac

P3Ac4 = 1 - P3A4

Ac,

III¿.k Ú 3.Ak = �
Axiom III¿Axiom III¿.

PBdq
k=1
AkR = a

q

k=1
P3Ak4.

Axiom I 0 … P3A4
Axiom II P3S4 = 1
Axiom III If A ¨ B = �, then P3A ´ B4 = P3A4 + P3B4.
Axiom III¿ If A1 , A2 , Á  is a sequence of events such that

Ai ¨ Aj = � for all i Z j, then

A HF
F.
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solving: If your probabilities are negative or are greater than one, you have made a
mistake somewhere!

Corollary 2

Proof: From Corollary 1,

since

Corollary 3 states that the impossible event has probability zero.

Corollary 3

Proof: Let and in Corollary 1:

Corollary 4 provides us with the standard method for computing the probability
of a complicated event A. The method involves decomposing the event A into the
union of disjoint events The probability of A is the sum of the proba-
bilities of the 

Corollary 4

If are pairwise mutually exclusive, then

Proof: We use mathematical induction. Axiom III implies that the result is true for Next
we need to show that if the result is true for some n, then it is also true for This, combined
with the fact that the result is true for implies that the result is true for 

Suppose that the result is true for some that is,

(2.9)

and consider the case

(2.10)

where we have applied Axiom III to the second expression after noting that the union of events
to is mutually exclusive with The distributive property then impliesbdn

k=1
Ak r ¨ An+1 = d

n

k=1
5Ak ¨ An+16 = d

n

k=1
� = �.

An+1 .AnA1

PBdn+1

k=1
AkR = PB bdn

k=1
Ak r ´ An+1R = PBdn

k=1
AkR + P3An+14,

n + 1

PBdn
k=1
AkR = a

n

k=1
P3Ak4,

n 7 2;
n Ú 2.n = 2,

n + 1.
n = 2.

PBdn
k=1
AkR = a

n

k=1
P3Ak4 for n Ú 2.

A1 , A2 , Á , An

Ak’s.
A1 , A2 , Á , An .

P3�4 = 1 - P3S4 = 0.

Ac = �A = S

P3�4 = 0

P3Ac4 Ú 0.

P3A4 = 1 - P3Ac4 … 1,

P3A4 … 1
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Substitution of Eq. (2.9) into Eq. (2.10) gives the case

Corollary 5 gives an expression for the union of two events that are not necessar-
ily mutually exclusive.

Corollary 5

Proof: First we decompose A, and B as unions of disjoint events. From the Venn diagram
in Fig. 2.3,

By substituting and from the two lower equations into the top equation,
we obtain the corollary.

By looking at the Venn diagram in Fig. 2.3, you will see that the sum 
counts the probability (mass) of the set twice. The expression in Corollary 5
makes the appropriate correction.

Corollary 5 is easily generalized to three events,

(2.11)

and in general to n events, as shown in Corollary 6.

- P3A ¨ C4 - P3B ¨ C4 + P3A ¨ B ¨ C4,
P3A ´ B ´ C4 = P3A4 + P3B4 + P3C4 - P3A ¨ B4

A ¨ B
P[A] + P[B]

P3B ¨ Ac4P3A ¨ Bc4
P3B4 = P3B ¨ Ac4 + P3A ¨ B4
P3A4 = P3A ¨ Bc4 + P3A ¨ B4
P3A ´ B4 = P3A ¨ Bc4 + P3B ¨ Ac4 + P3A ¨ B4

A ´ B,

P3A ´ B4 = P3A4 + P3B4 - P3A ¨ B4

PBdn+1

k=1
AkR = a

n+1

k=1
P3Ak4.

n + 1

A � Bc Ac � BA � B

A B

FIGURE 2.3
Decomposition of into three disjoint sets.A ´ B
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Corollary 6

Proof is by induction (see Problems 2.26 and 2.27).

Since probabilities are nonnegative, Corollary 5 implies that the probability
of the union of two events is no greater than the sum of the individual event prob-
abilities

(2.12)

The above inequality is a special case of the fact that a subset of another set must
have smaller probability. This result is frequently used to obtain upper bounds for
probabilities of interest. In the typical situation, we are interested in an event A whose
probability is difficult to find; so we find an event B for which the probability can be
found and that includes A as a subset.

Corollary 7

If then 

Proof: In Fig. 2.4, B is the union of A and thus

since

The axioms together with the corollaries provide us with a set of rules for comput-
ing the probability of certain events in terms of other events. However, we still need an
initial probability assignment for some basic set of events from which the probability of
all other events can be computed.This problem is dealt with in the next two subsections.

P3Ac ¨ B4 Ú 0.

P3B4 = P3A4 + P3Ac ¨ B4 Ú P3A4,
Ac ¨ B,

P3A4 … P3B4.A( B,

P3A ´ B4 … P3A4 + P3B4.

+ 1-12n+1P3A1 ¨ Á ¨ An4.

PBdn
k=1
AkR = a

n

j=1
P3Aj4 - a

j6k
P3Aj ¨ Ak4 + Á

B

Ac � BA

FIGURE 2.4
If then P1A2 … P1B2.A ( B,



Section 2.2 The Axioms of Probability 35

2.2.1 Discrete Sample Spaces

In this section we show that the probability law for an experiment with a countable sam-
ple space can be specified by giving the probabilities of the elementary events. First, sup-
pose that the sample space is finite, and let consist of all subsets
of S. All distinct elementary events are mutually exclusive, so by Corollary 4 the prob-
ability of any event is given by

(2.13)

that is, the probability of an event is equal to the sum of the probabilities of the outcomes
in the event.Thus we conclude that the probability law for a random experiment with a fi-
nite sample space is specified by giving the probabilities of the elementary events.

If the sample space has n elements, a probability assignment of
particular interest is the case of equally likely outcomes. The probability of the ele-
mentary events is

(2.14)

The probability of any event that consists of k outcomes, say is

(2.15)

Thus if outcomes are equally likely, then the probability of an event is equal to the num-
ber of outcomes in the event divided by the total number of outcomes in the sample
space. Section 2.3 discusses counting methods that are useful in finding probabilities in
experiments that have equally likely outcomes.

Consider the case where the sample space is countably infinite,
Let the event class be the class of all subsets of S. Note that must now satisfy Eq. (2.8)
because events can consist of countable unions of sets. implies that the
probability of an event such as is given by

The probability of an event with a countably infinite sample space is determined from
the probabilities of the elementary events.

Example 2.9

An urn contains 10 identical balls numbered A random experiment involves selecting a
ball from the urn and noting the number of the ball. Find the probability of the following events:

and of and A ´ B ´ C.A ´ B

C = “number of ball selected is less than 5,”

B = “number of ball selected is a multiple of 3,”

A = “number of ball selected is odd,”

0, 1, Á , 9.

P3D4 = P35b1
œ , b2

œ , b3
œ , Á 64 = P35b1

œ64 + P35b2
œ64 + P35b3

œ64 + Á

D = 5b1 , b2 , b3 , Á 6 Axiom III¿
FF

S = 5a1 , a2 , Á 6.

P3B4 = P35a1
œ64 + Á + P35akœ 64 =

k
n

.

B = 5a1
œ , Á , ak

œ 6,
P35a164 = P35a264 = Á = P35an64 =

1
n

.

S = 5a1 , Á , an6,

= P35a1
œ64 + P35a2

œ64 + Á + P35amœ 64;
P3B4 = P35a1

œ , a2
œ , Á , am

œ 64
B = 5a1

œ , a2
œ , Á , am

œ 6
FS = 5a1 , a2 , Á , an6
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The sample space is so the sets of outcomes corresponding to the above
events are

If we assume that the outcomes are equally likely, then

From Corollary 5,

where we have used the fact that so From Corollary 6,

You should verify the answers for and by enumerating the outcomes in
the events.

Many probability models can be devised for the same sample space and events by
varying the probability assignment; in the case of finite sample spaces all we need to do
is come up with n nonnegative numbers that add up to one for the probabilities of the
elementary events. Of course, in any particular situation, the probability assignment
should be selected to reflect experimental observations to the extent possible. The fol-
lowing example shows that situations can arise where there is more than one “reason-
able” probability assignment and where experimental evidence is required to decide
on the appropriate assignment.

Example 2.10

Suppose that a coin is tossed three times. If we observe the sequence of heads and tails, then
there are eight possible outcomes If
we assume that the outcomes of are equiprobable, then the probability of each of the eight el-
ementary events is 1/8. This probability assignment implies that the probability of obtaining two
heads in three tosses is, by Corollary 3,

= P35HHT64 + P35HTH64 + P35THH64 =
3
8

.

P3“2 heads in 3 tosses”4 = P35HHT, HTH, THH64

S3

S3 = 5HHH, HHT, HTH, THH, TTH, THT, HTT, TTT6.

P3A ´ B ´ C4P3A ´ B4
=

9
10

.

=
5
10

+
3

10
+

5
10

-
2

10
-

2
10

-
1

10
+

1
10

- P3A ¨ C4 - P3B ¨ C4 + P3A ¨ B ¨ C4
P3A ´ B ´ C4 = P3A4 + P3B4 + P3C4 - P3A ¨ B4

P3A ¨ B4 = 2>10.A ¨ B = 53, 96,
P3A ´ B4 = P3A4 + P3B4 - P3A ¨ B4 =

5
10

+
3

10
-

2
10

=
6

10
,

P3C4 = P35064 + P35164 + P35264 + P35364 + P35464 =
5

10
.

P3B4 = P35364 + P35664 + P35964 =
3

10
.

P3A4 = P35164 + P35364 + P35564 + P35764 + P35964 =
5

10
.

A = 51, 3, 5, 7, 96, B = 53, 6, 96, and C = 50, 1, 2, 3, 46.

S = 50, 1, Á , 96,
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Now suppose that we toss a coin three times but we count the number of heads in three
tosses instead of observing the sequence of heads and tails. The sample space is now

If we assume the outcomes of to be equiprobable, then each of the elemen-
tary events of has probability 1/4. This second probability assignment predicts that the proba-
bility of obtaining two heads in three tosses is

The first probability assignment implies that the probability of two heads in three toss-
es is 3/8, and the second probability assignment predicts that the probability is 1/4. Thus the
two assignments are not consistent with each other. As far as the theory is concerned, either
one of the assignments is acceptable. It is up to us to decide which assignment is more ap-
propriate. Later in the chapter we will see that only the first assignment is consistent with
the assumption that the coin is fair and that the tosses are “independent.” This assignment
correctly predicts the relative frequencies that would be observed in an actual coin tossing
experiment.

Finally we consider an example with a countably infinite sample space.

Example 2.11

A fair coin is tossed repeatedly until the first heads shows up; the outcome of the experiment is
the number of tosses required until the first heads occurs. Find a probability law for this experi-
ment.

It is conceivable that an arbitrarily large number of tosses will be required until heads
occurs, so the sample space is Suppose the experiment is repeated n times.
Let be the number of trials in which the jth toss results in the first heads. If n is very large,
we expect to be approximately n/2 since the coin is fair. This implies that a second toss is
necessary about times, and again we expect that about half of these—that is,
n/4—will result in heads, and so on, as shown in Fig. 2.5. Thus for large n, the relative fre-
quencies are

We therefore conclude that a reasonable probability law for this experiment is

(2.16)

We can verify that these probabilities add up to one by using the geometric series with 

2.2.2 Continuous Sample Spaces

Continuous sample spaces arise in experiments in which the outcomes are numbers
that can assume a continuum of values, so we let the sample space S be the entire real
line R (or some interval of the real line). We could consider letting the event class con-
sist of all subsets of R. But it turns out that this class is “too large” and it is impossible

a
q

j=1
aj =

a

1 - a ` a=1/2
= 1.

a = 1/2:

P3 j tosses till first heads4 = a1
2
b j j = 1, 2, Á .

fj L
Nj

n
= a1

2
b j j = 1, 2, Á .

n - N1 L n>2
N1

Nj

S = 51, 2, 3, Á 6.

P3“2 heads in 3 tosses”4 = P35264 =
1
4

.

S4

S4S4 = 50, 1, 2, 36.
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3Section 2.9 discusses in more detail.B

to assign probabilities to all the subsets of R. Fortunately, it is possible to assign proba-
bilities to all events in a smaller class that includes all events of practical interest. This
class denoted by is called the Borel field and it contains all open and closed intervals
of the real line as well as all events that can be obtained as countable unions, intersec-
tions, and complements.3 is once again the key to calculating probabilities of
events. Let be a sequence of mutually exclusive events that are represented
by intervals of the real line, then

where each is specified by the probability law. For this reason, probability laws
in experiments with continuous sample spaces specify a rule for assigning numbers to in-
tervals of the real line.

Example 2.12

Consider the random experiment “pick a number x at random between zero and one.” The sample
space S for this experiment is the unit interval [0, 1], which is uncountably infinite. If we suppose that
all the outcomes S are equally likely to be selected, then we would guess that the probability that the
outcome is in the interval [0, 1/2] is the same as the probability that the outcome is in the interval
[1/2, 1].We would also guess that the probability of the outcome being exactly equal to 1/2 would be
zero since there are an uncountably infinite number of equally likely outcomes.

P3Ak4
PBdq

k=1
AkR = a

q

k=1
P3Ak4

A1 , A2 , Á
Axiom III¿

B,

n trials

Tails

Tails

Tails

Heads

Heads

Heads

Heads

N1 �
n
2

N3 �
n
8

� trialsn
8

� trialsn
4

� trialsn
2

N4 �
n

16

N1 � �
1
2

n
2

n
4

FIGURE 2.5
In n trials heads comes up in the first toss approximately n/2 times, in
the second toss approximately n/4 times, and so on.



Consider the following probability law: “The probability that the outcome falls in a subin-
terval of S is equal to the length of the subinterval,” that is,

(2.17)

where by P[[a, b]] we mean the probability of the event corresponding to the interval [a, b].
Clearly, Axiom I is satisfied since Axiom II follows from with and

We now show that the probability law is consistent with the previous guesses about the
probabilities of the events [0, 1/2], [1/2, 1], and 

In addition, if is any point in S, then since individual points have zero width.
Now suppose that we are interested in an event that is the union of several intervals; for

example, “the outcome is at least 0.3 away from the center of the unit interval,” that is,
Since the two intervals are disjoint, we have by Axiom III

The next example shows that an initial probability assignment that specifies the
probability of semi-infinite intervals also suffices to specify the probabilities of all
events of interest.

Example 2.13

Suppose that the lifetime of a computer memory chip is measured, and we find that “the propor-
tion of chips whose lifetime exceeds t decreases exponentially at a rate ” Find an appropriate
probability law.

Let the sample space in this experiment be If we interpret the above finding
as “the probability that a chip’s lifetime exceeds t decreases exponentially at a rate ” we then
obtain the following assignment of probabilities to events of the form 

(2.18)

where Note that the exponential is a number between 0 and 1 for so Axiom I is sat-
isfied. Axiom II is satisfied since

The probability that the lifetime is in the interval (r, s] is found by noting in Fig. 2.6 that
so by Axiom III,

P31r, q24 = P31r, s44 + P31s, q24.
1r, s4 ´ 1s, q2 = 1r, q2,

P3S4 = P310, q24 = 1.

t 7 0,a 7 0.

P31t, q24 = e-at for t 7 0,

1t, q2:
a,

S = 10, q2.
a.

P3A4 = P330, 0.244 + P330.8, 144 = .4.

A = 30, 0.24 ´ 30.8, 14.

P33x0 , x044 = 0x0

P330.5, 144 = 1 - 0.5 = .5

P330, 0.544 = 0.5 - 0 = .5

51/26:
b = 1.

a = 0S = 3a, b4b Ú a Ú 0.

P33a, b44 = 1b - a2 for 0 … a … b … 1,

Section 2.2 The Axioms of Probability 39

r s
� ��

FIGURE 2.6
1r, q2 = 1r, s4 ´ 1s, q2.
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By rearranging the above equation we obtain

We thus obtain the probability of arbitrary intervals in S.

In both Example 2.12 and Example 2.13, the probability that the outcome takes on
a specific value is zero. You may ask: If an outcome (or event) has probability zero, doesn’t
that mean it cannot occur? And you may then ask: How can all the outcomes in a sam-
ple space have probability zero? We can explain this paradox by using the relative
frequency interpretation of probability.An event that occurs only once in an infinite num-
ber of trials will have relative frequency zero. Hence the fact that an event or outcome has
relative frequency zero does not imply that it cannot occur, but rather that it occurs very
infrequently. In the case of continuous sample spaces, the set of possible outcomes is so
rich that all outcomes occur infrequently enough that their relative frequencies are zero.

We end this section with an example where the events are regions in the plane.

Example 2.14

Consider Experiment where we picked two numbers x and y at random between zero and
one. The sample space is then the unit square shown in Fig. 2.7(a). If we suppose that all pairs of
numbers in the unit square are equally likely to be selected, then it is reasonable to use a proba-
bility assignment in which the probability of any region R inside the unit square is equal to the
area of R. Find the probability of the following events: and
C = 5x 7 y6.

B = 5y 7 0.56,A = 5x 7 0.56,

E12 ,

P31r, s44 = P31r, q24 - P31s, q24 = e-ar - e-as.

(a) Sample space

x

y

1

0 1

S

(b) Event �x � �

x

y

1

0 11
2

x �
1
2

y �
1
21

2

1
2

(d) Event �x � y�(c) Event �y � �
1
2

x

y

1

0 1
x

y

1

0 1

x � y

FIGURE 2.7
A two-dimensional sample space and three events.
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4This section and all sections marked with an asterisk may be skipped without loss of continuity.

Figures 2.7(b) through 2.7(d) show the regions corresponding to the events A, B, and C.
Clearly each of these regions has area 1/2. Thus

We reiterate how to proceed from a problem statement to its probability model.
The problem statement implicitly or explicitly defines a random experiment, which
specifies an experimental procedure and a set of measurements and observations.
These measurements and observations determine the set of all possible outcomes and
hence the sample space S.

An initial probability assignment that specifies the probability of certain events
must be determined next. This probability assignment must satisfy the axioms of prob-
ability. If S is discrete, then it suffices to specify the probabilities of elementary events.
If S is continuous, it suffices to specify the probabilities of intervals of the real line or
regions of the plane.The probability of other events of interest can then be determined
from the initial probability assignment and the axioms of probability and their corol-
laries. Many probability assignments are possible, so the choice of probability assign-
ment must reflect experimental observations and/or previous experience.

2.3 COMPUTING PROBABILITIES USING COUNTING METHODS4

In many experiments with finite sample spaces, the outcomes can be assumed to be
equiprobable.The probability of an event is then the ratio of the number of outcomes in
the event of interest to the total number of outcomes in the sample space (Eq. (2.15)).
The calculation of probabilities reduces to counting the number of outcomes in an
event. In this section, we develop several useful counting (combinatorial) formulas.

Suppose that a multiple-choice test has k questions and that for question i the
student must select one of possible answers. What is the total number of ways of an-
swering the entire test? The answer to question i can be viewed as specifying the ith
component of a k-tuple, so the above question is equivalent to: How many distinct or-
dered k-tuples are possible if is an element from a set with distinct el-
ements?

Consider the case. If we arrange all possible choices for and for along
the sides of a table as shown in Fig. 2.8, we see that there are distinct ordered pairs.
For triplets we could arrange the possible pairs along the vertical side of
the table and the choices for along the horizontal side. Clearly, the number of pos-
sible triplets is 

In general, the number of distinct ordered k-tuples with components
from a set with distinct elements is

(2.19)

Many counting problems can be posed as sampling problems where we select
“balls” from “urns” or “objects” from “populations.” We will now use Eq. (2.19) to de-
velop combinatorial formulas for various types of sampling.

number of distinct ordered k-tuples = n1n2 Á nk .

nixi

1x1 , Á , xk2
n1n2n3 .

x3n3

1x1 , x22n1n2

n1n2

x2x1k = 2

nixi1x1 , Á , xk2

ni

*

P3A4 =
1
2

, P3B4 =
1
2

, P3C4 =
1
2

.
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2.3.1 Sampling with Replacement and with Ordering

Suppose we choose k objects from a set A that has n distinct objects, with replace-
ment—that is, after selecting an object and noting its identity in an ordered list, the ob-
ject is placed back in the set before the next choice is made. We will refer to the set A
as the “population.” The experiment produces an ordered k-tuple

where and Equation (2.19) with implies that

(2.20)

Example 2.15

An urn contains five balls numbered 1 to 5. Suppose we select two balls from the urn with re-
placement. How many distinct ordered pairs are possible? What is the probability that the two
draws yield the same number?

Equation (2.20) states that the number of ordered pairs is Table 2.1 shows the 25
possible pairs. Five of the 25 outcomes have the two draws yielding the same number; if we sup-
pose that all pairs are equiprobable, then the probability that the two draws yield the same num-
ber is 

2.3.2 Sampling without Replacement and with Ordering

Suppose we choose k objects in succession without replacement from a population A of
n distinct objects. Clearly, The number of possible outcomes in the first draw is

the number of possible outcomes in the second draw is namely all
n objects except the one selected in the first draw; and so on, up to in
the final draw. Equation (2.19) then gives

(2.21)number of distinct ordered k-tuples = n1n - 12Á 1n - k + 12.
nk = n - 1k - 12n2 = n - 1,n1 = n;

k … n.

5/25 = .2.

52 = 25.

number of distinct ordered k-tuples = nk.

n1 = n2 = Á = nk = ni = 1, Á , k.xi H A

1x1 , Á , xk2,

(a1,b1) (a2,b1) (an1
,b1). . .

(a1,b2)

b1

a1 a2

x1

x2

an1
. . .

b2

bn2

(a2,b2) (an1
,b2). . .

. .
 .

. .
 .

. .
 .

. . 
.

(a1,bn2
) (a2,bn2

) (an1
,bn2

). . .

FIGURE 2.8
If there are distinct choices for and distinct choices
for then there are distinct ordered pairs 1x1 , x22.n1n2x2,

n2x1n1
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TABLE 2.1 Enumeration of possible outcomes in various types of
sampling of two balls from an urn containing five distinct balls.

(a) Ordered pairs for sampling with replacement.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(b) Ordered pairs for sampling without replacement.

(1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4)

(c) Pairs for sampling without replacement or ordering.

(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 4) (2, 5)

(3, 4) (3, 5)

(4, 5)

Example 2.16

An urn contains five balls numbered 1 to 5. Suppose we select two balls in succession without re-
placement. How many distinct ordered pairs are possible? What is the probability that the first
ball has a number larger than that of the second ball?

Equation (2.21) states that the number of ordered pairs is The 20 possible or-
dered pairs are shown in Table 2.1(b).Ten ordered pairs in Tab. 2.1(b) have the first number larg-
er than the second number; thus the probability of this event is 

Example 2.17

An urn contains five balls numbered Suppose we draw three balls with replacement.
What is the probability that all three balls are different?

From Eq. (2.20) there are possible outcomes, which we will suppose are
equiprobable. The number of these outcomes for which the three draws are different is given
by Eq. (2.21): Thus the probability that all three balls are different is

2.3.3 Permutations of n Distinct Objects

Consider sampling without replacement with This is simply drawing objects
from an urn containing n distinct objects until the urn is empty. Thus, the number of
possible orderings (arrangements, permutations) of n distinct objects is equal to the

k = n.

60/125 = .48.
5142132 = 60.

53 = 125

1, 2, Á , 5.

10/20 = 1/2.

5142 = 20.
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number of ordered n-tuples in sampling without replacement with . From Eq. (2.21),
we have

(2.22)

We refer to n! as n factorial.
We will see that n! appears in many of the combinatorial formulas. For large n,

Stirling’s formula is very useful:

(2.23)

where the sign indicates that the ratio of the two sides tends to unity as 
[Feller, p. 52].

Example 2.18

Find the number of permutations of three distinct objects Equation (2.22) gives
The six permutations are

123 312 231 132 213 321.

Example 2.19

Suppose that 12 balls are placed at random into 12 cells, where more than 1 ball is allowed to oc-
cupy a cell. What is the probability that all cells are occupied?

The placement of each ball into a cell can be viewed as the selection of a cell number be-
tween 1 and 12. Equation (2.20) implies that there are possible placements of the 12 balls in
the 12 cells. In order for all cells to be occupied, the first ball selects from any of the 12 cells, the
second ball from the remaining 11 cells, and so on. Thus the number of placements that occupy
all cells is 12!. If we suppose that all possible placements are equiprobable, we find that the
probability that all cells are occupied is

This answer is surprising if we reinterpret the question as follows. Given that 12 airplane
crashes occur at random in a year, what is the probability that there is exactly 1 crash each
month? The above result shows that this probability is very small. Thus a model that assumes
that crashes occur randomly in time does not predict that they tend to occur uniformly over time
[Feller, p. 32].

2.3.4 Sampling without Replacement and without Ordering

Suppose we pick k objects from a set of n distinct objects without replacement and that
we record the result without regard to order. (You can imagine putting each selected
object into another jar, so that when the k selections are completed we have no record
of the order in which the selection was done.) We call the resulting subset of k selected
objects a “combination of size k.”

From Eq. (2.22), there are k! possible orders in which the k objects in the second
jar could have been selected. Thus if denotes the number of combinations of size kCk

n

12!
1212 = a12

12
b a11

12
b Á a 1

12
b = 5.37110-52.

1212

1212

3! = 3122112 = 6.
51, 2, 36.

n: q'
n! ' 22p nn+1/2e-n,

number of permutations of n objects = n1n - 12Á 122112 ! n!.

k = n
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from a set of size n, then must be the total number of distinct ordered samples of
k objects, which is given by Eq. (2.21). Thus

(2.24)

and the number of different combinations of size k from a set of size is

(2.25)

The expression is called a binomial coefficient and is read “n choose k.”
Note that choosing k objects out of a set of n is equivalent to choosing the 

objects that are to be left out. It then follows that (also see Problem 2.60):

Example 2.20

Find the number of ways of selecting two objects from without regard to order.
Equation (2.25) gives

Table 2.1(c) gives the 10 pairs.

Example 2.21

Find the number of distinct permutations of k white balls and black balls.
This problem is equivalent to the following sampling problem: Put n tokens numbered 1 to

n in an urn, where each token represents a position in the arrangement of balls; pick a combina-
tion of k tokens and put the k white balls in the corresponding positions. Each combination of
size k leads to a distinct arrangement (permutation) of k white balls and black balls. Thus
the number of distinct permutations of k white balls and black balls is 

As a specific example let and The number of combinations of size 2 from a
set of four distinct objects is

The 6 distinct permutations with 2 whites (zeros) and 2 blacks (ones) are

1100 0110 0011 1001 1010 0101.

Example 2.22 Quality Control

A batch of 50 items contains 10 defective items. Suppose 10 items are selected at random and
tested. What is the probability that exactly 5 of the items tested are defective?

¢4
2
≤ =

4!
2! 2!

=
4132
2112 = 6.

k = 2.n = 4
Ck
n .n - k

n - k

n - k

¢5
2
≤ =

5!
2! 3!

= 10.

A = 51, 2, 3, 4, 56

¢n
k
≤ = ¢ n

n - k
≤ .

n - k
Ank B
Ck
n =
n1n - 12Á 1n - k + 12

k!
=

n!
k! 1n - k2! ! ¢nk≤ .

n, k … n,

Ck
nk! = n1n - 12Á 1n - k + 12,

Ck
nk!
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The number of ways of selecting 10 items out of a batch of 50 is the number of combina-
tions of size 10 from a set of 50 objects:

The number of ways of selecting 5 defective and 5 nondefective items from the batch of 50 is the
product where is the number of ways of selecting the 5 items from the set of 10 defec-
tive items, and is the number of ways of selecting 5 items from the 40 nondefective items.Thus
the probability that exactly 5 tested items are defective is

Example 2.21 shows that sampling without replacement and without ordering is
equivalent to partitioning the set of n distinct objects into two sets: B, containing the k
items that are picked from the urn, and containing the left behind. Suppose
we partition a set of n distinct objects into subsets where is as-
signed elements and 

In Problem 2.61, it is shown that the number of distinct partitions is

(2.26)

Equation (2.26) is called the multinomial coefficient. The binomial coefficient is the
case of the multinomial coefficient.

Example 2.23

A six-sided die is tossed 12 times. How many distinct sequences of faces (numbers from the set
) have each number appearing exactly twice? What is the probability of obtaining

such a sequence?
The number of distinct sequences in which each face of the die appears exactly twice is the

same as the number of partitions of the set into 6 subsets of size 2, namely

.

From Eq. (2.20) we have that there are possible outcomes in 12 tosses of a die. If we suppose
that all of these have equal probabilities, then the probability of obtaining a sequence in which
each face appears exactly twice is

12!/26

612 =
7,484,400

2,176,782,336
M 3.4110-32.

612

12!
2! 2! 2! 2! 2! 2!

=
12!

26
= 7,484,400

51, 2, Á , 126

51, 2, 3, 4, 5, 66

J = 2

n!
k1! k2! Á kJ!

.

k1 + k2 + Á + kJ = n.kJ

BJB1 , B2 , Á , BJ ,J
n - kBc,

¢10
5
≤ ¢40

5
≤

¢50
10
≤ =

10! 40! 10! 40!
5! 5! 35! 5! 50!

= .016.

N2

N1N1N2 ,

¢50
10
≤ =

50!
10! 40!

.
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2.3.5 Sampling with Replacement and without Ordering

Suppose we pick k objects from a set of n distinct objects with replacement and we
record the result without regard to order. This can be done by filling out a form which
has n columns, one for each distinct object. Each time an object is selected, an “x” is
placed in the corresponding column. For example, if we are picking 5 objects from 4
distinct objects, one possible form would look like this:

Object 1 Object 2 Object 3 Object 4

xx                      / / x                        / xx

where the slash symbol (“/”) is used to separate the entries for different columns. Note
that this form can be summarized by the sequence

xx//x/xx

where the /’s indicate the lines between columns, and where nothing appears be-
tween consecutive /’s if the corresponding object was not selected. Each different
arrangement of 5 x’s and 3 /’s leads to a distinct form. If we identify x’s with “white
balls” and /’s with “black balls,” then this problem was considered in Example 2.21, and
the number of different arrangements is given by 

In the general case the form will involve k x’s and /’s. Thus the number of
different ways of picking k objects from a set of n distinct objects with replacement and
without ordering is given by

2.4 CONDITIONAL PROBABILITY

Quite often we are interested in determining whether two events, A and B, are related in
the sense that knowledge about the occurrence of one, say B, alters the likelihood of oc-
currence of the other, A.This requires that we find the conditional probability,
of event A given that event B has occurred.The conditional probability is defined by

(2.27)

Knowledge that event B has occurred implies that the outcome of the experi-
ment is in the set B. In computing we can therefore view the experiment as
now having the reduced sample space B as shown in Fig. 2.9. The event A occurs in the
reduced sample space if and only if the outcome is in Equation (2.27) simply
renormalizes the probability of events that occur jointly with B. Thus if we let 
Eq. (2.27) gives as required. It is easy to show that for fixed B,
satisfies the axioms of probability. (See Problem 2.74.)

If we interpret probability as relative frequency, then should be the rel-
ative frequency of the event in experiments where B occurred. Suppose that the
experiment is performed n times, and suppose that event B occurs times, and thatnB

A ¨ B
P3A ƒ B4

P3A ƒ B4,P3B ƒ B4 = 1,
A = B,

A ¨ B.z

P3A ƒ B4

P3A ƒ B4 =
P3A ¨ B4
P3B4 for P3B4 7 0.

P3A ƒ B4,

¢n - 1 + k
k

≤ = ¢n - 1 + k
n - 1

≤ .

n - 1
A83 B .

n - 1
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event occurs times. The relative frequency of interest is then

where we have implicitly assumed that This is in agreement with Eq. (2.27).

Example 2.24

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls,
numbered 3 and 4. The number and color of the ball is noted, so the sample space is

Assuming that the four outcomes are equally likely, find 
and where A, B, and C are the following events:

“black ball selected,”

“even-numbered ball selected,” and

“number of ball is greater than 2.”

Since and Eq. (2.24) gives

In the first case, knowledge of B did not alter the probability of A. In the second case, knowledge
of C implied that A had not occurred.

If we multiply both sides of the definition of by P[B] we obtain

(2.28a)

Similarly we also have that

(2.28b)P3A ¨ B4 = P3B ƒ A4P3A4.

P3A ¨ B4 = P3A ƒ B4P3B4.
P3A ƒ B4

P3A ƒ C4 =
P3A ¨ C4
P3C4 =

0
.5

= 0 Z P3A4.

P3A ƒ B4 =
P3A ¨ B4
P3B4 =

.25
.5

= .5 = P3A4

P3A ¨ C4 = P3�4 = 0,P3A ¨ B4 = P312, b24
C = 513, w2, 14, w26,
B = 512, b2, 14, w26,
A = 511, b2, 12, b26,
P3A ƒ C4,

P3A ƒ B4511, b2, 12, b2, 13, w2, 14, w26.

P3B4 7 0.

nA¨B

nB
=
nA¨B/n
nB/n

: P3A ¨ B4
P3B4 ,

nA¨BA ¨ B

B

B
A

A

S

�

FIGURE 2.9
If B is known to have occurred, then A can occur only
if occurs.A ¨ B
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In the next example we show how this equation is useful in finding probabilities
in sequential experiments. The example also introduces a tree diagram that facilitates
the calculation of probabilities.

Example 2.25

An urn contains two black balls and three white balls. Two balls are selected at random from the
urn without replacement and the sequence of colors is noted. Find the probability that both balls
are black.

This experiment consists of a sequence of two subexperiments. We can imagine working
our way down the tree shown in Fig. 2.10 from the topmost node to one of the bottom nodes:We
reach node 1 in the tree if the outcome of the first draw is a black ball; then the next subexperi-
ment consists of selecting a ball from an urn containing one black ball and three white balls. On
the other hand, if the outcome of the first draw is white, then we reach node 2 in the tree and the
second subexperiment consists of selecting a ball from an urn that contains two black balls and
two white balls. Thus if we know which node is reached after the first draw, then we can state the
probabilities of the outcome in the next subexperiment.

Let and be the events that the outcome is a black ball in the first and second draw,
respectively. From Eq. (2.28b) we have

In terms of the tree diagram in Fig. 2.10, is the probability of reaching node 1 and is
the probability of reaching the leftmost bottom node from node 1. Now since the first 
draw is from an urn containing two black balls and three white balls; since,given 
the second draw is from an urn containing one black ball and three white balls. Thus

In general, the probability of any sequence of colors is obtained by multiplying the probabilities
corresponding to the node transitions in the tree in Fig. 2.10.

P3B1 ¨ B24 =
1
4

2
5

=
1

10
.

B1 ,P3B2 ƒ B14 = 1/4
P3B14 = 2/5

P3B2 ƒ B14P3B14
P3B1 ¨ B24 = P3B2 ƒ B14P3B14.

B2B1

B2 B2 W2W2

B1 W1

3
10

3
10

3
10

1
10

0

1 2

Outcome of first draw

Outcome of second draw1
4

3
4

2
4

2
4

2
5

3
5

FIGURE 2.10
The paths from the top node to a bottom node correspond to the possible outcomes
in the drawing of two balls from an urn without replacement. The probability of a
path is the product of the probabilities in the associated transitions.
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Example 2.26 Binary Communication System

Many communication systems can be modeled in the following way. First, the user inputs a 0 or a 1
into the system, and a corresponding signal is transmitted. Second, the receiver makes a decision
about what was the input to the system, based on the signal it received. Suppose that the user sends
0s with probability and 1s with probability p, and suppose that the receiver makes random
decision errors with probability For let be the event “input was i,” and let be the
event “receiver decision was i.” Find the probabilities for and 

The tree diagram for this experiment is shown in Fig. 2.11. We then readily obtain the de-
sired probabilities

Let be mutually exclusive events whose union equals the sample
space S as shown in Fig. 2.12. We refer to these sets as a partition of S. Any event A can
be represented as the union of mutually exclusive events in the following way:

(See Fig. 2.12.) By Corollary 4, the probability of A is

By applying Eq. (2.28a) to each of the terms on the right-hand side, we obtain the
theorem on total probability:

(2.29)

This result is particularly useful when the experiments can be viewed as consist-
ing of a sequence of two subexperiments as shown in the tree diagram in Fig. 2.10.

P3A4 = P3A ƒ B14P3B14 + P3A ƒB24P3B24 + Á + P3A ƒBn4P3Bn4.

P3A4 = P3A ¨ B14 + P3A ¨ B24 + Á + P3A ¨ Bn4.

= 1A ¨ B12 ´ 1A ¨ B22 ´ Á ´ 1A ¨ Bn2.
A = A ¨ S = A ¨ 1B1 ´ B2 ´ Á ´ Bn2

B1 , B2 , Á , Bn

P3A1 ¨ B14 = p11 - e2.
P3A1 ¨ B04 = pe, and

P3A0 ¨ B14 = 11 - p2e,
P3A0 ¨ B04 = 11 - p211 - e2,

j = 0, 1.i = 0, 1P3Ai ¨ Bj4
BiAii = 0, 1,e.

1 - p

0 1

0 1 0 1

p Input into binary channel

Output from binary channel

1 � p

(1 � p)(1 � ε)

1 � ε 1 � εεε

(1 � p)ε p(1 � ε)pε

FIGURE 2.11
Probabilities of input-output pairs in a binary transmission system.
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Example 2.27

In the experiment discussed in Example 2.25, find the probability of the event that the second
ball is white.

The events and form a partition of the sam-
ple space, so applying Eq. (2.29) we have

It is interesting to note that this is the same as the probability of selecting a white ball in the first
draw.The result makes sense because we are computing the probability of a white ball in the sec-
ond draw under the assumption that we have no knowledge of the outcome of the first draw.

Example 2.28

A manufacturing process produces a mix of “good” memory chips and “bad” memory chips. The
lifetime of good chips follows the exponential law introduced in Example 2.13, with a rate of fail-
ure The lifetime of bad chips also follows the exponential law, but the rate of failure is 
Suppose that the fraction of good chips is and of bad chips, p. Find the probability that a
randomly selected chip is still functioning after t seconds.

Let C be the event “chip still functioning after t seconds,” and let G be the event “chip is
good,” and B the event “chip is bad.” By the theorem on total probability we have

where we used the fact that and P3C ƒB4 = e-1000at.P3C ƒG4 = e-at

= 11 - p2e-at + pe-1000at,

= P3C ƒG411 - p2 + P3C ƒB4p
P3C4 = P3C ƒG4P3G4 + P3C ƒB4P3B4

1 - p
1000a.a.

=
3
4

2
5

+
1
2

3
5

=
3
5

.

P3W24 = P3W2 ƒ B14P3B14 + P3W2 ƒW14P3W14

W1 = 51w, b2, 1w, w26B1 = 51b, b2, 1b, w26
W2

A

B1

B3

B2

Bn

Bn � 1

FIGURE 2.12
A partition of S into n disjoint sets.
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2.4.1 Bayes’ Rule

Let be a partition of a sample space S. Suppose that event A occurs; what
is the probability of event By the definition of conditional probability we have

(2.30)

where we used the theorem on total probability to replace P[A]. Equation (2.30) is
called Bayes’ rule.

Bayes’ rule is often applied in the following situation. We have some random ex-
periment in which the events of interest form a partition.The “a priori probabilities” of
these events, are the probabilities of the events before the experiment is per-
formed. Now suppose that the experiment is performed, and we are informed that
event A occurred; the “a posteriori probabilities” are the probabilities of the events in
the partition, given this additional information. The following two examples
illustrate this situation.

Example 2.29 Binary Communication System

In the binary communication system in Example 2.26, find which input is more probable given
that the receiver has output a 1. Assume that, a priori, the input is equally likely to be 0 or 1.

Let be the event that the input was k, then and are a partition of the sample
space of input-output pairs. Let be the event “receiver output was a 1.” The probability of is

Applying Bayes’ rule, we obtain the a posteriori probabilities

Thus, if is less than 1/2, then input 1 is more likely than input 0 when a 1 is observed at the out-
put of the channel.

Example 2.30 Quality Control

Consider the memory chips discussed in Example 2.28. Recall that a fraction p of the chips are
bad and tend to fail much more quickly than good chips. Suppose that in order to “weed out”
the bad chips, every chip is tested for t seconds prior to leaving the factory. The chips that fail
are discarded and the remaining chips are sent out to customers. Find the value of t for which
99% of the chips sent out to customers are good.

e

P3A1 ƒB14 =
P3B1 ƒA14P3A14

P3B14 =
11 - e2/2

1/2
= 11 - e2.

P3A0 ƒB14 =
P3B1 ƒA04P3A04

P3B14 =
e/2
1/2

= e

= ea1
2
b + 11 - e2a1

2
b =

1
2

.

P3B14 = P3B1 ƒA04P3A04 + P3B1 ƒA14P3A14
B1B1

A1A0k = 0, 1,Ak

P3Bj ƒA4,

P3Bj4,

P3Bj ƒA4 =
P3A ¨ Bj4
P3A4 =

P3A ƒBj4P3Bj4
a
n

k=1
P3A ƒBk4P3Bk4

,

Bj?
B1 , B2 , Á , Bn
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Let C be the event “chip still functioning after t seconds,” and let G be the event “chip is
good,” and B be the event “chip is bad.” The problem requires that we find the value of t for
which

We find by applying Bayes’ rule:

The above equation can then be solved for t:

For example, if hours and then hours.

2.5 INDEPENDENCE OF EVENTS

If knowledge of the occurrence of an event B does not alter the probability of some
other event A, then it would be natural to say that event A is independent of B. In
terms of probabilities this situation occurs when

The above equation has the problem that the right-hand side is not defined when

We will define two events A and B to be independent if

(2.31)

Equation (2.31) then implies both

(2.32a)

and

(2.32b)

Note also that Eq. (2.32a) implies Eq. (2.31) when and Eq. (2.32b) implies
Eq. (2.31) when P3A4 Z 0.

P3B4 Z 0

P3B ƒA4 = P3B4

P3A ƒB4 = P3A4

P3A ¨ B4 = P3A4P3B4.

P3B4 = 0.

P3A4 = P3A ƒB4 =
P3A ¨ B4
P3B4 .

t = 48p = .10,1/a = 20,000

t =
1

999a
 lna 99p

1 - p
b .

=
1

1 +
pe-a1000t

11 - p2e-at
= .99.

=
11 - p2e-at

11 - p2e-at + pe-a1000t

P3G ƒC4 =
P3C ƒG4P3G4

P3C ƒG4P3G4 + P3C ƒB4P3B4

P3G ƒC4
P3G ƒC4 = .99.
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Example 2.31

A ball is selected from an urn containing two black balls, numbered 1 and 2, and two white balls,
numbered 3 and 4. Let the events A, B, and C be defined as follows:

“black ball selected”;

“even-numbered ball selected”; and

“number of ball is greater than 2.”

Are events A and B independent? Are events A and C independent?
First, consider events A and B. The probabilities required by Eq. (2.31) are

and

Thus

and the events A and B are independent. Equation (2.32b) gives more insight into the meaning
of independence:

These two equations imply that because the proportion of outcomes in S that
lead to the occurrence of A is equal to the proportion of outcomes in B that lead to A.Thus knowl-
edge of the occurrence of B does not alter the probability of the occurrence of A.

Events A and C are not independent since so

In fact, A and C are mutually exclusive since so the occurrence of C implies that A
has definitely not occurred.

In general if two events have nonzero probability and are mutually exclusive,
then they cannot be independent. For suppose they were independent and mutually
exclusive; then

which implies that at least one of the events must have zero probability.

0 = P3A ¨ B4 = P3A4P3B4,

A ¨ C = �,

P3A ƒC4 = 0 Z P3A4 = .5.

P3A ¨ C4 = P3�4 = 0

P3A4 = P3A ƒB4

P3A4 =
P3A4
P3S4 =

P3511, b2, 12, b264
P3511, b2, 12, b2, 13, w2, 14, w264 =

1/2
1

.

P3A ƒB4 =
P3A ¨ B4
P3B4 =

P3512, b264
P3512, b2, 14, w264 =

1/4
1/2

=
1
2

P3A ¨ B4 =
1
4

= P3A4P3B4,

P3A ¨ B4 = P3512, b264 =
1
4

.

P3A4 = P3B4 =
1
2

,

C = 513, w2, 14, w26,
B = 512, b2, 14, w26,
A = 511, b2, 12, b26,
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Example 2.32

Two numbers x and y are selected at random between zero and one. Let the events A, B, and C
be defined as follows:

Are the events A and B independent? Are A and C independent?
Figure 2.13 shows the regions of the unit square that correspond to the above events.

Using Eq. (2.32a), we have

so events A and B are independent. Again we have that the “proportion” of outcomes in S lead-
ing to A is equal to the “proportion” in B that lead to A.

Using Eq. (2.32b), we have

so events A and C are not independent. Indeed from Fig. 2.13(b) we can see that knowledge of
the fact that x is greater than y increases the probability that x is greater than 0.5.

What conditions should three events A, B, and C satisfy in order for them to be
independent? First, they should be pairwise independent, that is,

P3A ¨ B4 = P3A4P3B4, P3A ¨ C4 = P3A4P3C4, and P3B ¨ C4 = P3B4P3C4.

P3A ƒC4 =
P3A ¨ C4
P3C4 =

3/8
1/2

=
3
4

Z
1
2

= P3A4,

P3A ƒB4 =
P3A ¨ B4
P3B4 =

1/4
1/2

=
1
2

= P3A4,

A = 5x 7 0.56, B = 5y 7 0.56, and C = 5x 7 y6.

1
2

1
2

1
2

0 1

1

y

x

A

B

0 1

1

y

x

A

C

(b) Events A and C are not independent.

(a) Events A and B are independent.

FIGURE 2.13
Examples of independent and
nonindependent events.
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In addition, knowledge of the joint occurrence of any two, say A and B, should not af-
fect the probability of the third, that is,

In order for this to hold, we must have

This in turn implies that we must have

where we have used the fact that A and B are pairwise independent. Thus we conclude
that three events A, B, and C are independent if the probability of the intersection of any
pair or triplet of events is equal to the product of the probabilities of the individual events.

The following example shows that if three events are pairwise independent, it
does not necessarily follow that 

Example 2.33

Consider the experiment discussed in Example 2.32 where two numbers are selected at random
from the unit interval. Let the events B, D, and F be defined as follows:

The three events are shown in Fig. 2.14. It can be easily verified that any pair of these events is in-
dependent:

However, the three events are not independent, since so

In order for a set of n events to be independent, the probability of an event
should be unchanged when we are given the joint occurrence of any subset of the other
events. This requirement naturally leads to the following definition of independence.
The events are said to be independent if for 

(2.33)P3Ai1 ¨ Ai2 ¨ Á ¨ Aik4 = P3Ai14P3Ai24Á P3Aik4,
k = 2, Á , n,A1 , A2 , Á , An

P3B ¨ D ¨ F4 = P3�4 = 0 Z P3B4P3D4P3F4 =
1
8

.

B ¨ D ¨ F = �,

P3D ¨ F4 =
1
4

= P3D4P3F4.
P3B ¨ F4 =

1
4

= P3B4P3F4, and

P3B ¨ D4 =
1
4

= P3B4P3D4,

F = ex 6
1
2

 and y 6
1
2
f ´ ex 7

1
2

 and y 7
1
2
f .

B = ey 7
1
2
f , D = ex 6

1
2
f

P3A ¨ B ¨ C4 = P3A4P3B4P3C4.

P3A ¨ B ¨ C4 = P3A ¨ B4P3C4 = P3A4P3B4P3C4,

P3C ƒA ¨ B4 =
P3A ¨ B ¨ C4
P3A ¨ B4 = P3C4.

P3C ƒA ¨ B4 = P3C4.
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where For a set of n events we need to verify that the
probabilities of all possible intersections factor in the right way.

The above definition of independence appears quite cumbersome because it re-
quires that so many conditions be verified. However, the most common application of
the independence concept is in making the assumption that the events of separate ex-
periments are independent.We refer to such experiments as independent experiments.
For example, it is common to assume that the outcome of a coin toss is independent of
the outcomes of all prior and all subsequent coin tosses.

Example 2.34

Suppose a fair coin is tossed three times and we observe the resulting sequence of heads and
tails. Find the probability of the elementary events.

The sample space of this experiment is 
The assumption that the coin is fair means that the outcomes of a single toss are

equiprobable, that is, If we assume that the outcomes of the coin tosses are
independent, then

P35HHT64 = P35H64P35H64P35T64 =
1
8

,

P35HHH64 = P35H64P35H64P35H64 =
1
8

,

P3H4 = P3T4 = 1/2.
HTT, TTT6.

S = 5HHH, HHT, HTH, THH, TTH, THT,

2n - n - 1
1 … i1 6 i2 6 Á 6 ik … n.
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FIGURE 2.14
Events B, D, and F are pairwise independent, but the
triplet B, D, F are not independent events.
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Example 2.35 System Reliability

A system consists of a controller and three peripheral units. The system is said to be “up” if the
controller and at least two of the peripherals are functioning. Find the probability that the sys-
tem is up, assuming that all components fail independently.

Define the following events: A is “controller is functioning” and is “peripheral i is func-
tioning” where The event F, “two or more peripheral units are functioning,” occurs if
all three units are functioning or if exactly two units are functioning. Thus

Note that the events in the above union are mutually exclusive. Thus

where we have assumed that each peripheral fails with probability a, so that and

The event “system is up” is then If we assume that the controller fails with proba-
bility p, then

Let then all three peripherals are functioning of the time and
two are functioning and one is “down” of the time. Thus two or more
peripherals are functioning 97.2% of the time. Suppose that the controller is not very reliable,
say then the system is up only 77.8% of the time, mostly because of controller
failures.

Suppose a second identical controller with is added to the system, and that the
system is “up” if at least one of the controllers is functioning and if two or more of the peripher-
als are functioning. In Problem 2.94, you are asked to show that at least one of the controllers is

p = 20%

p = 20%,

311 - a22a = 24.3%
11 - a23 = 72.9%a = 10%,

= 11 - p25311 - a22a + 11 - a236.
= 11 - p2P3F4

P3“system up”4 = P3A ¨ F4 = P3A4P3F4

A ¨ F.
P3Bic4 = a.

P3Bi4 = 1 - a

= 311 - a22a + 11 - a23,
+ P3B1

c4P3B24P3B34 + P3B14P3B24P3B34
P3F4 = P3B14P3B24P3B3

c4 + P3B14P3B2
c4P3B34

´ 1B1
c ¨ B2 ¨ B32 ´ 1B1 ¨ B2 ¨ B32.

F = 1B1 ¨ B2 ¨ B3
c2 ´ 1B1 ¨ B2

c ¨ B32

i = 1, 2, 3.
Bi

P35TTT64 = P35T64P35T64P35T64 =
1
8

.

P35HTT64 = P35H64P35T64P35T64 =
1
8

, and

P35THT64 = P35T64P35H64P35T64 =
1
8

,

P35TTH64 = P35T64P35T64P35H64 =
1
8

,

P35THH64 = P35T64P35H64P35H64 =
1
8

,

P35HTH64 = P35H64P35T64P35H64 =
1
8

,
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functioning 96% of the time, and that the system is up 93.3% of the time. This is an increase of
16% over the system with a single controller.

2.6 SEQUENTIAL EXPERIMENTS

Many random experiments can be viewed as sequential experiments that consist of a
sequence of simpler subexperiments. These subexperiments may or may not be inde-
pendent. In this section we discuss methods for obtaining the probabilities of events in
sequential experiments.

2.6.1 Sequences of Independent Experiments

Suppose that a random experiment consists of performing experiments 
The outcome of this experiment will then be an n-tuple where is the
outcome of the kth subexperiment. The sample space of the sequential experiment is
defined as the set that contains the above n-tuples and is denoted by the Cartesian
product of the individual sample spaces 

We can usually determine, because of physical considerations, when the subexper-
iments are independent, in the sense that the outcome of any given subexperiment can-
not affect the outcomes of the other subexperiments. Let be events such
that concerns only the outcome of the kth subexperiment. If the subexperiments are
independent, then it is reasonable to assume that the above events are
independent. Thus

(2.34)

This expression allows us to compute all probabilities of events of the sequential ex-
periment.

Example 2.36

Suppose that 10 numbers are selected at random from the interval [0, 1]. Find the probability
that the first 5 numbers are less than 1/4 and the last 5 numbers are greater than 1/2. Let

be the sequence of 10 numbers, then the events of interest are

If we assume that each selection of a number is independent of the other selections, then

We will now derive several important models for experiments that consist of se-
quences of independent subexperiments.

= a1
4
b5a1

2
b5

.

P3A1 ¨ A2 ¨ Á ¨ A104 = P3A14P3A24ÁP3A104

Ak = exk 7
1
2
f for k = 6, Á , 10.

Ak = exk 6
1
4
f for k = 1, Á , 5

x1 , x2 , Á , x10

P3A1 ¨ A2 ¨ Á ¨ An4 = P3A14P3A24Á P3An4.
A1 , A2 , Á , An

Ak

A1 , A2 , Á , An

S1 * S2 * Á * Sn .

sks = 1s1 , Á , sn2,
E1 , E2 , Á , En .
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2.6.2 The Binomial Probability Law

A Bernoulli trial involves performing an experiment once and noting whether a partic-
ular event A occurs. The outcome of the Bernoulli trial is said to be a “success” if A oc-
curs and a “failure” otherwise. In this section we are interested in finding the
probability of k successes in n independent repetitions of a Bernoulli trial.

We can view the outcome of a single Bernoulli trial as the outcome of a toss of a coin
for which the probability of heads (success) is The probability of k successes in
n Bernoulli trials is then equal to the probability of k heads in n tosses of the coin.

Example 2.37

Suppose that a coin is tossed three times. If we assume that the tosses are independent and the
probability of heads is p, then the probability for the sequences of heads and tails is

where we used the fact that the tosses are independent. Let k be the number of heads in three
trials, then

The result in Example 2.37 is the case of the binomial probability law.

Theorem

Let k be the number of successes in n independent Bernoulli trials, then the probabilities of k are
given by the binomial probability law:

(2.35)pn1k2 = ¢n
k
≤pk11 - p2n-k for k = 0, Á , n,

n = 3

P3k = 34 = P35HHH64 = p3.

P3k = 24 = P35HHT, HTH, THH64 = 3p211 - p2, and

P3k = 14 = P35TTH, THT, HTT64 = 3p11 - p22,
P3k = 04 = P35TTT64 = 11 - p23,

P35TTT64 = P35T64P35T64P35T64 = 11 - p23
P35HTT64 = P35H64P35T64P35T64 = p11 - p22, and

P35THT64 = P35T64P35H64P35T64 = p11 - p22,
P35TTH64 = P35T64P35T64P35H64 = p11 - p22,
P35THH64 = P35T64P35H64P35H64 = p211 - p2,
P35HTH64 = P35H64P35T64P35H64 = p211 - p2,
P35HHT64 = P35H64P35H64P35T64 = p211 - p2,
P35HHH64 = P35H64P35H64P35H64 = p3,

p = P3A4.
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5See Example 2.21.

where is the probability of k successes in n trials, and

(2.36)

is the binomial coefficient.

The term n! in Eq. (2.36) is called n factorial and is defined by 
By definition 0! is equal to 1.

We now prove the above theorem. Following Example 2.34 we see that each of
the sequences with k successes and failures has the same probability, namely

Let be the number of distinct sequences that have k successes
and failures, then

(2.37)

The expression is the number of ways of picking k positions out of n for the suc-
cesses. It can be shown that5

(2.38)

The theorem follows by substituting Eq. (2.38) into Eq. (2.37).

Example 2.38

Verify that Eq. (2.35) gives the probabilities found in Example 2.37.
In Example 2.37, let “toss results in heads” correspond to a “success,” then

which are in agreement with our previous results.

You were introduced to the binomial coefficient in an introductory calculus
course when the binomial theorem was discussed:

(2.39a)1a + b2n = a
n

k=0
¢n
k
≤akbn-k.

p3132 =
3!

0! 3!
p311 - p20 = p3,

p3122 =
3!

2! 1!
p211 - p21 = 3p211 - p2, and

p3112 =
3!

1! 2!
p111 - p22 = 3p11 - p22,

p3102 =
3!

0! 3!
p011 - p23 = 11 - p23,

Nn1k2 = ¢n
k
≤ .

Nn1k2
pn1k2 = Nn1k2pk11 - p2n-k.

n - k
Nn1k2pk11 - p2n-k. n - k

122112. n! = n1n - 12Á

¢n
k
≤ =

n!
k! 1n - k2!

pn1k2
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If we let then

which is in agreement with the fact that there are distinct possible sequences of suc-
cesses and failures in n trials. If we let and in Eq. (2.39a), we then obtain

(2.39b)

which confirms that the probabilities of the binomial probabilities sum to 1.
The term n! grows very quickly with n, so numerical problems are encountered for

relatively small values of n if one attempts to compute directly using Eq. (2.35).
The following recursive formula avoids the direct evaluation of n! and thus extends the
range of n for which can be computed before encountering numerical difficulties:

(2.40)

Later in the book, we present two approximations for the binomial probabilities for
the case when n is large.

Example 2.39

Let k be the number of active (nonsilent) speakers in a group of eight noninteracting (i.e., inde-
pendent) speakers. Suppose that a speaker is active with probability 1/3. Find the probability that
the number of active speakers is greater than six.

For let denote the event “ith speaker is active.” The number of active
speakers is then the number of successes in eight Bernoulli trials with Thus the proba-
bility that more than six speakers are active is

Example 2.40 Error Correction Coding

A communication system transmits binary information over a channel that introduces random
bit errors with probability The transmitter transmits each information bit three times,
and a decoder takes a majority vote of the received bits to decide on what the transmitted bit
was. Find the probability that the receiver will make an incorrect decision.

The receiver can correct a single error, but it will make the wrong decision if the channel
introduces two or more errors. If we view each transmission as a Bernoulli trial in which a “suc-
cess” corresponds to the introduction of an error, then the probability of two or more errors in
three Bernoulli trials is

P3k Ú 24 = ¢3
2
≤1.001221.9992 + ¢3

3
≤1.00123 M 3110-62.

e = 10-3.

= .00244 + .00015 = .00259.

P3k = 74 + P3k = 84 = ¢8
7
≤ a1

3
b7a2

3
b + ¢8

8
≤ a1

3
b8

p = 1>3.
Aii = 1, Á , 8,

pn1k + 12 =
1n - k2p

1k + 1211 - p2pn1k2.
pn1k2

pn1k2

1 = a
n

k=0
¢n
k
≤pk11 - p2n-k = a

n

k=0
pn1k2,

b = 1 - pa = p
2n

2n = a
n

k=0
¢n
k
≤ = a

n

k=0
Nn1k2,

a = b = 1,
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2.6.3 The Multinomial Probability Law

The binomial probability law can be generalized to the case where we note the oc-
currence of more than one event. Let be a partition of the sample
space S of some random experiment and let The events are mutually ex-
clusive, so

Suppose that n independent repetitions of the experiment are performed. Let 
be the number of times event occurs, then the vector specifies the 
number of times each of the events occurs.The probability of the vector 
satisfies the multinomial probability law:

(2.41)

where The binomial probability law is the case of the
multinomial probability law. The derivation of the multinomial probabilities is identi-
cal to that of the binomial probabilities. We only need to note that the number of dif-
ferent sequences with instances of the events is given by
the multinomial coefficient in Eq. (2.26).

Example 2.41

A dart is thrown nine times at a target consisting of three areas. Each throw has a probability of
.2, .3, and .5 of landing in areas 1, 2, and 3, respectively. Find the probability that the dart lands
exactly three times in each of the areas.

This experiment consists of nine independent repetitions of a subexperiment that has
three possible outcomes.The probability for the number of occurrences of each outcome is given
by the multinomial probabilities with parameters and and 

Example 2.42

Suppose we pick 10 telephone numbers at random from a telephone book and note the last digit in
each of the numbers.What is the probability that we obtain each of the integers from 0 to 9 only once?

The probabilities for the number of occurrences of the integers is given by the multinomial
probabilities with parameters and if we assume that the 10 integers in
the range 0 to 9 are equiprobable.The probability of obtaining each integer once in 10 draws is then

2.6.4 The Geometric Probability Law

Consider a sequential experiment in which we repeat independent Bernoulli trials
until the occurrence of the first success. Let the outcome of this experiment be m, the
number of trials carried out until the occurrence of the first success. The sample space

10!
1! 1! Á 1!

1.1210 M 3.6110-42.

pj = 1/10M = 10, n = 10,

P313, 3, 324 =
9!

3! 3! 3!
1.2231.3231.523 = .04536.

p3 = .5:p1 = .2, p2 = .3,n = 9

B1 , B2 , Á , BMk1 , k2 , Á , kM

M = 2k1 + k2 + Á + kM = n.

P31k1 , k2 , Á , kM24 =
n!

k1! k2! Á kM!
p1
k1p2
k2 Á pM

kM ,

1k1 , Á , kM2Bj

1k1 , k2 , Á , kM2Bj

kj

p1 + p2 + Á + pM = 1.

P3Bj4 = pj .
B1 , B2 , Á , BM
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for this experiment is the set of positive integers.The probability, p(m), that m trials are
required is found by noting that this can only happen if the first trials result in
failures and the mth trial in success.6 The probability of this event is

(2.42a)

where is the event “success in ith trial.” The probability assignment specified by
Eq. (2.42a) is called the geometric probability law.

The probabilities in Eq. (2.42a) sum to 1:

(2.42b)

where and where we have used the formula for the summation of a geometric
series. The probability that more than K trials are required before a success occurs has a
simple form:

(2.43)

Example 2.43 Error Control by Retransmission

Computer A sends a message to computer B over an unreliable radio link.The message is encoded
so that B can detect when errors have been introduced into the message during transmission. If B
detects an error, it requests A to retransmit it. If the probability of a message transmission error is

what is the probability that a message needs to be transmitted more than two times?
Each transmission of a message is a Bernoulli trial with probability of success 

The Bernoulli trials are repeated until the first success (error-free transmission). The probability
that more than two transmissions are required is given by Eq. (2.43):

2.6.5 Sequences of Dependent Experiments

In this section we consider a sequence or “chain” of subexperiments in which the out-
come of a given subexperiment determines which subexperiment is performed next.
We first give a simple example of such an experiment and show how diagrams can be
used to specify the sample space.

Example 2.44

A sequential experiment involves repeatedly drawing a ball from one of two urns, noting the
number on the ball, and replacing the ball in its urn. Urn 0 contains a ball with the number 1
and two balls with the number 0, and urn 1 contains five balls with the number 1 and one ball

P3m 7 24 = q2 = 10-2.

p = 1 - q.
q = .1,

= qK.

= pqK
1

1 - q

P35m 7 K64 = p a
q

m=K+1
qm-1 = pqKa

q

j=0
qj

q = 1 - p,

a
q

m=1
p1m2 = pa

q

m=1
qm-1 = p

1
1 - q

= 1,

Ai

p1m2 = P3A1
cA2
c Á Am-1

c Am4 = 11 - p2m-1p m = 1, 2, Á ,

m - 1

6See Example 2.11 in Section 2.2 for a relative frequency interpretation of how the geometric probability law
comes about.
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with the number 0. The urn from which the first draw is made is selected at random by flipping
a fair coin. Urn 0 is used if the outcome is heads and urn 1 if the outcome is tails. Thereafter the
urn used in a subexperiment corresponds to the number on the ball selected in the previous
subexperiment.

The sample space of this experiment consists of sequences of 0s and 1s. Each possible se-
quence corresponds to a path through the “trellis” diagram shown in Fig. 2.15(a). The nodes in
the diagram denote the urn used in the nth subexperiment, and the labels in the branches denote
the outcome of a subexperiment. Thus the path 0011 corresponds to the sequence: The coin toss
was heads so the first draw was from urn 0; the outcome of the first draw was 0, so the second
draw was from urn 0; the outcome of the second draw was 1, so the third draw was from urn 1;
and the outcome from the third draw was 1, so the fourth draw is from urn 1.

Now suppose that we want to compute the probability of a particular sequence of
outcomes, say Denote this probability by Let 
and then since we have

(2.44)

Now note that in the above urn example the probability 
depends only on since the most recent outcome determines which subexperi-
ment is performed:

(2.45)P35sn6 ƒ5s06 ¨ Á ¨ 5sn-164 = P35sn6 ƒ5sn-164.
5sn-16

P35sn6 ƒ5s06 ¨ Á ¨ 5sn-164
= P35s26 ƒ5s06 ¨ 5s164P35s16 ƒ5s064P35s064.

P35s06 ¨ 5s16 ¨ 5s264 = P35s26 ƒ5s06 ¨ 5s164P35s06 ¨ 5s164
P3A ¨ B4 = P3A ƒB4P3B4B = 5s06 ¨ 5s16,

A = 5s26P35s06 ¨ 5s16 ¨ 5s264.s0 , s1 , s2 .
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(a) Each sequence of outcomes corresponds
     to a path through this trellis diagram.

(b) The probability of a sequence of outcomes is the 
      product of the probabilities along the associated path.
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FIGURE 2.15
Trellis diagram for a Markov chain.
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Therefore for the sequence of interest we have that

(2.46)

Sequential experiments that satisfy Eq. (2.45) are called Markov chains. For these
experiments, the probability of a sequence is given by

(2.47)

where we have simplified notation by omitting braces. Thus the probability of the se-
quence is given by the product of the probability of the first outcome and
the probabilities of all subsequent transitions, to to and so on. Chapter 11
deals with Markov chains.

Example 2.45

Find the probability of the sequence 0011 for the urn experiment introduced in Example 2.44.
Recall that urn 0 contains two balls with label 0 and one ball with label 1, and that urn 1

contains five balls with label 1 and one ball with label 0.We can readily compute the probabilities
of sequences of outcomes by labeling the branches in the trellis diagram with the probability of
the corresponding transition as shown in Fig. 2.15(b).Thus the probability of the sequence 0011 is
given by

where the transition probabilities are given by

and the initial probabilities are given by

If we substitute these values into the expression for P[0011], we obtain

The two-urn experiment in Examples 2.44 and 2.45 is the simplest example of the
Markov chain models that are discussed in Chapter 11. The two-urn experiment dis-
cussed here is used to model situations in which there are only two outcomes, and in
which the outcomes tend to occur in bursts. For example, the two-urn model has been
used to model the “bursty” behavior of the voice packets generated by a single speak-
er where bursts of active packets are separated by relatively long periods of silence.
The model has also been used for the sequence of black and white dots that result from
scanning a black and white image line by line.

P300114 = a5
6
b a1

3
b a2

3
b a1

2
b =

5
54

.

P102 =
1
2

= P314.

P31 ƒ14 =
5
6

and P30 ƒ14 =
1
6

,

P31 ƒ04 =
1
3

and P30 ƒ04 =
2
3

P300114 = P31 ƒ14P31 ƒ04P30 ƒ04P304,

s2 ,s1 , s1s0

s0s0 , Á , sn

P3s0 , s1 , Á , sn4 = P3sn ƒ sn-14P3sn-1 ƒ sn-24Á P3s1 ƒ s04P3s04
s0 , s1 , Á , sn

P35s06 ¨ 5s16 ¨ 5s264 = P35s26 ƒ5s164P35s16 ƒ5s064P35s064.
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7MATLAB® and Octave are interactive computer programs for numerical computations involving matrices.
MATLAB® is a commercial product sold by The Mathworks, Inc. Octave is a free, open-source program that is
mostly compatible with MATLAB in terms of computation. Long [9] provides an introduction to Octave.

2.7 A COMPUTER METHOD FOR SYNTHESIZING RANDOMNESS: RANDOM NUMBER
GENERATORS

This section introduces the basic method for generating sequences of “random” num-
bers using a computer. Any computer simulation of a system that involves randomness
must include a method for generating sequences of random numbers. These random
numbers must satisfy long-term average properties of the processes they are simulating.
In this section we focus on the problem of generating random numbers that are “uni-
formly distributed” in the interval [0, 1]. In the next chapter we will show how these ran-
dom numbers can be used to generate numbers with arbitrary probability laws.

The first problem we must confront in generating a random number in the inter-
val [0, 1] is the fact that there are an uncountably infinite number of points in the in-
terval, but the computer is limited to representing numbers with finite precision only.
We must therefore be content with generating equiprobable numbers from some finite
set, say or By dividing these numbers by M, we obtain
numbers in the unit interval.These numbers can be made increasingly dense in the unit
interval by making M very large.

The next step involves finding a mechanism for generating random numbers. The
direct approach involves performing random experiments. For example, we can gener-
ate integers in the range 0 to by flipping a fair coin m times and replacing the
sequence of heads and tails by 0s and 1s to obtain the binary representation of an inte-
ger. Another example would involve drawing a ball from an urn containing balls num-
bered 1 to M. Computer simulations involve the generation of long sequences of
random numbers. If we were to use the above mechanisms to generate random num-
bers, we would have to perform the experiments a large number of times and store the
outcomes in computer storage for access by the simulation program. It is clear that this
approach is cumbersome and quickly becomes impractical.

2.7.1 Pseudo-Random Number Generation

The preferred approach for the computer generation of random numbers involves the
use of recursive formulas that can be implemented easily and quickly. These pseudo-
random number generators produce a sequence of numbers that appear to be random
but that in fact repeat after a very long period.The currently preferred pseudo-random
number generator is the so-called Mersenne Twister, which is based on a matrix linear
recurrence over a binary field. This algorithm can yield sequences with an extremely
long period of The Mersenne Twister generates 32-bit integers, so

in terms of our previous discussion. We obtain a sequence of numbers in
the unit interval by dividing the 32-bit integers by The sequence of such numbers
should be equally distributed over unit cubes of very high dimensionality. The
Mersenne Twister has been shown to meet this condition up to 632-dimensionality. In
addition, the algorithm is fast and efficient in terms of storage.

Software implementations of the Mersenne Twister are widely available and incor-
porated into numerical packages such as MATLAB® and Octave.7 Both MATLAB and
Octave provide a means to generate random numbers from the unit interval using the

232.
M = 232 - 1

219937 - 1.

2m - 1

51, 2, Á ,M6.50, 1, Á ,M - 16

*
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rand command. The rand (n, m) operator returns an n row by m column matrix with
elements that are random numbers from the interval [0, 1).This operator is the starting
point for generating all types of random numbers.

Example 2.46 Generation of Numbers from the Unit Interval

First, generate 6 numbers from the unit interval. Next, generate 10,000 numbers from the unit in-
terval. Plot the histogram and empirical distribution function for the sequence of 10,000 numbers.

The following command results in the generation of six numbers from the unit interval.

>rand(1,6)

ans =

Columns 1 through 6:

0.642667 0.147811 0.317465 0.512824 0.710823 0.406724

The following set of commands will generate 10000 numbers and produce the histogram
shown in Fig. 2.16.
>X-rand(10000,1); % Return result in a 10,000-element column vector X.

>K=0.005:0.01;0.995; % Produce column vector K consisting of the mid points
% for 100 bins of width 0.01 in the unit interval.

>Hist(X,K) % Produce the desired histogram in Fig 2.16.

>plot(K,empirical_cdf(K,X)) % Plot the proportion of elements in the array X less
% than or equal to k, where k is an element of K.

The empirical cdf is shown in Fig. 2.17. It is evident that the array of random numbers is uni-
formly distributed in the unit interval.

0
0

20

40

60

80

100

120

140

0.2 0.4 0.6 0.8 1

FIGURE 2.16
Histogram resulting from experiment to generate 10,000 numbers in the unit interval.
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FIGURE 2.17
Empirical cdf of experiment that generates 10,000 numbers.

2.7.2 Simulation of Random Experiments

MATLAB® and Octave provide functions that are very useful in carrying out numer-
ical evaluation of probabilities involving the most common distributions. Functions
are also provided for the generation of random numbers with specific probability dis-
tributions. In this section we consider Bernoulli trials and binomial distributions. In
Chapter 3 we consider experiments with discrete sample spaces.

Example 2.47 Bernoulli Trials and Binomial Probabilities

First, generate the outcomes of eight Bernoulli trials. Next, generate the outcomes of 100 repeti-
tions of a random experiment that counts the number of successes in 16 Bernoulli trials with
probability of success Plot the histogram of the outcomes in the 100 experiments and compare 
to the binomial probabilities with and 

The following command will generate the outcomes of eight Bernoulli trials, as shown by
the answer that follows.

>X=rand(1,8)<0.5; % Generate 1 row of Bernoulli trials with 

X =

0 1 1 0 0 0 1 1

If the number produced by rand for a given Bernoulli trial is less than then the outcome
of the Bernoulli trial is 1.

p = 0.5,

p = 0.5

p = 1/2.n = 16

1�2 .
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Next we show the set of commands to generate the outcomes of 100 repetitions of random
experiments where each involves 16 Bernoulli trials.

>X=rand(100,16)<0.5; % Generate 100 rows of 16 Bernoulli trials with
%

>Y=sum(X,2); % Add the results of each row to obtain the number of
% successes in each experiment. Y contains the 100
% outcomes.

>K=0:16;

>Z=empirical_pdf(K,Y));  % Find the relative frequencies of the outcomes in Y.

>Bar(K,Z) % Produce a bar graph of the relative frequencies.

>hold on % Retains the graph for next command.

>stem(K,binomial_pdf(K,16,0.5)) % Plot the binomial probabilities along
% with the corresponding relative frequencies.

Figure 2.18 shows that there is good agreement between the relative frequencies and
the binomial probabilities.

2.8 FINE POINTS: EVENT CLASSES8

If the sample space S is discrete, then the event class can consist of all subsets of S.
There are situations where we may wish or are compelled to let the event class be a
smaller class of subsets of S. In these situations, only the subsets that belong to this
class are considered events. In this section we explain how these situations arise.

Let be the class of events of interest in a random experiment. It is reasonable to
expect that any set operation on events in will produce a set that is also an event in 
We can then ask any question regarding events of the random experiment, express it
using set operations, and obtain an event that is in Mathematically, we require that 
be a field.

A collection of sets is called a field if it satisfies the following conditions:

(i) (2.48a)
(ii) (2.48b)

(iii) (2.48c)

Using DeMorgan’s rule we can show that (ii) and (iii) imply that if and
then Conditions (ii) and (iii) then imply that any finite union or in-

tersection of events in will result in an event that is also in 

Example 2.48

Let Find the field generated by set operations on the class consisting of elementary
events of S : C = 55H6, 5T66.
S = 5T, H6.

F.F
A ¨ B HF.B HF,

A HF

if A HF then Ac HF.
if A HF and B HF, then A ´ B HF
� HF

F

CC.

C.C
C

F

*

p = 0.5.

8The “Fine Points” sections elaborate on concepts and distinctions that are not required in an introductory
course. The material in these sections is not necessarily more mathematical, but rather is not usually covered
in a first course in probability.
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Let be the class generated by First note that which implies
that S is in Next we find that which implies that Any other set operations will
not yield events that are not already in Therefore 

Note that we have generated the power set of S and shown that it is a field.

The above example can be generalized to any finite or countably infinite set S.
We can generate the power set by taking all possible unions of elementary events
and their complements, and forms a field. Note that in Example 2.1, this includes the
random experiments and Classical probability deals with finite sam-
ple spaces and so taking the class of events of interest as the power set is sufficient to pro-
ceed to the final step in specifying a probability model, namely, to provide a rule for
assigning probabilities to events.

The following example shows that in some situations the field of events of inter-
est need not include all subsets of the sample space S. In this case only those subsets of S
that are in are considered valid events. For this reason, we will restrict the use of the term
“event” to sets that are in the field that is associated with a given random experiment.

Example 2.49 Lisa and Homer’s Urn Experiment

An urn contains three white balls. One ball has a red dot, another ball has a green dot, and the
third ball has a teal dot. The experiment consists of selecting a ball at random and noting the
color of the ball.

F
F

F

E5 .E1 , E2 , E3 , E4 ,
S
S

F = 5�, 5H6, 5T6, 5H, T66 = S.

F.
� HF.Sc = �F.

5H6 ´ 5T6 = 5H, T6 = S,C.F

0

0.05

0.1

0.15

0.2

0.25

0�2 2 4 6 8 10 12 14 16 18

FIGURE 2.18
Relative frequencies from 100 binomial experiments and corresponding binomial probabilities.
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When Lisa does the experiment, she has sample space and her power set
has events:

When Homer does the experiment, he has a smaller sample space because
Homer cannot tell green from teal! Homer’s power set has 4 events:

Homer does not understand what the problem is. He can deal with any union, intersection, or
complement of events in 

The problem of course is that Lisa is interested in sets that include questions about teal.
Homer’s class of events cannot handle these questions. Lisa figures out what’s happened as
follows. She notes that Homer has partitioned Lisa’s sample space as follows (see Fig. 2.19b):

Each event in Homer’s experiment is related to an equivalent event in Lisa’s experiment.
Every union, complement, or intersection in Homer’s event class corresponds to the union, com-
plement, or intersection of the corresponding ’s in the partition. For example, the event “the
outcome is R or G” leads to the following:

5R6 ´ 5G6 corresponds to A1 ´ A2 = 5r, g, t6.

Ak

A1 = 5r6 and A2 = 5g, t6.
SL

SH

SH .

SH = 5�, 5R6, 5G6, 5R, G66.

SH = 5R, G6
SL = 5�, 5r6, 5g6, 5t6, 5r, g6, 5r, t6, 5g, t6, 5r, g, t66.

23 = 8
SL = 5r, g, t6,

FIGURE 2.19
(a) Homer’s mapping; (b) Partition of Lisa’s sample space;
(c) Partitioning of a sample space.
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You can try any combination of unions, intersections, and complements of events in Homer’s
experiment and the corresponding operations on and/or will result in events in the field:

The field does not contain all of the events in Lisa’s power set The field suffices to ad-
dress events that only involve the outcomes in Questions that involve distinguishing be-
tween teal and green lead to subsets of such as that are not events in and hence are
outside the scope of the experiment.

Lisa explains it all to Homer, and, predictably, his response is “D’oh!”

The sets in the field that specify the events of interest are said to be
measurable. Any subset of S that is not in is not measurable. In the above exam-
ple, the set is not measurable with respect to The situation in the above ex-
ample occurs very frequently in practice, where a decision is made to restrict the
scope of questions about a random experiment. Indeed this is part of the modeling
process!

In the general case, the sample space S in the original random experiment is divided
into mutually exclusive events where for and 

as shown in Fig. 2.19(c).The collection of events are said to form a partition
of S. When the experiment is performed, we observe which event in the partition oc-
curs and not the specific outcome All questions (events) that involve unions, inter-
sections, or complements of the events in the partition can be answered from this
observation. The events in the partition are like elementary events. We can obtain the
field generated by the events in the partition by taking unions of all distinct combi-
nations of the and their complements. In this case, the subsets of S that are
not in are not measurable and thus are not considered to be events.

Example 2.50

In Experiment a coin is tossed three times and the sequence of heads and tails is recorded.
The sample space is and the corre-
sponding power set has events:

In Experiment the coin is tossed three times but only the number of heads is recorded.
The sample space is and the corresponding power set has events:

Experiment divides the sample space into the following partition:

A2 = 5THH, HTH, HHT6, A3 = 5HHH6.
A0 = 5TTT6, A1 = 5TTH, THT, HTT6,

S3E4

S4 = b�, 506, 516, 526, 536, 50, 16, 50, 26, 50, 36, 51, 26, 51, 36,
52, 36, 50, 1, 26, 50, 1, 36, 50, 2, 36 51, 2, 36, S4

r .

24 = 16S4S4 = 50, 1, 2, 36
E4

S3 = 5�, 5TTT6, 5TTH6, Á , 5HHH6, 5TTT, TTH6, Á , 5THH, HHH6, Á , S36.
28 = 256S3

S3 = 5TTT, TTH, THT, HTT, HHT, HTH, THH, HHH6
E3

F
A1 , Á , An

F

z.

A1 , Á , An

S = A1 ´ A2 ´ Á ´ An ,

i Z jAi ¨ Aj = �A1 , Á , An ,

F.5r, t6 F
F

F5r, t6,SL ,
SH .

FSL .F

F = 5�, 5r6, 5r, g6, 5r, g, t66.
A2A1
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All the events in correspond to unions, intersections, and complements of and
The field generated by unions, intersections, and complements of these four events has 16

events and addresses all questions associated with Experiment 
We see that the event space is greatly simplified and reduced in size by restricting the

events of interest to those that only involve the total number of heads and not details about the
sequence of heads and tails. The simplification is even more marked as we increase the number
of tosses. For example if we extend to 100 coin tosses, then has outcomes, a huge num-
ber, whereas has only 101 outcomes.

Now suppose that S is countably infinite. For example in Experiment we have
and we might be interested in the condition “number of transmissions

is greater than 10.” This condition corresponds to the set which is a
countable union of elementary sets. It is clear that for events in our class of interest, we
should now require that a countable union of events should also be an event, that is:

(i) (2.49a)

(ii) (2.49b)

(iii) (2.49c)

A class of sets that satisfies Eqs. (2.49a)–(2.49c) is called a sigma field.As before, equa-
tions (ii) and (iii) and DeMorgan’s rule imply that countable intersections of events

are also in 
Next consider the case where the sample space S is not countable, as in the

unit interval in the real line in Experiment or the unit square in the real plane in
(See Figs. 2.1(a) and (c).) The probability that the outcome of the experiment is

exactly a single point in is clearly zero. But this result is not very useful. Instead,
we can say that the probability of the event “the outcome (x, y) satisfies ” is

by noting that half of satisfies the condition of the event. Similarly, the prob-
ability of any event that corresponds to a rectangle within is simply the area of
the rectangle. Taking the set of events that are rectangles within S, we can build a
field of events by forming countable unions, intersections, and complements. From
your previous experience using integrals to calculate areas in the plane, you know
that we can approximate any reasonable shape, i.e., event, by taking the union of a
sequence of increasingly fine rectangles as shown in Fig. 2.20(a). Clearly there is a
strong relationship between calculating integrals, measuring areas, and assigning
probabilities to events.

We can finally explain (qualitatively) why we cannot allow all subsets of S to be
events when the sample space is uncountably infinite. In essence, there are subsets that
are so irregular (see Fig. 2.20b) that it is impossible to define integrals to measure
them. We say that these subsets are not measurable. Advanced math is required to
show this and we will not deal with this any further.The good news is that we can build
a sigma field from the countable unions, intersections, and complements of intervals in
R, or rectangles in that have well-behaved integrals and to which we can assign
probabilities. This is familiar territory. In the remainder of this text, we will refer to
these sigma fields over R and as the Borel fields.R2

R2

S12

S121/2,
x 7 y

S12

E12 .
E7 ,

F.x q
k=1 Ak

F

if A HF then Ac HF.

if A1A2, Á HF then d
q

k=1
Ak HF

� HF

510, 11, 12, Á 6,S = 51, 2, Á 6 E6

S4

2100S3E3

E4 .
FA3 .

A0 , A1 , A2 ,S4
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2.9 FINE POINTS: PROBABILITIES OF SEQUENCES OF EVENTS

In this optional section, we discuss the Borel field in more detail and show how se-
quences of intervals can generate many events of practical interest.We then present a re-
sult on the continuity of the probability function for a sequence of events. We show how
this result is applied to find the probability of the limit of a sequence of Borel events.

2.9.1 The Borel Field of Events

Let S be the real line R. Consider events that are semi-infinite intervals of the real line:

We are interested in the Borel field which is the sigma field generated by countable
unions, countable intersections and complements of events of the form We
will show that events of the following form are also in 

Since then its complement is in 

The following intersection must then be in 

We claim for now that Then the following complements and intersections
are also in 

Furthermore, contains all complements, countable unions, and intersections of events
of the above forms. Note in particular that contains all singleton sets (elementary
events) and therefore all the events for discrete and countable sample spaces of
real numbers.

5b6 B
B

and 3b, q2 ¨ 1-q , b4 = 5b6.
3a, q2 ¨ 1-q , b4 = 3a, b4 and 3a, q2 ¨ 1-q , b2 = 3a, b2 for a 6 b,

1-q , b2c = 3b, q2 and 1a, q2 ¨ 1-q , b2 = 1a, b2 for a 6 b,

B:
1-q , b2 H B.

1a, q2 ¨ 1-q , b4 = 1a, b4 for a 6 b.

B:

1-q , b4c = 1b, q2 H B.

B:1-q , b4 H B,

1a, b2, 3a, b4, 1a, b4, 3a, b2, 3a, q2, 1a, q2, 1-q , b2, 5b6.
B:

1-q , b4.B,

1-q , b4 = 5x : -q 6 x … b6.

*

A

(a) (b)

1

0 1

1

0 1

FIGURE 2.20
If then P1A2 … P1B2.A ( B,
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Let’s prove the above claim that By definition, all events of the form
Consider the sequence of events 

Note that the are an increasing sequence, that is, All so
their countable union is also in by Eq. (2.49b):

We claim that this countable union is equal to To show equality of the two 
rightmost sets, first assume that We can find a sufficiently large index n
so that (that is, x is strictly less than b), which implies that

Thus we have shown that 
Now assume that then We can therefore find an integer 

such that so and so Thus 
We conclude that Therefore 

2.9.2 Continuity of Probability

Axiom provides the key property that allows us to assign probabilities to events
through the addition of the probabilities of mutually exclusive events. In this section
we present two consequences of the Axiom that are very useful in finding the
probabilities of sequences of events.

Let be a sequence of events from a sigma field, such that,

The sequence is said to be an increasing sequence of events. For example, the sequence
of intervals with is an increasing sequence. The sequence

is also increasing. We define the limit of an increasing sequence as the union of
all the events in the sequence:

The union contains all elements of all events in the sequence and no other elements.
Note that the countable union of events is also in the sigma field.

We say that the sequence is a decreasing sequence of events if

For example, the sequence of intervals is a decreasing sequence, as
is the sequence We define the limit of a decreasing sequence as the in-
tersection of all the events in the sequence:

lim
n:q
An = t

q

n=1
An .

1-q , a + 1/n4. 1a - 1/n, a + 1/n2
A1 ) A2 ) Á ) AnÁ

A1 , A2 , Á

lim
n:q
An = d

q

n=1
An .

1-n, a4 a 6 b - 13a, b - 1/n4

A1 ( A2 ( Á ( AnÁ

A1 , A2 , Á

III¿

III¿

1-q , b2 H B.h q
n=1An = 1-q , b2.( h q

n=1An.
1-q , b2x H h q

n=1An .x H An0
x 6 b - 1/n0 6 b,n0

x 6 b.x H 1-q , b2,
h q
n=1An ( 1-q , b2.x H 1-q , b2.x 6 b - 1/n 6 b

x H h q
n=1 An.

1-q , b2.
d
q

n=1
An = d

q

n=1
5x : -q 6 x … b - 1/n6 = 1-q , b2.
B

An H B,An ( An+1 .Anb - 1/n6.
An = 1-q , b - 1/n4 = 5x : -q 6 x …1-q , b4 H B.

1-q , b2 H B.
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The intersection contains all elements that are in all the events of the sequence and no
other elements. If all the events in the sequence are in a sigma field, then the countable
intersection will also be in the sigma field.

Corollary 8 Continuity of Probability Function

Let be an increasing or decreasing sequences of events in then:

(2.50)

We first show how the continuity result is applied in problems that involve events from the
Borel field.

Example 2.51

Find an expression for the probabilities of the following sequences of events from the Borel
field:

To prove the continuity property for an increasing sequence of events, form the
following sequence of mutually exclusive events:

(2.51a)

The event contains the set of outcomes in not already present in 
as illustrated in Fig. 2.21, so it is easy to show that and that 

(2.51b)

as well as

(2.51c)

Since the sequence is expanding, we also have that:

(2.51d)An = d
n

j=1
Aj.

d
q

j=1
Bj = d

q

j=1
Aj .

d
n

j=1
Bj = d

n

j=1
Aj for n = 1, 2, Á

Bj ¨ Bk = �
A1 , A2 , Á An-1AnBn

B1 = A1 , B2 = A2 - A1 , Á , Bn = An - An-1 , Á .

= P35x : -q 6 x … a64.
lim
n:q
P35x : -q 6 x … a + 1/n64 = P3 lim

n:q
5x : -q 6 x … a + 1/n64

lim
n:q
P35x : a - 1/n 6 x 6 a + 1/n64 = P3 lim

n:q
5x : a - 1/n 6 x 6 a + 1/n64 = P35x = a64.

lim
n:q
P35x : -n 6 x … a64 = P3 lim

n:q
5x : -n 6 x … a64 = P35x : -q 6 x … a64.

lim
n:q
P35x : a … x … b - 1/n64 = P3 lim

n:q
5x : a … x … b - 1/n64 = P35x : a … x 6 b64.

3a, b - 1/n4, 1-n, a4, 1a - 1/n, a + 1/n2, 1-q , a + 1/n4.

lim
n:q
P3An4 = P3 lim

n:q
An4.

F,A1 , A2 , Á
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The proof of continuity applies Axiom to Eq (2.51c):

We express the summation as a limit and apply Axiom II:

Finally we use Eqs. (2.51b) and (2.51d):

This proves continuity for increasing sequences:

For decreasing sequences, we note that the sequence of complements of the de-
creasing sequences is an increasing sequence. We therefore apply the continuity result
to the complement of the decreasing sequence 

(2.52a)

Next we apply DeMorgan’s rule:¢dq
j=1
Aj
c≤ c = t

q

j=1
1Ajc2c = t

q

j=1
Aj

P Cd
q

j=1
Aj
c D = lim

n:q
P3Anc4.
An:

lim
n:q
P3An4 = P Cd

q

n=1
An D = P3 lim

n:q
An4.

lim
n:q
P Cdn
j=1
Bj D = lim

n:q
P Cdn
j=1
Aj D = lim

n:q
P3An4.

a
q

j=1
P3Bj4 = lim

n:qa
n

j=1
P3Bj4 = lim

n:q
P Cdn
j=1
Bj D .

P Cd
q

j=1
Aj D = P Cd

q

j=1
Bj D = a

q

j=1
P3Bj4.

III¿

A3 � A2

A2 � A1

A1

FIGURE 2.21
Increasing sequence of events.
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and Corollary 1 to obtain:

We now use Eq. (2.52a):

which gives the desired result:

(2.52b)

SUMMARY

• A probability model is specified by identifying the sample space S, the event class
of interest, and an initial probability assignment, a “probability law,” from which
the probability of all events can be computed.

• The sample space S specifies the set of all possible outcomes. If it has a finite or
countable number of elements, S is discrete; S is continuous otherwise.

• Events are subsets of S that result from specifying conditions that are of interest
in the particular experiment. When S is discrete, events consist of the union of el-
ementary events. When S is continuous, events consist of the union or intersec-
tion of intervals in the real line.

• The axioms of probability specify a set of properties that must be satisfied by the
probabilities of events. The corollaries that follow from the axioms provide rules
for computing the probabilities of events in terms of the probabilities of other re-
lated events.

• An initial probability assignment that specifies the probability of certain events
must be determined as part of the modeling. If S is discrete, it suffices to specify
the probabilities of the elementary events. If S is continuous, it suffices to specify
the probabilities of intervals or of semi-infinite intervals.

• Combinatorial formulas are used to evaluate probabilities in experiments that
have an equiprobable, finite number of outcomes.

• A conditional probability quantifies the effect of partial knowledge about the
outcome of an experiment on the probabilities of events. It is particularly useful
in sequential experiments where the outcomes of subexperiments constitute the
“partial knowledge.”

• Bayes’ rule gives the a posteriori probability of an event given that another event
has been observed. It can be used to synthesize decision rules that attempt to de-
termine the most probable “cause” in light of an observation.

• Two events are independent if knowledge of the occurrence of one does not alter
the probability of the other. Two experiments are independent if all of their re-
spective events are independent. The notion of independence is useful for com-
puting probabilities in experiments that involve noninteracting subexperiments.

P Ct
q

j=1
Aj D = lim

n:q
3An4.
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q
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• Many experiments can be viewed as consisting of a sequence of independent
subexperiments. In this chapter we presented the binomial, the multinomial, and
the geometric probability laws as models that arise in this context.

• A Markov chain consists of a sequence of subexperiments in which the outcome
of a subexperiment determines which subexperiment is performed next. The
probability of a sequence of outcomes in a Markov chain is given by the product
of the probability of the first outcome and the probabilities of all subsequent
transitions.

• Computer simulation models use recursive equations to generate sequences of
pseudo-random numbers.

CHECKLIST OF IMPORTANT TERMS

Axioms of Probability 
Bayes’ rule
Bernoulli trial
Binomial coefficient
Binomial theorem
Certain event
Conditional probability
Continuous sample space
Discrete sample space
Elementary event
Event
Event class
Independent events
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Independent experiments
Initial probability assignment
Markov chain
Mutually exclusive events
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Outcome
Partition
Probability law
Sample space
Set operations
Theorem on total probability
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PROBLEMS

Section 2.1: Specifying Random Experiments 

2.1. The (loose) minute hand in a clock is spun hard and the hour at which the hand comes to
rest is noted.
(a) What is the sample space?
(b) Find the sets corresponding to the events:

and
(c) Find the events:

2.2. A die is tossed twice and the number of dots facing up in each toss is counted and noted
in the order of occurrence.
(a) Find the sample space.
(b) Find the set A corresponding to the event “number of dots in first toss is not less than

number of dots in second toss.”
(c) Find the set B corresponding to the event “number of dots in first toss is 6.”
(d) Does A imply B or does B imply A?
(e) Find and describe this event in words.
(f) Let C correspond to the event “number of dots in dice differs by 2.” Find 

2.3. Two dice are tossed and the magnitude of the difference in the number of dots facing up
in the two dice is noted.
(a) Find the sample space.
(b) Find the set A corresponding to the event “magnitude of difference is 3.”
(c) Express each of the elementary events in this experiment as the union of elementary

events from Problem 2.2.

2.4. A binary communication system transmits a signal X that is either a voltage signal
or a voltage signal. A malicious channel reduces the magnitude of the received
signal by the number of heads it counts in two tosses of a coin. Let Y be the resulting
signal.
(a) Find the sample space.
(b) Find the set of outcomes corresponding to the event “transmitted signal was defi-

nitely ”
(c) Describe in words the event corresponding to the outcome 

2.5. A desk drawer contains six pens, four of which are dry.
(a) The pens are selected at random one by one until a good pen is found. The sequence

of test results is noted. What is the sample space?

Y = 0.
+2.

-2
+2

A ¨ C.
A ¨ Bc

A ¨ B ¨ D, Ac ¨ B, A ´ 1B ¨ Dc2, 1A ´ B2 ¨ Dc.
D = “hand is in an odd hour.”is between 2nd and 8th hours inclusive”;

A = “hand is in first 4 hours”; B = “hand
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(b) Suppose that only the number, and not the sequence, of pens tested in part a is noted.
Specify the sample space.

(c) Suppose that the pens are selected one by one and tested until both good pens have
been identified, and the sequence of test results is noted. What is the sample space?

(d) Specify the sample space in part c if only the number of pens tested is noted.
2.6. Three friends (Al, Bob, and Chris) put their names in a hat and each draws a name from

the hat. (Assume Al picks first, then Bob, then Chris.)
(a) Find the sample space.
(b) Find the sets A, B, and C that correspond to the events “Al draws his name,” “Bob

draws his name,” and “Chris draws his name.”
(c) Find the set corresponding to the event, “no one draws his own name.”
(d) Find the set corresponding to the event, “everyone draws his own name.”
(e) Find the set corresponding to the event, “one or more draws his own name.”

2.7. Let M be the number of message transmissions in Experiment E6.
(a) What is the set A corresponding to the event “M is even”?
(b) What is the set B corresponding to the event “M is a multiple of 3”?
(c) What is the set C corresponding to the event “6 or fewer transmissions are re-

quired”?
(d) Find the sets and describe the corresponding events in

words.
2.8. A number U is selected at random from the unit interval. Let the events A and B be:

and Find the
events

2.9. The sample space of an experiment is the real line. Let the events A and B correspond to
the following subsets of the real line: and where Find
an expression for the event in terms of A and B. Show that and

2.10. Use Venn diagrams to verify the set identities given in Eqs. (2.2) and (2.3). You will need
to use different colors or different shadings to denote the various regions clearly.

2.11. Show that:
(a) If event A implies B, and B implies C, then A implies C.
(b) If event A implies B, then implies 

2.12. Show that if and then 
2.13. Let A and B be events. Find an expression for the event “exactly one of the events A and

B occurs.” Draw a Venn diagram for this event.
2.14. Let A, B, and C be events. Find expressions for the following events:

(a) Exactly one of the three events occurs.
(b) Exactly two of the events occur.
(c) One or more of the events occur.
(d) Two or more of the events occur.
(e) None of the events occur.

2.15. Figure P2.1 shows three systems of three components, and Figure P2.1(a) is a
“series” system in which the system is functioning only if all three components are func-
tioning. Figure 2.1(b) is a “parallel” system in which the system is functioning as long as
at least one of the three components is functioning. Figure 2.1(c) is a “two-out-of-three”

C3 .C1 , C2 ,

A = B.A ¨ B = AA ´ B = A
Ac.Bc

A ¨ C = �.
B = A ´ CC = 1r, s]

r … s.B = 1-q , s4,A = 1-q , r4
A ¨ B, Ac ¨ B, A ´ B.

B = “1 - U is less than 1/2.”A = “U differs from 1/2 by more than 1/4”

A ¨ B, A - B, A ¨ B ¨ C
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C1 C2

C1

C2

C3

C1

C1

C2

C2

C3

C3

(a) Series system (b) Parallel system (c) Two-out-of-three system

C3

FIGURE P2.1

system in which the system is functioning as long as at least two components are func-
tioning. Let be the event “component k is functioning.” For each of the three system
configurations, express the event “system is functioning” in terms of the events Ak .

Ak

A11 A12

A21 A22

A31 A32

FIGURE P2.2

2.16. A system has two key subsystems. The system is “up” if both of its subsystems are func-
tioning. Triple redundant systems are configured to provide high reliability. The overall
system is operational as long as one of three systems is “up.” Let correspond to the
event “unit k in system j is functioning,” for and 
(a) Write an expression for the event “overall system is up.”
(b) Explain why the above problem is equivalent to the problem of having a connection

in the network of switches shown in Fig. P2.2.

k = 1, 2.j = 1, 2, 3
Ajk

2.17. In a specified 6-AM-to-6-AM 24-hour period, a student wakes up at time and goes to
sleep at some later time 
(a) Find the sample space and sketch it on the x-y plane if the outcome of this experi-

ment consists of the pair 
(b) Specify the set A and sketch the region on the plane corresponding to the event “stu-

dent is asleep at noon.”
(c) Specify the set B and sketch the region on the plane corresponding to the event “stu-

dent sleeps through breakfast (7–9 AM).”
(d) Sketch the region corresponding to and describe the corresponding event in

words.
A ¨ B

1t1 , t22.
t2 .

t1
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2.18. A road crosses a railroad track at the top of a steep hill.The train cannot stop for oncoming
cars and cars, cannot see the train until it is too late. Suppose a train begins crossing the road
at time t1 and that the car begins crossing the track at time t2, where 0 < t1 < T and 0 < t2 < T.

(a) Find the sample space of this experiment.
(b) Suppose that it takes the train d1 seconds to cross the road and it takes the car d2 sec-

onds to cross the track. Find the set that corresponds to a collision taking place.
(c) Find the set that corresponds to a collision is missed by 1 second or less.

2.19. A random experiment has sample space S = { 1, 0, +1}.
(a) Find all the subsets of S.
(b) The outcome of a random experiment consists of pairs of outcomes from S where the

elements of the pair cannot be equal. Find the sample space S of this experiment.
How many subsets does S have?

2.20. (a) A coin is tossed twice and the sequence of heads and tails is noted. Let S be the sam-
ple space of this experiment. Find all subsets of S.

(b) A coin is tossed twice and the number of heads is noted. Let S? be the sample space
of this experiment. Find all subsets of S .

(c) Consider parts a and b if the coin is tossed 10 times. How many subsets do S and
S have? How many bits are needed to assign a binary number to each possible
subset?

Section 2.2: The Axioms of Probability

2.21. A die is tossed and the number of dots facing up is noted.
(a) Find the probability of the elementary events under the assumption that all faces of

the die are equally likely to be facing up after a toss.
(b) Find the probability of the events:

(c) Find the probability of 
2.22. In Problem 2.2, a die is tossed twice and the number of dots facing up in each toss is

counted and noted in the order of occurrence.
(a) Find the probabilities of the elementary events.
(b) Find the probabilities of events and defined in Problem 2.2.

2.23. A random experiment has sample space Suppose that 
and . Use the axioms of probability to

find the probabilities of the elementary events.
2.24. Find the probabilities of the following events in terms of P[A], P[B], and 

(a) A occurs and B does not occur; B occurs and A does not occur.
(b) Exactly one of A or B occurs.
(c) Neither A nor B occur.

2.25. Let the events A and B have and Use Venn dia-
grams to find 

2.26. Show that

2.27. Use the argument from Problem 2.26 to prove Corollary 6 by induction.
+ P3A ¨ B ¨ C4.

P3A ´ B ´ C4 = P3A4 + P3B4 + P3C4 - P3A ¨ B4 - P3A ¨ C4 - P3B ¨ C4
P3A ¨ B], P3Ac ¨ Bc4, P3Ac ´ Bc4, P3A ¨ Bc4, P3Ac ´ B4.

P3A ´ B4 = z.P3A4 = x, P3B4 = y,

P3A ¨ B4:
P35d64 = 1/8, P35c, d64 = 3/8P35b, c64 = 6/8,

P35c, d64 = 3/8,S = 5a, b, c, d6.
A ¨ CA, B, C, A ¨ Bc,

A ´ B, A ¨ B, Ac.
of dots6.

A = 5more than 3 dots6; B = 5odd number

¿

¿

¿
¿

-
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2.28. A hexadecimal character consists of a group of three bits. Let be the event “ith bit in a
character is a 1.”
(a) Find the probabilities for the following events: and

Assume that the values of bits are determined by tosses of a fair coin.
(b) Repeat part a if the coin is biased.

2.29. Let M be the number of message transmissions in Problem 2.7. Find the probabilities of
the events . Assume the probability of successful
transmission is 1/2.

2.30. Use Corollary 7 to prove the following:

(a)

(b)

(c)

The second expression is called the union bound.
2.31. Let p be the probability that a single character appears incorrectly in this book. Use the

union bound for the probability of there being any errors in a page with n characters.
2.32. A die is tossed and the number of dots facing up is noted.

(a) Find the probability of the elementary events if faces with an even number of dots
are twice as likely to come up as faces with an odd number.

(b) Repeat parts b and c of Problem 2.21.
2.33. Consider Problem 2.1 where the minute hand in a clock is spun. Suppose that we now

note the minute at which the hand comes to rest.
(a) Suppose that the minute hand is very loose so the hand is equally likely to come to

rest anywhere in the clock. What are the probabilities of the elementary events?
(b) Now suppose that the minute hand is somewhat sticky and so the hand is as like-

ly to land in the second minute than in the first, 1/3 as likely to land in the third
minute as in the first, and so on.What are the probabilities of the elementary events?

(c) Now suppose that the minute hand is very sticky and so the hand is as likely to
land in the second minute than in the first, as likely to land in the third minute as
in the second, and so on. What are the probabilities of the elementary events?

(d) Compare the probabilities that the hand lands in the last minute in parts a, b, and c.
2.34. A number x is selected at random in the interval Let the events 

and
(a) Find the probabilities of and 
(b) Find the probabilities of and first, by directly evaluating

the sets and then their probabilities, and second, by using the appropriate axioms or
corollaries.

2.35. A number x is selected at random in the interval Numbers from the subinterval
[0, 2] occur half as frequently as those from 
(a) Find the probability assignment for an interval completely within complete-

ly within [0, 2]; and partly in each of the above intervals.
(b) Repeat Problem 2.34 with this probability assignment.

3-1, 02;
3-1, 02.

3-1, 24.

A ´ B ´ C,A ´ B, A ´ C,
A ¨ C.A, B, A ¨ B,

C = 5x 7 0.756.B = 5 ƒx - 0.5 ƒ 6 0.56,
A = 5x 6 06,3-1, 24.

1/2
1/2

1/2

PBtn
k=1
AkR Ú 1 - a

n

k=1
P3Akc4.

PBdn
k=1
AkR … a

n

k=1
P3Ak4.

P3A ´ B ´ C4 … P3A4 + P3B4 + P3C4.

A, B, C, Cc, A ¨ B, A - B, A ¨ B ¨ C

A1 ´ A2 ´ A3 .
A1 , A1 ¨ A3 , A1 ¨ A2 ¨ A3

Ai
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2.36. The lifetime of a device behaves according to the probability law for 
Let A be the event “lifetime is greater than 4,” and B the event “lifetime is greater than 8.”
(a) Find the probability of and 
(b) Find the probability of the event “lifetime is greater than 6 but less than or equal to 12.”

2.37. Consider an experiment for which the sample space is the real line. A probability law as-
signs probabilities to subsets of the form 
(a) Show that we must have when 
(b) Find an expression for P[(r, s]] in terms of and 
(c) Find an expression for 

2.38. Two numbers (x, y) are selected at random from the interval [0, 1].
(a) Find the probability that the pair of numbers are inside the unit circle.
(b) Find the probability that 

Section 2.3: Computing Probabilities Using Counting Methods

2.39. The combination to a lock is given by three numbers from the set Find the
number of combinations possible.

2.40. How many seven-digit telephone numbers are possible if the first number is not allowed
to be 0 or 1?

2.41. A pair of dice is tossed, a coin is flipped twice, and a card is selected at random from a
deck of 52 distinct cards. Find the number of possible outcomes.

2.42. A lock has two buttons: a “0” button and a “1” button. To open a door you need to push
the buttons according to a preset 8-bit sequence. How many sequences are there? Sup-
pose you press an arbitrary 8-bit sequence; what is the probability that the door opens? If
the first try does not succeed in opening the door, you try another number; what is the
probability of success?

2.43. A Web site requires that users create a password with the following specifications:
• Length of 8 to 10 characters
• Includes at least one special character 

• No spaces
• May contain numbers (0–9), lower and upper case letters (a–z, A–Z)
• Is case-sensitive.
How many passwords are there? How long would it take to try all passwords if a pass-
word can be tested in 1 microsecond?

2.44. A multiple choice test has 10 questions with 3 choices each. How many ways are there to
answer the test? What is the probability that two papers have the same answers?

2.45. A student has five different t-shirts and three pairs of jeans (“brand new,” “broken in,”
and “perfect”).
(a) How many days can the student dress without repeating the combination of jeans

and t-shirt?
(b) How many days can the student dress without repeating the combination of jeans

and t-shirt and without wearing the same t-shirt on two consecutive days?
2.46. Ordering a “deluxe” pizza means you have four choices from 15 available toppings. How

many combinations are possible if toppings can be repeated? If they cannot be repeated?
Assume that the order in which the toppings are selected does not matter.

2.47. A lecture room has 60 seats. In how many ways can 45 students occupy the seats in the
room?

O ,' , -, 3, 4, /, ?6
5!, @, #, $, %, ¿, &, *, 1, 2, + , = , 5, 6, ƒ , 6 , 7 ,

50, 1, Á , 596.
*

y 7 2x.

P31s, q24.
P31-q , s44P31-q , r44
r 6 s.P31-q , r44 … P31-q , s44

1-q , r4.

A ´ B.A ¨ B,

t 7 1.P31t, q24 = 1/t
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2.48. List all possible permutations of two distinct objects; three distinct objects; four distinct
objects. Verify that the number is n!.

2.49. A toddler pulls three volumes of an encyclopedia from a bookshelf and, after being scold-
ed, places them back in random order. What is the probability that the books are in the
correct order?

2.50. Five balls are placed at random in five buckets. What is the probability that each bucket
has a ball?

2.51. List all possible combinations of two objects from two distinct objects; three distinct ob-
jects; four distinct objects. Verify that the number is given by the binomial coefficient.

2.52. A dinner party is attended by four men and four women. How many unique ways can the
eight people sit around the table? How many unique ways can the people sit around the
table with men and women alternating seats?

2.53. A hot dog vendor provides onions, relish, mustard, ketchup, Dijon ketchup, and hot pep-
pers for your hot dog. How many variations of hot dogs are possible using one condi-
ment? Two condiments? None, some, or all of the condiments?

2.54. A lot of 100 items contains k defective items. M items are chosen at random and tested.
(a) What is the probability that m are found defective? This is called the hypergeometric

distribution.
(b) A lot is accepted if 1 or fewer of the M items are defective. What is the probability

that the lot is accepted?
2.55. A park has N raccoons of which eight were previously captured and tagged. Suppose that

20 raccoons are captured. Find the probability that four of these are found to be tagged.
Denote this probability, which depends on N, by p(N). Find the value of N that maximizes
this probability. Hint: Compare the ratio to unity.

2.56. A lot of 50 items has 40 good items and 10 bad items.
(a) Suppose we test five samples from the lot, with replacement. Let X be the number of

defective items in the sample. Find 
(b) Suppose we test five samples from the lot, without replacement. Let Y be the number

of defective items in the sample. Find 
2.57. How many distinct permutations are there of four red balls, two white balls, and three

black balls?
2.58. A hockey team has 6 forwards, 4 defensemen, and 2 goalies.At any time, 3 forwards, 2 de-

fensemen, and 1 goalie can be on the ice. How many combinations of players can a coach
put on the ice?

2.59. Find the probability that in a class of 28 students exactly four were born in each of the
seven days of the week.

2.60. Show that

2.61. In this problem we derive the multinomial coefficient. Suppose we partition a set of n dis-
tinct objects into J subsets of size respectively, where 
and
(a) Let denote the number of possible outcomes when the ith subset is selected.

Show that

N1 = ¢ n
k1
≤ ,N2 = ¢n - k1

k2
≤ , Á ,NJ-1 = ¢n - k1 - Á - kJ-2

kJ-1
≤ .

Ni

k1 + k2 + Á + kJ = n.
ki Ú 0,k1 , Á , kJ ,B1 , B2 , Á , BJ

¢n
k
≤ = ¢ n

n - k
≤

P3Y = k4.
P3X = k4.

p1N2/p1N - 12
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(b) Show that the number of partitions is then:

Section 2.4: Conditional Probability

2.62. A die is tossed twice and the number of dots facing up is counted and noted in the order
of occurrence. Let A be the event “number of dots in first toss is not less than number of
dots in second toss,” and let B be the event “number of dots in first toss is 6.” Find 
and

2.63. Use conditional probabilities and tree diagrams to find the probabilities for the elemen-
tary events in the random experiments defined in parts a to d of Problem 2.5.

2.64. In Problem 2.6 (name in hat), find and 
2.65. In Problem 2.29 (message transmissions), find and 
2.66. In Problem 2.8 (unit interval), find and 
2.67. In Problem 2.36 (device lifetime), find and 
2.68. In Problem 2.33, let and 

Find for parts a, b, and c.

2.69. A number x is selected at random in the interval Let the events 
and Find 

2.70. In Problem 2.36, let A be the event “lifetime is greater than t,” and B the event “lifetime
is greater than 2t.” Find Does the answer depend on t? Comment.

2.71. Find the probability that two or more students in a class of 20 students have the same
birthday. Hint: Use Corollary 1. How big should the class be so that the probability that
two or more students have the same birthday is 

2.72. A cryptographic hash takes a message as input and produces a fixed-length string as out-
put, called the digital fingerprint. A brute force attack involves computing the hash for a
large number of messages until a pair of distinct messages with the same hash is found.
Find the number of attempts required so that the probability of obtaining a match is 
How many attempts are required to find a matching pair if the digital fingerprint is 64 bits
long? 128 bits long?

2.73. (a) Find if if if 
(b) Show that if then 

2.74. Show that satisfies the axioms of probability.
(i)

(ii)
(iii) If then 

2.75. Show that 
2.76. In each lot of 100 items, two items are tested, and the lot is rejected if either of the tested

items is found defective.
(a) Find the probability that a lot with k defective items is accepted.
(b) Suppose that when the production process malfunctions, 50 out of 100 items are de-

fective. In order to identify when the process is malfunctioning, how many items
should be tested so that the probability that one or more items are found defective is
at least 99%?

P3A ¨ B ¨ C4 = P3A ƒB ¨ C4P3B ƒC4P3C4.
P3A ´ C ƒB4 = P3A ƒB4 + P3C ƒB4.A ¨ C = �,

P3S ƒB4 = 1
0 … P3A ƒB4 … 1
P3A ƒB4

P3B ƒA4 7 P3B4.P3A ƒB4 7 P3A4,
A) B.A( B;A ¨ B = �;P3A ƒB4

1/2.

1/2?

P3B ƒA4.
P3A ƒCc4, P3B ƒCc4.P3A ƒB4, P3B ƒC4,C = 5x 7 0.756.B = 5 ƒx - 0.5 ƒ 6 0.56,
A = 5x 6 06,3-1, 24.

P3B ƒA45 minutes6.
B = 5hand rests in lastA = 5hand rests in last 10 minutes6

P3A ƒB4.P3B ƒA4
P3A ƒB4.P3B ƒA4

P3A ƒB4.P3B ƒA4
P3C ƒA ¨ B4.P3B ¨ C ƒA4

P3B ƒA4.
P3A ƒB4

N1N2 ÁNJ-1 =
n!

k1! k2! Á kJ!
.
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2.77. A nonsymmetric binary communications channel is shown in Fig. P2.3. Assume the input
is “0” with probability p and “1” with probability 
(a) Find the probability that the output is 0.
(b) Find the probability that the input was 0 given that the output is 1. Find the

probability that the input is 1 given that the output is 1. Which input is more
probable?

1 - p.

2.78. The transmitter in Problem 2.4 is equally likely to send as The mali-
cious channel counts the number of heads in two tosses of a fair coin to decide by how
much to reduce the magnitude of the input to produce the output Y.
(a) Use a tree diagram to find the set of possible input-output pairs.
(b) Find the probabilities of the input-output pairs.
(c) Find the probabilities of the output values.
(d) Find the probability that the input was given that 

2.79. One of two coins is selected at random and tossed three times. The first coin comes up
heads with probability and the second coin with probability 
(a) What is the probability that the number of heads is k?
(b) Find the probability that coin 1 was tossed given that k heads were observed, for

(c) In part b, which coin is more probable when k heads have been observed?
(d) Generalize the solution in part b to the case where the selected coin is tossed m times.

In particular, find a threshold value T such that when heads are observed, coin
1 is more probable, and when are observed, coin 2 is more probable.

(e) Suppose that (that is, coin 2 is two-headed) and What is the
probability that we do not determine with certainty whether the coin is 1 or 2?

2.80. A computer manufacturer uses chips from three sources. Chips from sources A, B, and C
are defective with probabilities .005, .001, and .010, respectively. If a randomly selected
chip is found to be defective, find the probability that the manufacturer was A; that the
manufacturer was C. Assume that the proportions of chips from A, B, and C are 0.5, 0.1,
and 0.4, respectively.

2.81. A ternary communication system is shown in Fig. P2.4. Suppose that input symbols 0, 1,
and 2 occur with probability 1/3 respectively.
(a) Find the probabilities of the output symbols.
(b) Suppose that a 1 is observed at the output. What is the probability that the input was

0? 1? 2?

0 6 p1 6 1.p2 = 1
k 6 T

k 7 T

k = 0, 1, 2, 3.

p2 = 2/3 7 p1 = 1/3.p1

Y = k.X = +2

X = -2.X = +2
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Section 2.5: Independence of Events

2.82. Let and Assume the outcomes are
equiprobable. Are A, B, and C independent events?

2.83. Let U be selected at random from the unit interval. Let 
and Are any of these events independent?

2.84. Alice and Mary practice free throws at the basketball court after school.Alice makes free
throws with probability and Mary makes them with probability Find the probabil-
ity of the following outcomes when Alice and Mary each take one shot: Alice scores a
basket; Either Alice or Mary scores a basket; both score; both miss.

2.85. Show that if A and B are independent events, then the pairs A and and B, and
and are also independent.

2.86. Show that events A and B are independent if 
2.87. Let A, B, and C be events with probabilities P[A], P[B], and P[C].

(a) Find if A and B are independent.
(b) Find if A and B are mutually exclusive.
(c) Find if A, B, and C are independent.
(d) Find if A, B, and C are pairwise mutually exclusive.

2.88. An experiment consists of picking one of two urns at random and then selecting a ball
from the urn and noting its color (black or white). Let A be the event “urn 1 is selected”
and B the event “a black ball is observed.” Under what conditions are A and B inde-
pendent?

2.89. Find the probabilities in Problem 2.14 assuming that events A, B, and C are independent.
2.90. Find the probabilities that the three types of systems are “up” in Problem 2.15. As-

sume that all units in the system fail independently and that a type k unit fails with
probability

2.91. Find the probabilities that the system is “up” in Problem 2.16.Assume that all units in the
system fail independently and that a type k unit fails with probability 

2.92. A random experiment is repeated a large number of times and the occurrence of events
A and B is noted. How would you test whether events A and B are independent?

2.93. Consider a very long sequence of hexadecimal characters. How would you test whether
the relative frequencies of the four bits in the hex characters are consistent with indepen-
dent tosses of coin?

2.94. Compute the probability of the system in Example 2.35 being “up” when a second con-
troller is added to the system.

pk .

pk .

P3A ´ B ´ C4
P3A ´ B ´ C4
P3A ´ B4
P3A ´ B4

P3A ƒB4 = P3A ƒBc4.
Bc

AcBc, Ac

pm .pa

C = 51/2 6 U 6 16.B = 51/4 6 U 6 3/46,
A = 50 6 U 6 1/26,

A = 51, 26, B = 51, 36, C = 51, 46.S = 51, 2, 3, 46
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1 � ε

1

0

2

1

FIGURE P2.4
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2.95. In the binary communication system in Example 2.26, find the value of for which the
input of the channel is independent of the output of the channel. Can such a channel be
used to transmit information?

2.96. In the ternary communication system in Problem 2.81, is there a choice of for which the
input of the channel is independent of the output of the channel?

Section 2.6: Sequential Experiments

2.97. A block of 100 bits is transmitted over a binary communication channel with probability
of bit error 
(a) If the block has 1 or fewer errors then the receiver accepts the block. Find the prob-

ability that the block is accepted.
(b) If the block has more than 1 error, then the block is retransmitted. Find the probabil-

ity that M retransmissions are required.
2.98. A fraction p of items from a certain production line is defective.

(a) What is the probability that there is more than one defective item in a batch of n
items?

(b) During normal production but when production malfunctions 
Find the size of a batch that should be tested so that if any items are found defective
we are 99% sure that there is a production malfunction.

2.99. A student needs eight chips of a certain type to build a circuit. It is known that 5% of
these chips are defective. How many chips should he buy for there to be a greater than
90% probability of having enough chips for the circuit?

2.100. Each of n terminals broadcasts a message in a given time slot with probability p.
(a) Find the probability that exactly one terminal transmits so the message is received by

all terminals without collision.
(b) Find the value of p that maximizes the probability of successful transmission in part a.
(c) Find the asymptotic value of the probability of successful transmission as n becomes

large.
2.101. A system contains eight chips. The lifetime of each chip has a Weibull probability law:

with parameters and for Find the probability that at
least two chips are functioning after seconds.

2.102. A machine makes errors in a certain operation with probability p. There are two types of
errors. The fraction of errors that are type 1 is and type 2 is 
(a) What is the probability of k errors in n operations?
(b) What is the probability of type 1 errors in n operations?
(c) What is the probability of type 2 errors in n operations?
(d) What is the joint probability of and type 1 and 2 errors, respectively, in n opera-

tions?
2.103. Three types of packets arrive at a router port. Ten percent of the packets are “expedited

forwarding (EF),” 30 percent are “assured forwarding (AF),” and 60 percent are “best ef-
fort (BE).”
(a) Find the probability that k of N packets are not expedited forwarding.
(b) Suppose that packets arrive one at a time. Find the probability that k packets are

received before an expedited forwarding packet arrives.
(c) Find the probability that out of 20 packets, 4 are EF packets, 6 are AF packets, and 10

are BE.

k2k1

k2

k1

1 - a.a,

2/l
t Ú 0.k = 2: P31t, q24 = e-1lt2kl

p = 10-1.p = 10-3

p = 10-2.

e

e
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2.104. A run-length coder segments a binary information sequence into strings that consist of
either a “run” of k “zeros” punctuated by a “one”, for or a string of m
“zeros.” The case is:m = 3

k = 0, Á ,m - 1,

Suppose that the information is produced by a sequence of Bernoulli trials with

(a) Find the probability of run-length k in the case.
(b) Find the probability of run-length k for general m.

2.105. The amount of time cars are parked in a parking lot follows a geometric probability law
with The charge for parking in the lot is $1 for each half-hour or less.
(a) Find the probability that a car pays k dollars.
(b) Suppose that there is a maximum charge of $6. Find the probability that a car pays k

dollars.
2.106. A biased coin is tossed repeatedly until heads has come up three times. Find the proba-

bility that k tosses are required. Hint: Show that 
where and 

2.107. An urn initially contains two black balls and two white balls. The following experiment is
repeated indefinitely: A ball is drawn from the urn; if the color of the ball is the same as
the majority of balls remaining in the urn, then the ball is put back in the urn. Otherwise
the ball is left out.
(a) Draw the trellis diagram for this experiment and label the branches by the transition

probabilities.
(b) Find the probabilities for all sequences of outcomes of length 2 and length 3.
(c) Find the probability that the urn contains no black balls after three draws; no white

balls after three draws.
(d) Find the probability that the urn contains two black balls after n trials; two white

balls after n trials.
2.108. In Example 2.45, let and be the probabilities that urn 0 or urn 1 is used in the

nth subexperiment.
(a) Find and 
(b) Express and in terms of and 
(c) Evaluate and for 
(d) Find the solution to the recursion in part b with the initial conditions given in part a.
(e) What are the urn probabilities as n approaches infinity?

Section 2.7: Synthesizing Randomness: Number Generators

2.109. An urn experiment is to be used to simulate a random experiment with sample
space and probabilities and

How many balls should the urn contain? Generalizep5 = 1 - 1p1 + p2 + p3 + p42.
p1 = 1/3, p2 = 1/5, p3 = 1/4, p4 = 1/7,S = 51, 2, 3, 4, 56

*

n = 2, 3, 4.p11n2p01n2
p11n2.p01n2p11n + 12p01n + 12

p1112.p0112
p11n2p01n2

B = 5“2 heads occurs in k - 1 tosses”6.A = 5“kth toss is heads”6
5“k tosses are required”6 = A ¨ B,

p = 1/2.

m = 3
P3“one”4 = P3success4 = p.

String Run-length k

1 0

01 1

001 2

000 3
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the result to show that an urn experiment can be used to simulate any random ex-
periment with finite sample space and with probabilities given by rational numbers.

2.110. Suppose we are interested in using tosses of a fair coin to simulate a random experiment
in which there are six equally likely outcomes, where The following
version of the “rejection method” is proposed:

1. Toss a fair coin three times and obtain a binary number by identifying heads with
zero and tails with one.

2. If the outcome of the coin tosses in step 1 is the binary representation for a num-
ber in S, output the number. Otherwise, return to step 1.

(a) Find the probability that a number is produced in step 2.
(b) Show that the numbers that are produced in step 2 are equiprobable.
(c) Generalize the above algorithm to show how coin tossing can be used to simulate

any random urn experiment.
2.111. Use the rand function in Octave to generate 1000 pairs of numbers in the unit square.

Plot an x-y scattergram to confirm that the resulting points are uniformly distributed in
the unit square.

2.112. Apply the rejection method introduced above to generate points that are uniformly dis-
tributed in the portion of the unit square. Use the rand function to generate a pair
of numbers in the unit square. If accept the number. If not, select another pair.
Plot an x-y scattergram for the pair of accepted numbers and confirm that the resulting
points are uniformly distributed in the region of the unit square.

2.113. The sample mean-squared value of the numerical outcomes of a se-
ries of n repetitions of an experiment is defined by

(a) What would you expect this expression to converge to as the number of repetitions n
becomes very large?

(b) Find a recursion formula for similar to the one found in Problem 1.9.
2.114. The sample variance is defined as the mean-squared value of the variation of the samples

about the sample mean

Note that the also depends on the sample values. (It is customary to replace the n in
the denominator with for technical reasons that will be discussed in Chapter 8. For
now we will use the above definition.)
(a) Show that the sample variance satisfies the following expression:

(b) Show that the sample variance satisfies the following recursion formula:

with 8V290 = 0.

8V29n = a1 -
1
n
b8V29n-1 +

1
n
a1 -

1
n
b1X1n2 - 8X9n-122,

8V29n = 8X29n - 8X9n2.

n - 1
8X9n

8V29n =
1
na
n

j=1
5X1j2 - 8X9n62.

8X29n

8X29n =
1
na
n

j=1
X21j2.

X112,X122, ÁX1n2
x 7 y

x 7 y,
x 7 y

S = 50, 1, 2, 3, 4, 56.
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2.115. Suppose you have a program to generate a sequence of numbers that is uniformly dis-
tributed in [0, 1]. Let 
(a) Find and so that is uniformly distributed in the interval [a, b].
(b) Let and Use Octave to generate and to compute the sample mean

and sample variance in 1000 repetitions. Compare the sample mean and sample vari-
ance to and respectively.

2.116. Use Octave to simulate 100 repetitions of the random experiment where a coin is tossed
16 times and the number of heads is counted.
(a) Confirm that your results are similar to those in Figure 2.18.
(b) Rerun the experiment with and Are the results as expected?

Section 2.8: Fine Points: Event Classes

2.117. In Example 2.49, Homer maps the outcomes from Lisa’s sample space into
a smaller sample space and 
Define the inverse image events as follows:

Let A and B be events in Homer’s sample space.
(a) Show that 
(b) Show that 
(c) Show that 
(d) Show that the results in parts a, b, and c hold for a general mapping f from a sample

space S to a set 
2.118. Let f be a mapping from a sample space S to a finite set 

(a) Show that the set of inverse images forms a partition of S.
(b) Show that any event B of can be related to a union of 

2.119. Let A be any subset of S . Show that the class of sets is a field.

Section 2.9: Fine Points: Probabilities of Sequences of Events

2.120. Find the countable union of the following sequences of events:

(a) .

(b) .

(c)
2.121. Find the countable intersection of the following sequences of events:

(a)

(b) .

(c)
2.122. (a) Show that the Borel field can be generated from the complements and countable

intersections and unions of open sets (a, b).
(b) Suggest other classes of sets that can generate the Borel field.

2.123. Find expressions for the probabilities of the events in Problem 2.120.
2.124. Find expressions for the probabilities of the events in Problem 2.121.

Cn = 1a - 1/n, b4.
Bn = 3a, b + 1/n2
An = 1a - 1/n, b + 1/n2.

Cn = 3a + 1/n, b2.
Bn = 1-n, b - 1/n]

An = 3a + 1/n, b - 1/n4

*

5�, A, Ac, S6
Ak’s.S¿

Ak = f-115yk62
S¿ = 5y1 , y2 , Á , yn6.

S¿.

f-11Ac2 = f-11A2c.
f-11A ¨ B2 = f-11A2 ¨ f-11B2.
f-11A ´ B2 = f-11A2 ´ f-11B2.

f-115R62 = A1 = 5r6 and f-115G62 = A2 = 5g, t6.

f1t2 = G.SH = 5R, G6 :f1r2 = R, f1g2 = G,
SL = 5r, g, t6

*

p = 0.75.p = 0.25

1b - a22/12,1a + b2/2
Ynb = 15.a = -5

Ynba

Yn = aUn + b.
Un
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Problems Requiring Cumulative Knowledge

2.125. Compare the binomial probability law and the hypergeometric law introduced in Prob-
lem 2.54 as follows.
(a) Suppose a lot has 20 items of which five are defective. A batch of ten items is tested

without replacement. Find the probability that k are found defective for 
Compare this to the binomial probabilities with and 

(b) Repeat but with a lot of 1000 items of which 250 are defective.A batch of ten items is
tested without replacement. Find the probability that k are found defective for

Compare this to the binomial probabilities with and 

2.126. Suppose that in Example 2.43, computer A sends each message to computer B simulta-
neously over two unreliable radio links. Computer B can detect when errors have oc-
curred in either link. Let the probability of message transmission error in link 1 and link
2 be q1 and q2 respectively. Computer B requests retransmissions until it receives an
error-free message on either link.
(a) Find the probability that more than k transmissions are required.
(b) Find the probability that in the last transmission, the message on link 2 is received

free of errors.
2.127. In order for a circuit board to work, seven identical chips must be in working order. To

improve reliability, an additional chip is included in the board, and the design allows it to
replace any of the seven other chips when they fail.
(a) Find the probability that the board is working in terms of the probability p that an

individual chip is working.
(b) Suppose that n circuit boards are operated in parallel, and that we require a 99.9%

probability that at least one board is working. How many boards are needed?
2.128. Consider a well-shuffled deck of cards consisting of 52 distinct cards, of which four are

aces and four are kings.
(a) Find the probability of obtaining an ace in the first draw.
(b) Draw a card from the deck and look at it. What is the probability of obtaining an

ace in the second draw? Does the answer change if you had not observed the first
draw?

(c) Suppose we draw seven cards from the deck. What is the probability that the seven
cards include three aces? What is the probability that the seven cards include two
kings? What is the probability that the seven cards include three aces and/or two
kings?

(d) Suppose that the entire deck of cards is distributed equally among four players.What
is the probability that each player gets an ace?

pb

= .25.
p = 5/20n = 10k = 0, Á , 10.

p = 5/20 = .25.n = 10
k = 0, Á , 10.
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In most random experiments we are interested in a numerical attribute of the outcome
of the experiment. A random variable is defined as a function that assigns a numerical
value to the outcome of the experiment. In this chapter we introduce the concept of a
random variable and methods for calculating probabilities of events involving a ran-
dom variable. We focus on the simplest case, that of discrete random variables, and in-
troduce the probability mass function. We define the expected value of a random
variable and relate it to our intuitive notion of an average. We also introduce the con-
ditional probability mass function for the case where we are given partial information
about the random variable.These concepts and their extension in Chapter 4 provide us
with the tools to evaluate the probabilities and averages of interest in the design of sys-
tems involving randomness.

Throughout the chapter we introduce important random variables and discuss
typical applications where they arise. We also present methods for generating random
variables. These methods are used in computer simulation models that predict the be-
havior and performance of complex modern systems.

3.1 THE NOTION OF A RANDOM VARIABLE

The outcome of a random experiment need not be a number. However, we are usually
interested not in the outcome itself, but rather in some measurement or numerical at-
tribute of the outcome. For example, in n tosses of a coin, we may be interested in the
total number of heads and not in the specific order in which heads and tails occur. In a
randomly selected Web document, we may be interested only in the length of the doc-
ument. In each of these examples, a measurement assigns a numerical value to the out-
come of the random experiment. Since the outcomes are random, the results of the
measurements will also be random. Hence it makes sense to talk about the probabili-
ties of the resulting numerical values. The concept of a random variable formalizes this
notion.

A random variable X is a function that assigns a real number, to each out-
come in the sample space of a random experiment. Recall that a function is simply a
rule for assigning a numerical value to each element of a set, as shown pictorially in

z

X1z2,

Discrete Random
Variables 3

CHAPTER
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S

x

X(z) � x

real
line

SX

z

FIGURE 3.1
A random variable assigns a number to each outcome in the
sample space S of a random experiment.

zX1z2

Fig. 3.1. The specification of a measurement on the outcome of a random experiment
defines a function on the sample space, and hence a random variable.The sample space
S is the domain of the random variable, and the set of all values taken on by X is the
range of the random variable. Thus is a subset of the set of all real numbers. We will
use the following notation: capital letters denote random variables, e.g., X or Y, and
lower case letters denote possible values of the random variables, e.g., x or y.

Example 3.1 Coin Tosses

A coin is tossed three times and the sequence of heads and tails is noted.The sample space for this
experiment is Let X be the number of
heads in the three tosses. X assigns each outcome in S a number from the set 
The table below lists the eight outcomes of S and the corresponding values of X.

SX = 50, 1, 2, 36.z

S = 5HHH, HHT, HTH, HTT, THH, THT, TTH, TTT6.

SX

SX

X is then a random variable taking on values in the set 

Example 3.2 A Betting Game

A player pays $1.50 to play the following game: A coin is tossed three times and the number of
heads X is counted. The player receives $1 if and $8 if but nothing otherwise. Let
Y be the reward to the player. Y is a function of the random variable X and its outcomes can be
related back to the sample space of the underlying random experiment as follows:

X = 3,X = 2

SX = 50, 1, 2, 36.

Y is then a random variable taking on values in the set SY = 50, 1, 86.

z: HHH HHT HTH THH HTT THT TTH TTT

X1z2: 3 2 2 2 1 1 1 0

z: HHH HHT HTH THH HTT THT TTH TTT

X1z2: 3 2 2 2 1 1 1 0

Y1z2: 8 1 1 1 0 0 0 0
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The above example shows that a function of a random variable produces another
random variable.

For random variables, the function or rule that assigns values to each outcome is
fixed and deterministic, as, for example, in the rule “count the total number of dots fac-
ing up in the toss of two dice.” The randomness in the experiment is complete as soon
as the toss is done. The process of counting the dots facing up is deterministic. There-
fore the distribution of the values of a random variable X is determined by the proba-
bilities of the outcomes in the random experiment. In other words, the randomness in
the observed values of X is induced by the underlying random experiment, and we
should therefore be able to compute the probabilities of the observed values of X in
terms of the probabilities of the underlying outcomes.

Example 3.3 Coin Tosses and Betting

Let X be the number of heads in three independent tosses of a fair coin. Find the probability of
the event Find the probability that the player in Example 3.2 wins $8.

Note that if and only if is in Therefore

The event occurs if and only if the outcome is HHH, therefore

Example 3.3 illustrates a general technique for finding the probabilities of events
involving the random variable X. Let the underlying random experiment have sample
space S and event class To find the probability of a subset B of R, e.g., we
need to find the outcomes in S that are mapped to B, that is,

(3.1)

as shown in Fig. 3.2. If event A occurs then so event B occurs. Conversely, if
event B occurs, then the value implies that is in A, so event A occurs. Thus the
probability that X is in B is given by:

(3.2)P3X H B4 = P3A4 = P35z :X1z2 H B64.

zX1z2 X1z2 H B,

A = 5z :X1z2 H B6
B = 5xk6,F.

P3Y = 84 = P35HHH64 = 1/8.

z5Y = 86
= 3/8.

= P35HHT64 + P35HTH64 + P35HHT64
P3X = 24 = P35HHT, HTH, HHT64

5HHT, HTH, THH6.zX1z2 = 2
5X = 26.

z

S

B

real
line

A

FIGURE 3.2
P3X in B4 � P3z in A4



We refer to A and B as equivalent events.
In some random experiments the outcome is already the numerical value we

are interested in. In such cases we simply let that is, the identity function, to
obtain a random variable.

3.1.1 Fine Point: Formal Definition of a Random Variable

In going from Eq. (3.1) to Eq. (3.2) we actually need to check that the event A is in 
because only events in have probabilities assigned to them. The formal definition of
a random variable in Chapter 4 will explicitly state this requirement.

If the event class consists of all subsets of S, then the set A will always be in 
and any function from S to R will be a random variable. However, if the event class 
does not consist of all subsets of S, then some functions from S to R may not be random
variables, as illustrated by the following example.

Example 3.4 A Function That Is Not a Random Variable

This example shows why the definition of a random variable requires that we check that the set
A is in An urn contains three balls. One ball is electronically coded with a label 00. Another
ball is coded with 01, and the third ball has a 10 label. The sample space for this experiment is

Let the event class consist of all unions, intersections, and complements of
the events and In this event class, the outcome 00 cannot be distin-
guished from the outcome 10. For example, this could result from a faulty label reader that can-
not distinguish between 00 and 10. The event class has four events 

Let the probability assignment for the events in be and

Consider the following function X from S to To
find the probability of we need the probability of However,

is not in the class and so X is not a random variable because we cannot determine the
probability that 

3.2 DISCRETE RANDOM VARIABLES AND PROBABILITY MASS FUNCTION

A discrete random variable X is defined as a random variable that assumes values from
a countable set, that is, A discrete random variable is said to be
finite if its range is finite, that is, We are interested in finding the
probabilities of events involving a discrete random variable X. Since the sample space 
is discrete, we only need to obtain the probabilities for the events 
in the underlying random experiment. The probabilities of all events involving X can be
found from the probabilities of the 

The probability mass function (pmf) of a discrete random variable X is de-
fined as:

(3.3)

Note that is a function of x over the real line, and that can be nonzero
only at the values For in we have pX1xk2 = P[Ak].SX ,xkx1 , x2 , x3 , Á .

pX1x2pX1x2
pX1x2 = P3X = x4 = P35z :X1z2 = x64 for x a real number.

Ak’s.

Ak = 5z :X1z2 = xk6
SX

SX = 5x1 , x2 , Á , xn6.
SX = 5x1 , x2 , x3 , Á 6.

X = 0.
F,5006

= 5006.5z:X1z2 = 065X = 06,
= 2.R:X1002 = 0,X1012 = 1,X1102

P350164 = 1/3.
P3500, 1064 = 2/3F500, 01, 1066.
F = 5�, 500, 106, 5016,

A2 = 5016.A1 = 500, 106
FS = 500, 01, 106.

F.

F
F,F

F
F,

*

X1z2 = z,
z

Section 3.2 Discrete Random Variables and Probability Mass Function 99



100 Chapter 3 Discrete Random Variables

S

xk

Ak

x2x1

A1 A2 ……
…… ……

……

FIGURE 3.3
Partition of sample space S associated with a discrete random variable.

The events form a partition of S as illustrated in Fig. 3.3. To see this,
we first show that the events are disjoint. Let then

since each is mapped into one and only one value in Next we show that S is the
union of the Every in S is mapped into some so that every belongs to an
event in the partition. Therefore:

All events involving the random variable X can be expressed as the union of
events For example, suppose we are interested in the event X in
then

The pmf satisfies three properties that provide all the information re-
quired to calculate probabilities for events involving the discrete random variable X:

(i) (3.4a)

(ii) (3.4b)

(iii) (3.4c)

Property (i) is true because the pmf values are defined as a probability,
Property (ii) follows because the events form a partition

of S. Note that the summations in Eqs. (3.4b) and (3.4c) will have a finite or infinite
number of terms depending on whether the random variable is finite or not. Next con-
sider property (iii). Any event B involving X is the union of elementary events, so by
Axiom we have:

P3X in B4 = P3d
xHB
5z :X1z2 = x64 = a

xHB
P3X = x4 = a

xHB
pX1x2.

III¿

Ak = 5X = xk6P3X= x4.
pX1x2 =

P3X in B4 = a
xHB
pX1x2 where B( SX .

a
xHSX
pX1x2 = a

all k
pX1xk2 = a

all k
P3Ak4 = 1

pX1x2 Ú 0 for all x

pX1x2
= pX122 + pX152.
= P3A2 ´ A54 = P3A24 + P3A54

P3X in B4 = P35z :X1z2 = x26 ´ 5z :X1z2 = x564
B = 5x2 , x56,Ak’s.

S = A1 ´ A2 ´ Á .

Ak

zxkzAk’s.
SX .z

Aj ¨ Ak = 5z :X1z2 = xj and X1z2 = xk6 = �

j Z k,
A1 , A2 , Á



The pmf of X gives us the probabilities for all the elementary events from 
The probability of any subset of is obtained from the sum of the corresponding ele-
mentary events. In fact we have everything required to specify a probability law for the
outcomes in If we are only interested in events concerning X, then we can forget
about the underlying random experiment and its associated probability law and just
work with and the pmf of X.

Example 3.5 Coin Tosses and Binomial Random Variable

Let X be the number of heads in three independent tosses of a coin. Find the pmf of X.
Proceeding as in Example 3.3, we find:

Note that 

Example 3.6 A Betting Game

A player receives $1 if the number of heads in three coin tosses is 2, $8 if the number is 3, but
nothing otherwise. Find the pmf of the reward Y.

Note that 

Figures 3.4(a) and (b) show the graph of versus x for the random variables
in Examples 3.5 and 3.6, respectively. In general, the graph of the pmf of a discrete ran-
dom variable has vertical arrows of height at the values in We may view
the total probability as one unit of mass and as the amount of probability mass
that is placed at each of the discrete points The relative values of pmf at dif-
ferent points give an indication of the relative likelihoods of occurrence.

Example 3.7 Random Number Generator

A random number generator produces an integer number X that is equally likely to be any ele-
ment in the set Find the pmf of X.

For each k in we have Note that

We call X the uniform random variable in the set 50, 1, Á ,M - 16.
pX102 + pX112 + Á + pX1M - 12 = 1.

pX1k2 = 1/M.SX ,
SX = 50, 1, 2, Á ,M - 16.

x1 , x2 , Á .
pX1x2

SX .xkpX1xk2
pX1x2

pY102 + pY112 + pY182 = 1.

pY182 = P3z H 5HHH64 = 1/8.

pY112 = P3z H 5THH, HTH, HHT64 = 3/8

pY102 = P3z H 5TTT, TTH, THT, HTT64 = 4/8 = 1/2

pX102 + pX112 + pX122 + pX132 = 1.

p3 = P3X = 34 = P35HHH64 = p3.

p2 = P3X = 24 = P35HHT64 + P35HTH64 + P35THH64 = 311 - p2p2,

p1 = P3X = 14 = P35HTT64 + P35THT64 + P35TTH64 = 311 - p22p,

p0 = P3X = 04 = P35TTT64 = 11 - p23,

SX

SX .

SX

SX .
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FIGURE 3.4
(a) Graph of pmf in three coin tosses; (b) Graph of pmf in betting game.

Example 3.8 Bernoulli Random Variable

Let A be an event of interest in some random experiment, e.g., a device is not defective. We
say that a “success” occurs if A occurs when we perform the experiment. The Bernoulli ran-
dom variable is equal to 1 if A occurs and zero otherwise, and is given by the indicator
function for A:

(3.5a)

Find the pmf of 
is a finite discrete random variable with values from with pmf:

(3.5b)

We call the Bernoulli random variable. Note that 

Example 3.9 Message Transmissions

Let X be the number of times a message needs to be transmitted until it arrives correctly at its
destination. Find the pmf of X. Find the probability that X is an even number.

X is a discrete random variable taking on values from The event
occurs if the underlying experiment finds consecutive erroneous transmissionsk - 15X = k6

SX = 51, 2, 3, Á 6.

pI112 + pI122 = 1.IA

pI112 = P35z : z H A64 = p.

pI102 = P35z : z H Ac64 = 1 - p

SI = 50, 16,IA1z2
IA .

IA1z2 = b0 if z not in A
1 if z in A. 

IA



(“failures”) followed by a error-free one (“success”):

(3.6)

We call X the geometric random variable, and we say that X is geometrically distributed. In
Eq. (2.42b), we saw that the sum of the geometric probabilities is 1.

Example 3.10 Transmission Errors

A binary communications channel introduces a bit error in a transmission with probability p. Let
X be the number of errors in n independent transmissions. Find the pmf of X. Find the probabil-
ity of one or fewer errors.

X takes on values in the set Each transmission results in a “0” if there is
no error and a “1” if there is an error, and The probability of k errors
in n bit transmissions is given by the probability of an error pattern that has k 1’s and 0’s:

(3.7)

We call X the binomial random variable, with parameters n and p. In Eq. (2.39b), we saw that the
sum of the binomial probabilities is 1.

Finally, let’s consider the relationship between relative frequencies and the pmf
Suppose we perform n independent repetitions to obtain n observations of

the discrete random variable X. Let be the number of times the event 
occurs and let be the corresponding relative frequency. As n be-
comes large we expect that Therefore the graph of relative frequen-
cies should approach the graph of the pmf. Figure 3.5(a) shows the graph of relative

fk1n2: pX1xk2.
fk1n2 = Nk1n2/n

X = xkNk1n2
pX1xk2.

P3X … 14 = ¢n
0
≤p011 - p2n-0 + ¢n

1
≤p111 - p2n-1 = 11 - p2n + np11 - p2n-1.

pX1k2 = P3X = k4 = ¢n
k
≤pk11 - p2n-k k = 0, 1, Á , n.

n - k
P3“0”4 = 1 - p.P3“1”4 = p

SX = 50, 1, Á , n6.

P3X is even4 = a
q

k=1
pX12k2 = pa

q

k=1
q2k-1 = p

1
1 - q2 =

1
1 + q

.

pX1k2 = P3X = k4 = P300 Á 014 = 11 - p2k-1p = qk-1p k = 1, 2, Á .

(a)

0 1 2 3 4 5 6 7 8�1
0
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0.04
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0.08

0.1

0.12

0.14

0

0.1

0.2

0.3
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0.5

(b)
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FIGURE 3.5
(a) Relative frequencies and corresponding uniform pmf; (b) Relative frequencies and corresponding geometric pmf.
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frequencies for 1000 repetitions of an experiment that generates a uniform random
variable from the set and the corresponding pmf. Figure 3.5(b) shows the
graph of relative frequencies and pmf for a geometric random variable with 
and repetitions. In both cases we see that the graph of relative frequencies
approaches that of the pmf.

3.3 EXPECTED VALUE AND MOMENTS OF DISCRETE RANDOM VARIABLE

In order to completely describe the behavior of a discrete random variable, an entire
function, namely must be given. In some situations we are interested in a few
parameters that summarize the information provided by the pmf. For example, Fig. 3.6
shows the results of many repetitions of an experiment that produces two random vari-
ables. The random variable Y varies about the value 0, whereas the random variable X
varies around the value 5. It is also clear that X is more spread out than Y. In this sec-
tion we introduce parameters that quantify these properties.

The expected value or mean of a discrete random variable X is defined by

(3.8)

The expected value E[X] is defined if the above sum converges absolutely, that is,

(3.9)

There are random variables for which Eq. (3.9) does not converge. In such cases, we say
that the expected value does not exist.

E3 ƒX ƒ 4 = a
k

ƒxk ƒpX1xk2 6 q .

mX = E3X4 = a
xHSX
xpX1x2 = a

k
xkpX1xk2.

pX1x2,

n = 1000
p = 1/2

50, 1, Á , 76

10 20 30 40 50 60 70

Trial number

80 90 100 110 120 130 140 1500

0Yi

Xi
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�1

�2

FIGURE 3.6
The graphs show 150 repetitions of the experiments yielding X and Y. It is clear
that X is centered about the value 5 while Y is centered about 0. It is also clear that
X is more spread out than Y.



If we view as the distribution of mass on the points in the real
line, then E[X] represents the center of mass of this distribution. For example, in Fig.
3.5(a), we can see that the pmf of a discrete random variable that is uniformly distrib-
uted in has a center of mass at 3.5.

Example 3.11 Mean of Bernoulli Random Variable

Find the expected value of the Bernoulli random variable 
From Example 3.8, we have

where p is the probability of success in the Bernoulli trial.

Example 3.12 Three Coin Tosses and Binomial Random Variable

Let X be the number of heads in three tosses of a fair coin. Find E[X].
Equation (3.8) and the pmf of X that was found in Example 3.5 gives:

Note that the above is the case of a binomial random variable, which we will see
has

Example 3.13 Mean of a Uniform Discrete Random Variable

Let X be the random number generator in Example 3.7. Find E[X].
From Example 3.5 we have for so

where we used the fact that Note that for 
which is consistent with our observation of the center of mass in Fig. 3.5(a).

The use of the term “expected value” does not mean that we expect to observe
E[X] when we perform the experiment that generates X. For example, the expected
value of a Bernoulli trial is p, but its outcomes are always either 0 or 1.

E[X] corresponds to the “average of X” in a large number of observations of X.
Suppose we perform n independent repetitions of the experiment that generates X,
and we record the observed values as where x( j) is the observation
in the jth experiment. Let be the number of times is observed, and let

be the corresponding relative frequency. The arithmetic average, or
sample mean, of the observations, is:

(3.10)= a
k
xkfk1n2.

= x1f11n2 + x2f21n2 + Á + xkfk1n2 + Á

Á + xkNk1n2 + Á8X9n =
x112 + x122 + Á + x1n2

n
=
x1N11n2 + x2N21n2 +

n

fk1n2 = Nk1n2/n
xkNk1n2

x112, x122, Á , x1n2,

M = 8, E3X4 = 3.5,1 + 2 + Á + L = 1L + 12L/2.

E3X4 = a
M-1

k=0
k

1
M

=
1
M
50 + 1 + 2 + Á + M - 16 =

1M - 12M
2M

=
1M - 12

2

j = 0, Á ,M - 1,pX1j2 = 1/M

E3X4 = np.
n = 3, p = 1/2

E3X4 = a
3

k=0
kpX1k2 = 0a1

8
b + 1a3

8
b + 2a3

8
b + 3a1

8
b = 1.5.

E3IA4 = 0pI102 + 1pI112 = p.

IA .

50, Á , 76

x1 , x2 , ÁpX1x2
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The first numerator adds the observations in the order in which they occur, and the sec-
ond numerator counts how many times each occurs and then computes the total.As n
becomes large, we expect relative frequencies to approach the probabilities 

(3.11)

Equation (3.10) then implies that:

(3.12)

Thus we expect the sample mean to converge to E[X] as n becomes large.

Example 3.14 A Betting Game

A player at a fair pays $1.50 to toss a coin three times. The player receives $1 if the number of
heads is 2, $8 if the number is 3, but nothing otherwise. Find the expected value of the reward Y.
What is the expected value of the gain?

The expected reward is:

The expected gain is:

Players lose 12.5 cents on average per game, so the house makes a nice profit over the long run.
In Example 3.18 we will see that some engineering designs also “bet” that users will behave a
certain way.

Example 3.15 Mean of a Geometric Random Variable

Let X be the number of bytes in a message, and suppose that X has a geometric distribution with
parameter p. Find the mean of X.

X can take on arbitrarily large values since The expected value is:

This expression is readily evaluated by differentiating the series

(3.13)

to obtain

(3.14)

Letting we obtain

(3.15)

We see that X has a finite expected value as long as p 7 0.

E3X4 = p
1

11 - q22 =
1
p

.

x = q,

1

11 - x22 = a
q

k=0
kxk-1.

1
1 - x

= a
q

k=0
xk

E3X4 = a
q

k=1
kpqk-1 = pa

q

k=1
kqk-1.

SX = 51, 2, Á 6.

E3Y - 1.54 =
11
8

-
12
8

= -
1
8

.

E3Y4 = 0pY102 + 1pY1122 + 8pY182 = 0a4
8
b + 1a3

8
b + 8a1

8
b = a11

8
b .

8X9n = a
k
xkfk1n2: a

k
xkpX1xk2 = E3X4.

lim
n:q

fk1n2 = pX1xk2 for all k.

pX1xk2:
xk



For certain random variables large values occur sufficiently frequently that the
expected value does not exist, as illustrated by the following example.

Example 3.16 St. Petersburg Paradox

A fair coin is tossed repeatedly until a tail comes up. If X tosses are needed, then the casino
pays the gambler dollars. How much should the gambler be willing to pay to play this
game?

If the gambler plays this game a large number of times, then the payoff should be the ex-
pected value of If the coin is fair, and so:

This game does indeed appear to offer the gambler a sweet deal, and so the gambler should be
willing to pay any amount to play the game! The paradox is that a sane person would not pay a
lot to play this game. Problem 3.34 discusses ways to resolve the paradox.

Random variables with unbounded expected value are not uncommon and ap-
pear in models where outcomes that have extremely large values are not that rare. Ex-
amples include the sizes of files in Web transfers, frequencies of words in large bodies
of text, and various financial and economic problems.

3.3.1 Expected Value of Functions of a Random Variable

Let X be a discrete random variable, and let Since X is discrete,
will assume a countable set of values of the form where Denote the set
of values assumed by g(X) by One way to find the expected value of Z is
to use Eq. (3.8), which requires that we first find the pmf of Z. Another way is to use
the following result:

(3.16)

To show Eq. (3.16) group the terms that are mapped to each value 

The sum inside the braces is the probability of all terms for which which
is the probability that that is,

Example 3.17 Square-Law Device

Let X be a noise voltage that is uniformly distributed in with 
for k in Find E[Z] where 

Using the first approach we find the pmf of Z:

pZ112 = pX1-12 + pX112 = 1/2

pZ192 = P[X H 5-3, +36] = pX1-32 + pX132 = 1/2

Z = X2.SX .
pX1k2 = 1/4SX = 5-3, -1, +1, +36

pZ1zj2.Z = zj ,
g1xk2 = zj ,xk

a
k
g1xk2pX1xk2 = a

j
zjb a

xk:g1xk2=zj
pX1xk2 r = a

j
zjpZ1zj2 = E3Z4.

zj:xk

E3Z4 = E3g1X24 = a
k
g1xk2pX1xk2.

5z1 , z2 , Á 6. xk H SX .g1xk2
Z = g1X2Z = g1X2.

E3Y4 = a
q

k=1
2kpY12k2 = a

q

k=1
2ka1

2
bk = 1 + 1 + Á = q .

P3Y = 2k4 = 11/22k,P3X = k4 = 11/22kY = 2X.

Y = 2X
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and so

The second approach gives:

Equation 3.16 implies several very useful results. Let Z be the function

where a, b, and c are real numbers, then:

(3.17a)

From Eq. (3.16) we have:

Equation (3.17a), by setting a, b, and/or c to 0 or 1, implies the following expressions:

(3.17b)

(3.17c)

(3.17d)

(3.17e)

Example 3.18 Square-Law Device

The noise voltage X in the previous example is amplified and shifted to obtain 
and then squared to produce Find E[Z].

Example 3.19 Voice Packet Multiplexer

Let X be the number of voice packets containing active speech produced by independent
speakers in a 10-millisecond period as discussed in Section 1.4. X is a binomial random variable
with parameter n and probability Suppose a packet multiplexer transmits up to

active packets every 10 ms, and any excess active packets are discarded. Let Z be the
number of packets discarded. Find E[Z].
M = 20

p = 1/3.

n = 48

= 4E3X24 + 40E3X4 + 100 = 4152 + 40102 + 100 = 120.

E3Z4 = E312X + 10224 = E34X2 + 40X + 1004
Z = Y2 = 12X + 1022.

Y = 2X + 10,

E3c4 = c.

E3X + c4 = E3X4 + c.

E3aX4 = aE3X4.
E3g1X2 + h1X24 = E3g1X24 + E3h1X24.

= aE3g1X24 + bE3h1X24 + c.

= aa
k
g1xk2pX1xk2 + ba

k
h1xk2pX1xk2 + ca

k
pX1xk2

E3Z4 = E3ag1X2 + bh1X2 + c4 = a
k
1ag1xk2 + bh1xk2 + c2pX1xk2

E3Z4 = aE3g1X24 + bE3h1X24 + c.

Z = ag1X2 + bh1X2 + c

E3Z4 = E3X24 = a
k
k2pX1k2 =

1
4
51-322 + 1-122 + 12 + 326 =

20
4

= 5.

E3Z4 = 1a1
2
b + 9a1

2
b = 5.



The number of packets discarded every 10 ms is the following function of X:

Every 10 ms active packets are produced on average, so the fraction of active
packets discarded is which users will tolerate. This example shows that engi-
neered systems also play “betting” games where favorable statistics are exploited to use re-
sources efficiently. In this example, the multiplexer transmits 20 packets per period instead of 48
for a reduction of 

3.3.2 Variance of a Random Variable

The expected value E[X], by itself, provides us with limited information about X. For ex-
ample, if we know that then it could be that X is zero all the time. However,
it is also possible that X can take on extremely large positive and negative values. We
are therefore interested not only in the mean of a random variable, but also in the ex-
tent of the random variable’s variation about its mean. Let the deviation of the random
variable X about its mean be which can take on positive and negative val-
ues. Since we are interested in the magnitude of the variations only, it is convenient to
work with the square of the deviation, which is always positive,
The expected value is a constant, so we will denote it by The variance of
the random variable X is defined as the expected value of D:

(3.18)

The standard deviation of the random variable X is defined by:

(3.19)

By taking the square root of the variance we obtain a quantity with the same units as X.
An alternative expression for the variance can be obtained as follows:

(3.20)

is called the second moment of X. The nth moment of X is defined as 
Equations (3.17c), (3.17d), and (3.17e) imply the following useful expressions for

the variance. Let then

(3.21)= E31X - E3X4224 = VAR3X4.
VAR3X + c4 = E31X + c - 1E3X4 + c24224

Y = X + c,

E3Xn4.E3X24
= E3X24 - mX2 .

= E3X24 - 2mXE3X4 + mX2
VAR3X4 = E31X - mX224 = E3X2 - 2mXX + mX2 4

sX = STD3X4 = VAR3X41/2.

= a
xHSX
1x - mX22pX1x2 = a

q

k=1
1xk - mX22pX1xk2.

sX
2 = VAR3X4 = E31X - mX224

mX = E3X4.D1X2 = 1X - E3X422.
X - E3X4,

E3X4 = 0,

28/48 = 58%.

0.182/16 = 1.1%,
E3X4 = np = 16

E3Z4 = a
48

k=20
1k - 202¢48

k
≤ a1

3
bka2

3
b48-k

= 0.182.

Z = 1X - M2+ ! b0 ifX … M
X - M ifX 7 M.
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Adding a constant to a random variable does not affect the variance. Let 
then:

(3.22)

Scaling a random variable by c scales the variance by and the standard deviation by 
Now let a random variable that is equal to a constant with probability 1, then

(3.23)

A constant random variable has zero variance.

Example 3.20 Three Coin Tosses

Let X be the number of heads in three tosses of a fair coin. Find VAR[X].

Recall that this is an binomial random variable.We see later that variance for the
binomial random variable is npq.

Example 3.21 Variance of Bernoulli Random Variable

Find the variance of the Bernoulli random variable 

(3.24)

Example 3.22 Variance of Geometric Random Variable

Find the variance of the geometric random variable.
Differentiate the term in Eq. (3.14) to obtain

Let and multiply both sides by pq to obtain:

So the second moment is

E3X24 =
2pq

11 - q23 + E3X4 =
2q

p2 +
1
p

=
1 + q
p2

= a
q

k=0
k1k - 12pqk-1 = E3X24 - E3X4.

2pq

11 - q23 = pqa
q

k=0
k1k - 12qk-2

x = q

2
11 - x23 = a

q

k=0
k1k - 12xk-2.

11 - x22-1

 VAR3IA4 = p - p2 = p11 - p2 = pq.

E3IA2 4 = 0pI102 + 12pI112 = p and so

IA .

n = 3, p = 1>2
VAR3X4 = E3X24 - mX2 = 3 - 1.52 = 0.75.

E3X24 = 0a1
8
b + 12a3

8
b + 22a3

8
b + 32a1

8
b = 3 and

VAR3X4 = E31X - c224 = E304 = 0.

X = c,
ƒ c ƒ .c2

VAR3cX4 = E31cX - cE3X4224 = E3c21X - E3X4224 = c2 VAR3X4.
Z = cX,



and the variance is

3.4 CONDITIONAL PROBABILITY MASS FUNCTION

In many situations we have partial information about a random variable X or about
the outcome of its underlying random experiment. We are interested in how this infor-
mation changes the probability of events involving the random variable. The condi-
tional probability mass function addresses this question for discrete random variables.

3.4.1 Conditional Probability Mass Function

Let X be a discrete random variable with pmf and let C be an event that has
nonzero probability, See Fig. 3.7. The conditional probability mass function
of X is defined by the conditional probability:

(3.25)

Applying the definition of conditional probability we have:

(3.26)

The above expression has a nice intuitive interpretation:The conditional probability of the
event is given by the probabilities of outcomes for which both and

are in C, normalized by P[C].
The conditional pmf satisfies Eqs. (3.4a) – (3.4c). Consider Eq. (3.4b). The set of 

events is a partition of S, so

and

=
1
P3C4aall k

P3Ak ¨ C4 =
P3C4
P3C4 = 1.

a
xkHSX
pX1xk ƒ C2 = a

all k
pX1xk ƒ C2 = a

all k

P35X = xk6 ¨ C4
P3C4

C = d
k
1Ak ¨ C2,

Ak = 5X = xk6
z

X1z2 = xkz5X = xk6

pX1x ƒ C2 =
P35X = x6 ¨ C4

P3C4 .

pX1x ƒ C2 = P3X = x ƒ C4 for x a real number.

P3C4 7 0.
pX1x2,

VAR3X4 = E3X24 - E3X42 =
1 + q
p2 -

1

p2 =
q

p2 .

S
X(z) � xk

xk

Ak

C

FIGURE 3.7
Conditional pmf of X given event C.
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Similarly we can show that:

Example 3.23 A Random Clock

The minute hand in a clock is spun and the outcome is the minute where the hand comes to
rest. Let X be the hour where the hand comes to rest. Find the pmf of X. Find the conditional
pmf of X given given 

We assume that the hand is equally likely to rest at any of the minutes in the range
so for k in S. X takes on values from 

and it is easy to show that for j in Since 

The event B above involves X only. The event D, however, is stated in terms of the out-
comes in the underlying experiment (i.e., minutes not hours), so the probability of the intersec-
tion has to be expressed accordingly:

Most of the time the event C is defined in terms of X, for example 
or For in we have the following general result:

(3.27)

The above expression is determined entirely by the pmf of X.

Example 3.24 Residual Waiting Times

Let X be the time required to transmit a message, where X is a uniform random variable with
Suppose that a message has already been transmitting for m time units, find

the probability that the remaining transmission time is j time units.
SX = 51, 2, Á , L6.

pX1xk ƒC2 = c pX1xk2P3C4 if xk H C

0 if xk x C.

SX ,xkC = 5a … X … b6. C = 5X 7 106

= f
P3z H 52, 3, 4, 564

10/60
=

4
10

for j = 1

P3z H 56, 7, 8, 9, 1064
10/60

=
5

10
for j = 2

P3z H 51164
10/60

=
1

10
for j = 3.

pX1j ƒD2 =
P35X = j6 ¨ D4

P3D4 =
P3z :X1z2 = j and z H 52, Á , 1164

P3z H 52, Á , 1164

= c P3X = j4
1/3

=
1
4

if j H 51, 2, 3, 46
0 otherwise.

pX1j ƒB2 =
P35X = j6 ¨ B4

P3B4 =
P3X H 5j6 ¨ 51, 2, 3, 464
P3X H 51, 2, 3, 464

B = 51, 2, 3, 46:SX .pX1j2 = 1/12
SX = 51, 2, Á , 126P3z = k4 = 1/60S = 51, 2, Á , 606,

D = 51 6 z … 116.B = 5first 4 hours6;
z

P3X in B ƒC4 = a
xHB
pX1x ƒC2 where B( SX .



We are given so for 

(3.28)

X is equally likely to be any of the remaining possible values. As m increases,
increases implying that the end of the message transmission becomes increasingly likely.

Many random experiments have natural ways of partitioning the sample space S
into the union of disjoint events Let be the conditional pmf of
X given event The theorem on total probability allows us to find the pmf of X in
terms of the conditional pmf’s:

(3.29)

Example 3.25 Device Lifetimes

A production line yields two types of devices. Type 1 devices occur with probability and work
for a relatively short time that is geometrically distributed with parameter r.Type 2 devices work
much longer, occur with probability and have a lifetime that is geometrically distributed
with parameter s. Let X be the lifetime of an arbitrary device. Find the pmf of X.

The random experiment that generates X involves selecting a device type and then ob-
serving its lifetime. We can partition the sets of outcomes in this experiment into event con-
sisting of those outcomes in which the device is type 1, and consisting of those outcomes in
which the device is type 2. The conditional pmf’s of X given the device type are:

and

We obtain the pmf of X from Eq. (3.29):

3.4.2 Conditional Expected Value

Let X be a discrete random variable, and suppose that we know that event B has oc-
curred. The conditional expected value of X given B is defined as:

(3.30)mX ƒB = E3X ƒB4 = a
xHSX
xpX1x ƒB2 = a

k
xkpX1xk ƒB2

= 11 - r2k-1ra + 11 - s2k-1s11 - a2 for k = 1, 2, Á .

pX1k2 = pX1k ƒB12P3B14 + pX1k ƒB22P3B24

pX ƒB2
1k2 = 11 - s2k-1s for k = 1, 2, Á .

pX ƒB1
1k2 = 11 - r2k-1r for k = 1, 2, Á

B2,
B1,

1 - a,

a

pX1x2 = a
n

i=1
pX1x ƒBi2P3Bi4.

Bi .
pX1x ƒBi2B1 , B2 , Á , Bn .

1/1L - m2L - m

=

1
L

L - m
L

=
1

L - m
form + 1 … m + j … L.

pX1m + j ƒX 7 m2 =
P3X = m + j4
P3X 7 m4

m + 1 … m + j … L:C = 5X 7 m6,
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where we apply the absolute convergence requirement on the summation.The conditional
variance of X given B is defined as:

Note that the variation is measured with respect to not 
Let be the partition of S, and let be the conditional pmf of X

given event . E[X] can be calculated from the conditional expected values :

(3.31a)

By the theorem on total probability we have:

where we first express in terms of the conditional pmf’s, and we then change
the order of summation. Using the same approach we can also show

(3.31b)

Example 3.26 Device Lifetimes

Find the mean and variance for the devices in Example 3.25.
The conditional mean and second moment of each device type is that of a geometric ran-

dom variable with the corresponding parameter:

The mean and the second moment of X are then:

Finally, the variance of X is:

Note that we do not use the conditional variances to find VAR[Y] because Eq.
(3.31b) does not apply to conditional variances. (See Problem 3.40.) However, the
equation does apply to the conditional second moments.

VAR3X4 = E3X24 - m X
2 =

a11 + r2
r2

+
11 - a211 + s2

s2
- aa
r

+
11 - a2
s

b2

.

E3X24 = E3X2 ƒB14a + E3X2 ƒB2411 - a2 = a11 + r2/r2 + 11 - a211 + s2/s2.
mX = mX ƒB1

a + mX ƒB2
11 - a2 = a/r + 11 - a2/s

mX ƒB2
= 1/s E3X2 ƒB24 = 11 + s2/s2.

mX ƒB1
= 1/r E3X2 ƒB14 = 11 + r2/r2

E3g1X24 = a
n

i=1
E3g1X2 ƒBi4P3Bi4.

pX1xk2
= a

n

i=1
ba
k
kpX1xk ƒBi2 rP3Bi4 = a

n

i=1
E3X ƒBi4P3Bi4,

E3X4 = a
k
kpX1xk2 = a

k
kban

i=1
pX1xk ƒBi2P3Bi4 r

E3X4 = a
n

i=1
E3X ƒBi4P3Bi4.

E3X ƒB4Bi

pX1x ƒBi2B1,B2,...,Bn

mX .mX ƒB,

= E3X2 ƒB4 - mX ƒB
2 .

VAR3X ƒB4 = E31X - mX ƒB22 ƒB4 = a
q

k=1
1xk - mX ƒB22pX1xk ƒB2



3.5 IMPORTANT DISCRETE RANDOM VARIABLES

Certain random variables arise in many diverse, unrelated applications. The pervasive-
ness of these random variables is due to the fact that they model fundamental mecha-
nisms that underlie random behavior. In this section we present the most important of
the discrete random variables and discuss how they arise and how they are interrelat-
ed. Table 3.1 summarizes the basic properties of the discrete random variables dis-
cussed in this section. By the end of this chapter, most of these properties presented in
the table will have been introduced.

TABLE 3.1 Discrete random variables

Bernoulli Random Variable

Remarks: The Bernoulli random variable is the value of the indicator function for some event A;
if A occurs and 0 otherwise.

X = 1IA

E3X4 = p VAR3X4 = p11 - p2 GX1z2 = 1q + pz2
p0 = q = 1 - p p1 = p 0 … p … 1

SX = 50, 16

Binomial Random Variable

Remarks: X is the number of successes in n Bernoulli trials and hence the sum of n independent, identically
distributed Bernoulli random variables.

E3X4 = np VAR3X4 = np11 - p2 GX1z2 = 1q + pz2n
pk = ¢n

k
≤pk11 - p2n-k k = 0, 1, Á , n

SX = 50, 1, Á , n6

Geometric Random Variable

First Version:

Remarks: X is the number of failures before the first success in a sequence of independent Bernoulli trials.

E3X4 =
1 - p
p

VAR3X4 =
1 - p

p2
GX1z2 =

p

1 - qz

pk = p11 - p2k k = 0, 1, Á

SX = 50, 1, 2, Á 6

The geometric random variable is the only discrete random variable with the memoryless property.

Second Version:

Remarks: is the number of trials until the first success in a sequence of independent Bernoulli
trials.

X¿ = X + 1

E3X¿4 =
1
p

VAR3X¿4 =
1 - p

p2
GX¿1z2 =

pz

1 - qz

pk = p11 - p2k-1 k = 1, 2, Á

SX¿ = 51, 2, Á 6
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Discrete random variables arise mostly in applications where counting is in-
volved. We begin with the Bernoulli random variable as a model for a single coin toss.
By counting the outcomes of multiple coin tosses we obtain the binomial, geometric,
and Poisson random variables.

TABLE 3.1 Continued

Negative Binomial Random Variable

where r is a positive integer

Remarks: X is the number of trials until the rth success in a sequence of independent Bernoulli trials.

E3X4 =
r

p
VAR3X4 =

r11 - p2
p2

GX1z2 = a pz

1 - qz
b r

pk = ¢k - 1
r - 1

≤pr11 - p2k- r k = r, r + 1, Á

SX = 5r, r + 1, Á 6

Poisson Random Variable

Remarks: X is the number of events that occur in one time unit when the time between events is exponen-
tially distributed with mean 1/a.

E3X4 = a VAR3X4 = a GX1z2 = ea1z-12
pk =

ak

k!
e-a k = 0, 1, Á  and a 7 0

SX = 50, 1, 2, Á 6

Uniform Random Variable

Remarks: The uniform random variable occurs whenever outcomes are equally likely. It plays a key role in
the generation of random numbers.

E3X4 =
L + 1

2
 VAR3X4 =

L2 - 1
12

GX1z2 =
z

L

1 - zL

1 - z

pk =
1
L

k = 1, 2, Á , L

SX = 51, 2, Á , L6

Zipf Random Variable

where L is a positive integer

Remarks: The Zipf random variable has the property that a few outcomes occur frequently but most out-
comes occur rarely.

E3X4 =
L

cL
VAR3X4 =

L1L + 12
2cL

-
L2

cL
2

pk =
1
cL

1
k

k = 1, 2, Á , L where cL is given by Eq. 13.452
SX = 51, 2, Á , L6



3.5.1 The Bernoulli Random Variable

Let A be an event related to the outcomes of some random experiment. The Bernoulli
random variable (defined in Example 3.8) equals one if the event A occurs, and zero
otherwise. is a discrete random variable since it assigns a number to each outcome
of S. It is a discrete random variable with and its pmf is

(3.32)

where
In Example 3.11 we found the mean of 

The sample mean in n independent Bernoulli trials is simply the relative frequency of
successes and converges to p as n increases:

In Example 3.21 we found the variance of 

The variance is quadratic in p, with value zero at and and maximum at
This agrees with intuition since values of p close to 0 or to 1 imply a prepon-

derance of successes or failures and hence less variability in the observed values. The
maximum variability occurs when which corresponds to the case that is most
difficult to predict.

Every Bernoulli trial, regardless of the event A, is equivalent to the tossing of a
biased coin with probability of heads p. In this sense, coin tossing can be viewed as rep-
resentative of a fundamental mechanism for generating randomness, and the Bernoul-
li random variable is the model associated with it.

3.5.2 The Binomial Random Variable

Suppose that a random experiment is repeated n independent times. Let X be the num-
ber of times a certain event A occurs in these n trials. X is then a random variable with
range For example, X could be the number of heads in n tosses of
a coin. If we let be the indicator function for the event A in the jth trial, then

that is, X is the sum of the Bernoulli random variables associated with each of the n in-
dependent trials.

In Section 2.6, we found that X has probabilities that depend on n and p:

(3.33)

X is called the binomial random variable. Figure 3.8 shows the pdf of X for and
and Note that is maximum at where [x]kmax = 31n + 12p4,P3X = k4p = .5.p = .2

n = 24

P3X = k4 = pX1k2 = ¢n
k
≤pk11 - p2n-k for k = 0, Á , n.

X = I1 + I2 + Á + In ,

Ij

SX = 50, 1, Á , n6.

p = 1/2

p = 1/2.
p = 1p = 0

sI
2 = VAR3IA4 = p11 - p2 = pq.

IA:

8IA9n =
0N01n2 + 1N11n2

n
= f11n2: p.

mI = E3IA4 = p.

IA:
P3A4 = p.

pI102 = 1 - p and pI112 = p,

range = 50, 16,
IA

IA
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denotes the largest integer that is smaller than or equal to x.When is an inte-
ger, then the maximum is achieved at and (See Problem 3.50.)

The factorial terms grow large very quickly and cause overflow problems in the 

calculation of We can use Eq. (2.40) for the ratio of successive terms in the 

pmf allows us to calculate in terms of and delays the onset of
overflows:

(3.34)

The binomial random variable arises in applications where there are two types of
objects (i.e., heads/tails, correct/erroneous bits, good/defective items, active/silent speak-
ers), and we are interested in the number of type 1 objects in a randomly selected batch
of size n, where the type of each object is independent of the types of the other objects in
the batch. Examples involving the binomial random variable were given in Section 2.6.

Example 3.27 Mean of a Binomial Random Variable

The expected value of X is:

(3.35)

where the first line uses the fact that the term in the sum is zero, the second line cancels out
the k and factors np outside the summation, and the last line uses the fact that the summation is
equal to one since it adds all the terms in a binomial pmf with parameters and p.n - 1

k = 0

= npa
n-1

j=0

1n - 12!
j!1n - 1 - j2!pj11 - p2n-1- j = np,

= npa
n

k=1

1n - 12!
1k - 12!1n - k2!pk-111 - p2n-k

E3X4 = a
n

k=0
kpX1k2 = a

n

k=0
k¢n
k
≤pk11 - p2n-k = a

n

k=1
k

n!
k!1n - k2!pk11 - p2n-k

pX1k + 12
pX1k2 =

n - k
k + 1

p

1 - p
where pX102 = 11 - p2n.

pX1k2pX1k + 12
¢n
k
≤ .

kmax - 1.kmax

1n + 12p

(a)

n � 24
p � .2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

.05

.1

.15

.2

(b)

n � 24
p � .5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

.05

.1

.15

.2

FIGURE 3.8
Probability mass functions of binomial random variable (a) (b) p � 0.5.p � 0.2;



The expected value agrees with our intuition since we expect a fraction p of
the outcomes to result in success.

Example 3.28 Variance of a Binomial Random Variable

To find below, we remove the term and then let 

In the third line we see that the first sum is the mean of a binomial random variable with para-
meters and p, and hence equal to The second sum is the sum of the binomial
probabilities and hence equal to 1.

We obtain the variance as follows:

We see that the variance of the binomial is n times the variance of a Bernoulli random variable.
We observe that values of p close to 0 or to 1 imply smaller variance, and that the maximum vari-
ability is when 

Example 3.29 Redundant Systems

A system uses triple redundancy for reliability: Three microprocessors are installed and the sys-
tem is designed so that it operates as long as one microprocessor is still functional. Suppose that
the probability that a microprocessor is still active after t seconds is Find the probabil-
ity that the system is still operating after t seconds.

Let X be the number of microprocessors that are functional at time t. X is a binomial ran-
dom variable with parameter and p. Therefore:

3.5.3 The Geometric Random Variable

The geometric random variable arises when we count the number M of independent
Bernoulli trials until the first occurrence of a success. M is called the geometric random
variable and it takes on values from the set In Section 2.6, we found that the
pmf of M is given by

(3.36)

where is the probability of “success” in each Bernoulli trial. Figure 3.5(b)
shows the geometric pmf for Note that decays geometrically with k,
and that the ratio of consecutive terms is As p increas-
es, the pmf decays more rapidly.

pM1k + 12>pM1k2 = 11-p2 = q.
P3M = k4p = 1/2.

p = P3A4
P3M = k4 = pM1k2 = 11 - p2k-1p k = 1, 2, Á ,

51, 2, Á 6.

P3X Ú 14 = 1 - P3X = 04 = 1 - 11 - e-lt23.
n = 3

p = e-lt.

p = 1/2.

sX
2 = E3X24 - E3X42 = np1np + q2 - 1np22 = npq = np11 - p2.

1n - 12p.1n - 12

= np51n - 12p + 16 = np1np + q2.
= npb an-1

k¿ =0
k¿ ¢n - 1

k¿
≤pk¿11 - p2n-1-k + a

n-1

k¿ =0
1¢n - 1

k¿
≤pk¿11 - p2n-1-k¿ r= npa

n-1

k¿ =0
1k¿ + 12¢n - 1

k¿
≤pk¿11 - p2n-1-k

E3X24 = a
n

k=0
k2 n!
k!1n - k2!pk11 - p2n-k = a

n

k=1
k

n!
1k - 12!1n - k2!pk11 - p2n-k

k¿ = k - 1:k = 0E3X24

E3X4 = np
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The probability that can be written in closed form:

(3.37)

Sometimes we are interested in the number of failures before a success
occurs. We also refer to as a geometric random variable. Its pmf is:

(3.38)

In Examples 3.15 and 3.22, we found the mean and variance of the geometric ran-
dom variable:

We see that the mean and variance increase as p, the success probability, decreases.
The geometric random variable is the only discrete random variable that satisfies

the memoryless property:

(See Problems 3.54 and 3.55.) The above expression states that if a success has not oc-
curred in the first j trials, then the probability of having to perform at least k more tri-
als is the same as the probability of initially having to perform at least k trials. Thus,
each time a failure occurs, the system “forgets” and begins anew as if it were perform-
ing the first trial.

The geometric random variable arises in applications where one is interested in
the time (i.e., number of trials) that elapses between the occurrence of events in a se-
quence of independent experiments, as in Examples 2.11 and 2.43. Examples where the
modified geometric random variable arises are: number of customers awaiting ser-
vice in a queueing system; number of white dots between successive black dots in a
scan of a black-and-white document.

3.5.4 The Poisson Random Variable

In many applications, we are interested in counting the number of occurrences of an
event in a certain time period or in a certain region in space. The Poisson random vari-
able arises in situations where the events occur “completely at random” in time or
space. For example, the Poisson random variable arises in counts of emissions from ra-
dioactive substances, in counts of demands for telephone connections, and in counts of
defects in a semiconductor chip.

The pmf for the Poisson random variable is given by

(3.39)

where is the average number of event occurrences in a specified time interval or region
in space. Figure 3.9 shows the Poisson pmf for several values of For 
is maximum at for is maximum at if is a positive integer,
the is maximum at and at k = a - 1.k = aP3N = k4 a3a4;a 7 1, P3N = k4k = 0;

a 6 1, P3N = k4a.
a

P3N = k4 = pN1k2 =
ak

k!
e-a for k = 0, 1, 2, Á ,

M¿

P3M Ú k + j ƒM 7 j4 = P3M Ú k4 for all j, k 7 1.

mM = E3M4 = 1/p VAR3M4 =
1 - p
p2 .

P3M¿ = k4 = P3M = k + 14 = 11 - p2kp k = 0, 1, 2, Á .

M¿
M¿ = M - 1,

P3M … k4 = a
k

j=1
pqj-1 = pa

k-1

j¿ =0
qj¿ = p

1 - qk

1 - q
= 1 - qk.

M … k
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FIGURE 3.9
Probability mass functions of Poisson random variable (a) 
(b) (c) a = 9.a = 3;

a = 0.75;
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The pmf of the Poisson random variable sums to one, since

where we used the fact that the second summation is the infinite series expansion for 
It is easy to show that the mean and variance of a Poisson random variable is

given by:

Example 3.30 Queries at a Call Center

The number N of queries arriving in t seconds at a call center is a Poisson random variable with
where is the average arrival rate in queries/second. Assume that the arrival rate is four

queries per minute. Find the probability of the following events: (a) more than 4 queries in 10
seconds; (b) fewer than 5 queries in 2 minutes.

The arrival rate in queries/second is In part a, the
time interval is 10 seconds, so we have a Poisson random variable with 

queries. The probability of interest is evaluated numerically:

In part b, the time interval of interest is seconds, so The
probability of interest is:

Example 3.31 Arrivals at a Packet Multiplexer

The number N of packet arrivals in t seconds at a multiplexer is a Poisson random variable with
where is the average arrival rate in packets/second. Find the probability that there are

no packet arrivals in t seconds.

This equation has an interesting interpretation. Let Z be the time until the first packet ar-
rival. Suppose we ask, “What is the probability that that is, the next arrival occurs t or
more seconds later?” Note that implies and vice versa, so 
The probability of no arrival decreases exponentially with t.

Note that we can also show that

One of the applications of the Poisson probabilities in Eq. (3.39) is to approxi-
mate the binomial probabilities in the case where p is very small and n is very large,

P3N1t2 Ú n4 = 1 - P3N1t2 6 n4 = 1 - a
n-1

k=0

1lt2k
k!
e-lt.

P3Z 7 t4 = e-lt.5Z 7 t65N = 06
X 7 t,

P3N = 04 =
a0

0!
e-lt = e-lt.

la = lt

P3N … 54 = a
5

k=0

182k
k!
e-8 = 0.10.

a = 1/15*120 seconds = 8.t = 120

P3N 7 44 = 1 - P3N … 44 = 1 - a
4

k=0

12/32k
k!
e-2/3 = 6.33110-42.

10 seconds = 10/15
a = 11/15 queries/sec2*

l = 4 queries/60 sec = 1/15 queries/sec.

la = lt

E3N4 = a and sN
2 = VAR3N4 = a.

ea.

a
q

k=0

ak

k!
e-a = e-aa

q

k=0

ak

k!
= e-aea = 1,
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that is, where the event A of interest is very rare but the number of Bernoulli trials is
very large. We show that if is fixed, then as n becomes large:

(3.40)

Equation (3.40) is obtained by taking the limit in the expression for while
keeping fixed. First, consider the probability that no events occur in n trials:

(3.41)

where the limit in the last expression is a well known result from calculus. Consider the
ratio of successive binomial probabilities:

Thus the limiting probabilities satisfy

(3.42)

Thus the Poisson pmf can be used to approximate the binomial pmf for large n and
small p, using

Example 3.32 Errors in Optical Transmission

An optical communication system transmits information at a rate of bits/second. The proba-
bility of a bit error in the optical communication system is Find the probability of five or
more errors in 1 second.

Each bit transmission corresponds to a Bernoulli trial with a “success” corresponding to a
bit error in transmission. The probability of k errors in transmissions (1 second) is then
given by the binomial probability with and The Poisson approximation uses

Thus

The Poisson random variable appears in numerous physical situations because
many models are very large in scale and involve very rare events. For example, the
Poisson pmf gives an accurate prediction for the relative frequencies of the number of
particles emitted by a radioactive mass during a fixed time period. This correspon-
dence can be explained as follows. A radioactive mass is composed of a large number
of atoms, say n. In a fixed time interval each atom has a very small probability p of dis-
integrating and emitting a radioactive particle. If atoms disintegrate independently of

= 1 - e-1e1 +
1
1!

+
1
2!

+
1
3!

+
1
4!
f = .00366.

P3N Ú 54 = 1 - P3N 6 54 = 1 - a
4

k=0

ak

k!
e-a

a = np = 109110-92 = 1.
p = 10-9.n = 109
n = 109

10-9.
109

a = np.

pk+1 =
a

k + 1
pk = a a

k + 1
b aa
k
b Á aa

1
bp0 =

ak

k!
e-a.

: a

k + 1
 as n: q .

pk+1

pk
=
1n - k2p
1k + 12q =

11 - k/n2a
1k + 1211 - a/n2

p0 = 11 - p2n = a1 -
a

n
bn: e-a as n: q ,

a = np
pk ,n: q

pk = ¢n
k
≤pk11 - p2n-k M

ak

k!
e-a for k = 0, 1, Á .

a = np
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0 T
t……

FIGURE 3.10
Event occurrences in n subintervals of [0, T].

other atoms, then the number of emissions in a time interval can be viewed as the num-
ber of successes in n trials. For example, one microgram of radium contains about

atoms, and the probability that a single atom will disintegrate during a one-
millisecond time interval is [Rozanov, p. 58]. Thus it is an understatement to
say that the conditions for the approximation in Eq. (3.40) hold: n is so large and p so
small that one could argue that the limit has been carried out and that the num-
ber of emissions is exactly a Poisson random variable.

The Poisson random variable also comes up in situations where we can imagine a
sequence of Bernoulli trials taking place in time or space. Suppose we count the num-
ber of event occurrences in a T-second interval. Divide the time interval into a very
large number, n, of subintervals as shown in Fig. 3.10. A pulse in a subinterval indicates
the occurrence of an event. Each subinterval can be viewed as one in a sequence of in-
dependent Bernoulli trials if the following conditions hold: (1) At most one event can
occur in a subinterval, that is, the probability of more than one event occurrence is neg-
ligible; (2) the outcomes in different subintervals are independent; and (3) the proba-
bility of an event occurrence in a subinterval is where is the average
number of events observed in a 1-second interval. The number N of events in 1 second
is a binomial random variable with parameters n and Thus as N be-
comes a Poisson random variable with parameter In Chapter 9 we will revisit this re-
sult when we discuss the Poisson random process.

3.5.5 The Uniform Random Variable

The discrete uniform random variable Y takes on values in a set of consecutive inte-
gers with equal probability:

(3.43)

This humble random variable occurs whenever outcomes are equally likely, e.g., toss of
a fair coin or a fair die, spinning of an arrow in a wheel divided into equal segments, se-
lection of numbers from an urn. It is easy to show that the mean and variance are:

Example 3.33 Discrete Uniform Random Variable in Unit Interval

Let X be a uniform random variable in We define the discrete uniform
random variable in the unit interval by

U =
X

L
so SU = e0,

1
L

,
2
L

,
3
L

, Á , 1 -
1
L
f .

SX = 50, 1, Á , L - 16.

E3Y4 = j +
L + 1

2
 and VAR3Y4 =

L2 - 1
12

.

pY1k2 =
1
L

for k H 5j + 1, Á , j + L6.
SY = 5j + 1, Á , j + L6

a.
n: q ,p = a/n.

ap = a/n,

n: q

p = 10-15
n = 1016
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U has pmf:

The pmf of U puts equal probability mass 1/L on equally spaced points in the unit in-
terval.The probability of a subinterval of the unit interval is equal to the number of points in the
subinterval multiplied by 1/L. As L becomes very large, this probability is essentially the length
of the subinterval.

3.5.6 The Zipf Random Variable

The Zipf random variable is named for George Zipf who observed that the frequen-
cy of words in a large body of text is proportional to their rank. Suppose that words
are ranked from most frequent, to next most frequent, and so on. Let X be the rank
of a word, then where L is the number of distinct words. The pmf
of X is:

(3.44)

where is a normalization constant. The second word has 1/2 the frequency of occur-
rence as the first, the third word has 1/3 the frequency of the first, and so on. The nor-
malization constant is given by the sum:

(3.45)

The constant occurs frequently in calculus and is called the Lth harmonic
mean and increases approximately as lnL. For example, for 
and It can be shown that as 

The mean of X is given by:

(3.46)

The second moment and variance of X are:

and

(3.47)

The Zipf and related random variables have gained prominence with the
growth of the Internet where they have been found in a variety of measurement
studies involving Web page sizes, Web access behavior, and Web page interconnectiv-
ity. These random variables had previously been found extensively in studies on the
distribution of wealth and, not surprisingly, are now found in Internet video rentals
and book sales.
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FIGURE 3.11
Zipf distribution and its long tail.
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FIGURE 3.12
Lorenz curve for Zipf random variable with L � 100.

Example 3.34 Rare Events and Long Tails

The Zipf random variable X has the property that a few outcomes (words) occur frequently but
most outcomes occur rarely. Find the probability of words with rank higher than m.

(3.48)

We call the probability of the tail of the distribution of X. Figure 3.11 shows
the with which has Figure 3.12 also shows

for a geometric random variable with the same mean, that is, It can be
seen that for the geometric random variable drops off much more quickly than

The Zipf distribution is said to have a “long tail” because rare events are more like-
ly to occur than in traditional probability models.

Example 3.35 80/20 Rule and the Lorenz Curve

Let X correspond to a level of wealth and be the proportion of a population that has
wealth k. Suppose that X is a Zipf random variable. Thus is the proportion of the popula-
tion with wealth 1, the proportion with wealth 2, and so on. The long tail of the Zipf dis-
tribution suggests that very rich individuals are not very rare. We frequently hear statements
such as “20% of the population owns 80% of the wealth.”The Lorenz curve plots the proportion

pX122
pX112

pX1k2

P3X 7 m4.
P3Y 7 m4

1/p = 19.28.P[Y 7 m]
E[X] = 100/c100 = 19.28.L = 100P3X 7 m4
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P3X 7 m4 = 1 - P3X … m4 = 1 -

1
cL
a
m

j=1

1
j

= 1 -
cm
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form … L.



Section 3.6 Generation of Discrete Random Variables 127

of wealth owned by the poorest fraction x of the population, as the x varies from 0 to 1. Find the
Lorenz curve for 

For k in the fraction of the population with wealth k or less is:

(3.49)

The proportion of wealth owned by the population that has wealth k or less is:

(3.50)

The denominator in the above expression is the total wealth of the entire population. The Lorenz
curve consists of the plot of points which is shown in Fig. 3.12 for In the graph the
70% poorest proportion of the population own only 20% of the total wealth, or conversely, the 30%
wealthiest fraction of the population owns 80% of the wealth. See Problem 3.75 for a discussion of
what the Lorenz curve should look like in the cases of extreme fairness and extreme unfairness.

The explosive growth in the Internet has led to systems of huge scale. For proba-
bility models this growth has implied random variables that can attain very large val-
ues. Measurement studies have revealed many instances of random variables with long
tail distributions.

If we try to let L approach infinity in Eq. (3.45), grows without bound since the
series does not converge. However, if we make the pmf proportional to then the
series converges as long as We define the Zipf or zeta random variable with
range to have pmf:

(3.51)

where is a normalization constant given by the zeta function which is defined by:

(3.52)

The convergence of the above series is discussed in standard calculus books.
The mean of Z is given by:

where the sum of the sequence converges only if that is, We
can similarly show that the second moment (and hence the variance) exists only if 

3.6 GENERATION OF DISCRETE RANDOM VARIABLES

Suppose we wish to generate the outcomes of a random experiment that has sam-
ple space with probability of elementary events 
We divide the unit interval into n subintervals. The jth subinterval has length andpj
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FIGURE 3.13
Generating a binomial random variable with n � 5, p � 1/2.

corresponds to outcome Each trial of the experiment first uses rand to obtain a
number U in the unit interval. The outcome of the experiment is if U is in the jth
subinterval. Figure 3.13 shows the portioning of the unit interval according to the
pmf of an binomial random variable.

The Octave function discrete_rnd implements the above method and can be
used to generate random numbers with desired probabilities. Functions to generate
random numbers with common distributions are also available. For example,
poisson_rnd (lambda, r, c) can be used to generate an array of Poisson-distributed
random numbers with rate lambda.

Example 3.36 Generation of Tosses of a Die

Use discrete_rnd to generate 20 samples of a toss of a die.

> V=1:6; %Define

>P=[1/6, 1/6, 1/6, 1/6, 1/6, 1/6]; % Set all the pmf values for X to 1/6.

> discrete_rnd (20, V, P) %Generate 20 samples from with pmf P.

ans =

6 2 2 6 5 2 6 1 3 6 3 1 6 3 4 2 5 3 4 1

Example 3.37 Generation of Poisson Random Variable

Use the built-in function to generate 20 samples of a Poisson random variable with 

> Poisson_rnd (2,1,20) %Generate a array of samples of a Poisson
% random variable with 

ans =
4 3 0 2 3 2 1 2 1 4 0 1 2 2 3 4 0 1 3

a = 2.
1 * 20

a = 2.

SX

SX = 51, 2, 3, 4, 5, 66.

n = 5, p = 0.5

aj

aj .
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The problems at the end of the chapter elaborate on the rich set of experiments
that can be simulated using these basic capabilities of MATLAB or Octave. In the re-
mainder of this book, we will use Octave in examples because it is freely available.

SUMMARY

• A random variable is a function that assigns a real number to each outcome of a
random experiment.A random variable is defined if the outcome of a random ex-
periment is a number, or if a numerical attribute of an outcome is of interest.

• The notion of an equivalent event enables us to derive the probabilities of events
involving a random variable in terms of the probabilities of events involving the
underlying outcomes.

• A random variable is discrete if it assumes values from some countable set. The
probability mass function is sufficient to calculate the probability of all events
involving a discrete random variable.

• The probability of events involving discrete random variable X can be expressed
as the sum of the probability mass function 

• If X is a random variable, then is also a random variable.
• The mean, variance, and moments of a discrete random variable summarize some

of the information about the random variable X. These parameters are useful in
practice because they are easier to measure and estimate than the pmf.

• The conditional pmf allows us to calculate the probability of events given partial
information about the random variable X.

• There are a number of methods for generating discrete random variables with
prescribed pmf’s in terms of a random variable that is uniformly distributed in
the unit interval.

CHECKLIST OF IMPORTANT TERMS

Y = g1X2
pX1x2.

Discrete random variable
Equivalent event
Expected value of X
Function of a random variable
nth moment of X

Probability mass function
Random variable
Standard deviation of X
Variance of X

ANNOTATED REFERENCES

Reference [1] is the standard reference for electrical engineers for the material on ran-
dom variables. Reference [2] discusses some of the finer points regarding the concepts
of a random variable at a level accessible to students of this course. Reference [3] is a
classic text, rich in detailed examples. Reference [4] presents detailed discussions of the
various methods for generating random numbers with specified distributions. Refer-
ence [5] is entirely focused on discrete random variables.
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PROBLEMS

Section 3.1: The Notion of a Random Variable

3.1. Let X be the maximum of the number of heads obtained when Carlos and Michael each
flip a fair coin twice.
(a) Describe the underlying space S of this random experiment and specify the proba-

bilities of its elementary events.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.

3.2. A die is tossed and the random variable X is defined as the number of full pairs of dots in
the face showing up.
(a) Describe the underlying space S of this random experiment and specify the proba-

bilities of its elementary events.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.
(d) Repeat parts a, b, and c, if Y is the number of full or partial pairs of dots in the face

showing up.
(e) Explain why and are not equal.

3.3. The loose minute hand of a clock is spun hard. The coordinates (x, y) of the point where
the tip of the hand comes to rest is noted. Z is defined as the sgn function of the product
of x and y, where sgn(t) is 1 if if and if 
(a) Describe the underlying space S of this random experiment and specify the proba-

bilities of its events.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.

3.4. A data source generates hexadecimal characters. Let X be the integer value correspond-
ing to a hex character. Suppose that the four binary digits in the character are indepen-
dent and each is equally likely to be 0 or 1.
(a) Describe the underlying space S of this random experiment and specify the proba-

bilities of its elementary events.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.
(d) Let Y be the integer value of a hex character but suppose that the most significant bit

is three times as likely to be a “0” as a “1”. Find the probabilities for the values of Y.
3.5. Two transmitters send messages through bursts of radio signals to an antenna. During

each time slot each transmitter sends a message with probability Simultaneous trans-
missions result in loss of the messages. Let X be the number of time slots until the first
message gets through.

1>2.

SX ,

SX ,

t 6 0.-1t = 0,t 7 0, 0

P3Y = 04P3X = 04

SX ,

SX ,
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(a) Describe the underlying sample space S of this random experiment and specify the
probabilities of its elementary events.

(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.

3.6. An information source produces binary triplets 
with corresponding probabilities A binary code
assigns a codeword of length to triplet k. Let X be the length of the string as-
signed to the output of the information source.
(a) Show the mapping from S to the range of X.
(b) Find the probabilities for the various values of X.

3.7. An urn contains 9 $1 bills and one $50 bill. Let the random variable X be the total
amount that results when two bills are drawn from the urn without replacement.
(a) Describe the underlying space S of this random experiment and specify the proba-

bilities of its elementary events.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.

3.8. An urn contains 9 $1 bills and one $50 bill. Let the random variable X be the total
amount that results when two bills are drawn from the urn with replacement.
(a) Describe the underlying space S of this random experiment and specify the proba-

bilities of its elementary events.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.

3.9. A coin is tossed n times. Let the random variable Y be the difference between the num-
ber of heads and the number of tails in the n tosses of a coin. Assume 
(a) Describe the sample space of S.
(b) Find the probability of the event 
(c) Find the probabilities for the other values of Y.

3.10. An m-bit password is required to access a system.A hacker systematically works through
all possible m-bit patterns. Let X be the number of patterns tested until the correct pass-
word is found.
(a) Describe the sample space of S.
(b) Show the mapping from S to the range of X.
(c) Find the probabilities for the various values of X.

Section 3.2: Discrete Random Variables and Probability Mass Function
3.11. Let X be the maximum of the coin tosses in Problem 3.1.

(a) Compare the pmf of X with the pmf of Y, the number of heads in two tosses of a fair
coin. Explain the difference.

(b) Suppose that Carlos uses a coin with probability of heads Find the pmf
of X.

3.12. Consider an information source that produces binary pairs that we designate as
Find and plot the pmf in the following cases:

(a) for all k in
(b) for k = 2, 3, 4.pk+1 = pk/2

SX .pk = p1/k

SX = 51, 2, 3, 46.

p = 3/4.

SX ,

5Y = 06.
P[heads] = p.

SX ,

SX ,

SX ,

- log2 pk

51/4, 1/4, 1/8, 1/8, 1/16, 1/16, 1/16, 1/166.
5000, 111, 010, 101, 001, 110, 100, 0116

SX ,
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(c) for
(d) Can the random variables in parts a, b, and c be extended to take on values in the set

If yes, specify the pmf of the resulting random variables. If no, explain
why not.

3.13. Let X be a random variable with pmf for 
(a) Estimate the value of c numerically. Note that the series converges.
(b) Find
(c) Find

3.14. Compare and for outputs of the data source in Problem 3.4.
3.15. In Problem 3.5 suppose that terminal 1 transmits with probability in a given time slot,

but terminal 2 transmits with probability p.
(a) Find the pmf for the number of transmissions X until a message gets through.
(b) Given a successful transmission, find the probability that terminal 2 transmitted.

3.16. (a) In Problem 3.7 what is the probability that the amount drawn from the urn is more
than $2? More than $50?

(b) Repeat part a for Problem 3.8.
3.17. A modem transmits a voltage signal into a channel. The channel adds to this signal a

noise term that is drawn from the set with respective probabilities

(a) Find the pmf of the output Y of the channel.
(b) What is the probability that the output of the channel is equal to the input of the

channel?
(c) What is the probability that the output of the channel is positive?

3.18. A computer reserves a path in a network for 10 minutes.To extend the reservation the com-
puter must successfully send a “refresh” message before the expiry time. However, mes-
sages are lost with probability Suppose that it takes 10 seconds to send a refresh
request and receive an acknowledgment. When should the computer start sending refresh
messages in order to have a 99% chance of successfully extending the reservation time?

3.19. A modem transmits over an error-prone channel, so it repeats every “0” or “1” bit trans-
mission five times. We call each such group of five bits a “codeword.” The channel
changes an input bit to its complement with probability p = 1/10 and it does so indepen-
dently of its treatment of other input bits. The modem receiver takes a majority vote of
the five received bits to estimate the input signal. Find the probability that the receiver
makes the wrong decision.

3.20. Two dice are tossed and we let X be the difference in the number of dots facing up.
(a) Find and plot the pmf of X.
(b) Find the probability that for all k.

Section 3.3: Expected Value and Moments of Discrete Random Variable

3.21. (a) In Problem 3.11, compare E[Y] to E[X] where X is the maximum of coin tosses.
(b) Compare VAR[X] and VAR[Y].

3.22. Find the expected value and variance of the output of the information sources in Problem
3.12, parts a, b, and c.

3.23. (a) Find E[X] for the hex integers in Problem 3.4.
(b) Find VAR[X].

ƒX ƒ … k

1>2.

54/10, 3/10, 2/10, 1/106.
50, -1, -2, -36

+2

1>2
P3Y Ú 84P3X Ú 84

P36 … X … 84.
P3X 7 44.

k = 1, 2, Á .pk = c/k2

51, 2, Á 6?
k = 2, 3, 4.pk+1 = pk/2k
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3.24. Find the mean codeword length in Problem 3.6. How can this average be interpreted in a
very large number of encodings of binary triplets?

3.25. (a) Find the mean and variance of the amount drawn from the urn in Problem 3.7.
(b) Find the mean and variance of the amount drawn from the urn in Problem 3.8.

3.26. Find E[Y] and VAR[Y] for the difference between the number of heads and tails in Problem
3.9. In a large number of repetitions of this random experiment, what is the meaning of E[Y]?

3.27. Find E[X] and VAR[X] in Problem 3.13.

3.28. Find the expected value and variance of the modem signal in Problem 3.17.

3.29. Find the mean and variance of the time that it takes to renew the reservation in Problem 3.18.

3.30. The modem in Problem 3.19 transmits 1000 5-bit codewords.What is the average number
of codewords in error? If the modem transmits 1000 bits individually without repetition,
what is the average number of bits in error? Explain how error rate is traded off against
transmission speed.

3.31. (a) Suppose a fair coin is tossed n times. Each coin toss costs d dollars and the reward in
obtaining X heads is Find the expected value of the net reward.

(b) Suppose that the reward in obtaining X heads is where Find the expected
value of the reward.

3.32. Let where 
(a) Find E[g (X)] for X as in Problem 3.12a with 
(b) Repeat part a for X as in Problem 3.12b with 
(c) Repeat part a for X as in Problem 3.12c with 

3.33. Let (see Example 3.19).
(a) Find E[X] for X as in Problem 3.12a with 
(b) Repeat part a for X as in Problem 3.12b with 
(c) Repeat part a for X as in Problem 3.12c with 

3.34. Consider the St. Petersburg Paradox in Example 3.16. Suppose that the casino has a total
of dollars, and so it can only afford a finite number of coin tosses.
(a) How many tosses can the casino afford?
(b) Find the expected payoff to the player.
(c) How much should a player be willing to pay to play this game?

Section 3.4: Conditional Probability Mass Function

3.35. (a) In Problem 3.11a, find the conditional pmf of X, the maximum of coin tosses, given
that

(b) Find the conditional pmf of X given that Michael got one head in two tosses.
(c) Find the conditional pmf of X given that Michael got one head in the first toss.
(d) In Problem 3.11b, find the probability that Carlos got the maximum given that 

3.36. Find the conditional pmf for the quaternary information source in Problem 3.12, parts a,
b, and c given that 

3.37. (a) Find the conditional pmf of the hex integer X in Problem 3.4 given that 
(b) Find the conditional pmf of X given that the first bit is 0.
(c) Find the conditional pmf of X given that the 4th bit is 0.

3.38. (a) Find the conditional pmf of X in Problem 3.5 given that no message gets through in
time slot 1.

(b) Find the conditional pmf of X given that the first transmitter transmitted in time slot 1.

X 6 8.

X 6 4.

X = 2.

X 7 0.

M = 2m

SX = 51, 2, Á , 156.
SX = 51, 2, Á , 156.

SX = 51, 2, Á , 156.
g1X2 = 1X - 102+

SX = 51, 2, Á , 156.
SX = 51, 2, Á , 156.
SX = 51, 2, Á , 156.

A = 5X 7 106.g1X2 = IA ,

a 7 0.aX,
aX2 + bX.
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3.39. (a) Find the conditional expected value of X in Problem 3.5 given that no message gets
through in the first time slot. Show that .

(b) Find the conditional expected value of X in Problem 3.5 given that a message gets
through in the first time slot.

(c) Find E[X] by using the results of parts a and b.
(d) Find and VAR[X] using the approach in parts b and c.

3.40. Explain why Eq. (3.31b) can be used to find but it cannot be used to directly find
VAR[X].

3.41. (a) Find the conditional pmf for X in Problem 3.7 given that the first draw produced k
dollars.

(b) Find the conditional expected value corresponding to part a.
(c) Find E[X] using the results from part b.
(d) Find and VAR[X] using the approach in parts b and c.

3.42. Find E[Y] and VAR[Y] for the difference between the number of heads and tails in n
tosses in Problem 3.9. Hint: Condition on the number of heads.

3.43. (a) In Problem 3.10 find the conditional pmf of X given that the password has not been
found after k tries.

(b) Find the conditional expected value of X given
(c) Find E[X] from the results in part b.

Section 3.5: Important Discrete Random Variables

3.44. Indicate the value of the indicator function for the event A, for each in the sam-
ple space S. Find the pmf and expected of 
(a) and
(b) and
(c) and

(d) and
3.45. Let A and B be events for a random experiment with sample space S. Show that the

Bernoulli random variable satisfies the following properties:
(a) and
(b) and
(c) Find the expected value of the indicator functions in parts a and b.

3.46. Heat must be removed from a system according to how fast it is generated. Suppose the
system has eight components each of which is active with probability 0.25, independently
of the others. The design of the heat removal system requires finding the probabilities of
the following events:
(a) None of the systems is active.
(b) Exactly one is active.
(c) More than four are active.
(d) More than two and fewer than six are active.

3.47. Eight numbers are selected at random from the unit interval.
(a) Find the probability that the first four numbers are less than 0.25 and the last four

are greater than 0.25.

IA´B = IA + IB - IAIB .IA¨B = IAIB
I� = 0.IS = 1

A = 5z 7 a6.S = 1-q , q2
A = 5z = 1x, y2 : 0.25 6 x + y 6 1.256.
S = 5z = 1x, y2 : 0 6 x 6 1, 0 6 y 6 16

A = 50.3 6 z … 0.76.S = 30, 14
A = 5z 7 36.S = 51, 2, 3, 4, 56

IA .
zIA1z2,

X 7 k.

E3X24

E3X24,
E3X24

E3X ƒX 7 14 = E3X4 + 1
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(b) Find the probability that four numbers are less than 0.25 and four are greater than 0.25.
(c) Find the probability that the first three numbers are less than 0.25, the next two are

between 0.25 and 0.75, and the last three are greater than 0.75.
(d) Find the probability that three numbers are less than 0.25, two are between 0.25 and

0.75, and three are greater than 0.75.
(e) Find the probability that the first four numbers are less than 0.25 and the last four

are greater than 0.75.
(f) Find the probability that four numbers are less than 0.25 and four are greater than 0.75.

3.48. (a) Plot the pmf of the binomial random variable with and and
and

(b) Use Octave to plot the pmf of the binomial random variable with and
and

3.49. Let X be a binomial random variable that results from the performance of n Bernoulli
trials with probability of success p.
(a) Suppose that Find the probability that the single event occurred in the kth

Bernoulli trial.
(b) Suppose that Find the probability that the two events occurred in the jth and

kth Bernoulli trials where 
(c) In light of your answers to parts a and b in what sense are the successes distributed

“completely at random” over the n Bernoulli trials?
3.50. Let X be the binomial random variable.

(a) Show that

(b) Show that part a implies that: (1) is maximum at 
where [x] denotes the largest integer that is smaller than or equal to x; and (2) when

is an integer, then the maximum is achieved at and 
3.51. Consider the expression 

(a) Use the binomial expansion for and c to obtain an expression for 
(b) Now expand all terms of the form and obtain an expression that in-

volves the multinomial coefficient for mutually exclusive events,

(c) Let Use the result from part b to show that
the multinomial probabilities add to one.

3.52. A sequence of characters is transmitted over a channel that introduces errors with prob-
ability p = 0.01.
(a) What is the pmf of N, the number of error-free characters between erroneous char-

acters?
(b) What is E[N]?
(c) Suppose we want to be 99% sure that at least 1000 characters are received correctly

before a bad one occurs. What is the appropriate value of p?
3.53. Let N be a geometric random variable with 

(a) Find
(b) Find the probability that N is odd.

P3N = k ƒN … m4.
SN = 51, 2, Á 6.

p1 = P3A14, p2 = P3A24, p3 = P3A34.
A1 , A2 , A3 .

M = 3
1a + b2k

1a + b + c2n.1a + b2
1a + b + c2n.

kmax - 1.kmax1n + 12p
kmax = 31n + 12p4,P3X = k4

pX1k + 12
pX1k2 =

n - k
k + 1

p

1 - p
where pX102 = 11 - p2n.

j 6 k.
X = 2.

X = 1.

p = 0.90.p = 0.10, p = 0.5,
n = 100

p = 0.90.p = 0.10, p = 0.5,
n = 5,n = 4
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3.54. Let M be a geometric random variable. Show that M satisfies the memoryless property:
for all j,

3.55. Let X be a discrete random variable that assumes only nonnegative integer values and
that satisfies the memoryless property. Show that X must be a geometric random vari-
able. Hint: Find an equation that must be satisfied by 

3.56. An audio player uses a low-quality hard drive. The initial cost of building the player is
$50. The hard drive fails after each month of use with probability 1/12. The cost to repair
the hard drive is $20. If a 1-year warranty is offered, how much should the manufacturer
charge so that the probability of losing money on a player is 1% or less? What is the av-
erage cost per player?

3.57. A Christmas fruitcake has Poisson-distributed independent numbers of sultana raisins,
iridescent red cherry bits, and radioactive green cherry bits with respective averages 48,
24, and 12 bits per cake. Suppose you politely accept 1/12 of a slice of the cake.

(a) What is the probability that you get lucky and get no green bits in your slice?

(b) What is the probability that you get really lucky and get no green bits and two or
fewer red bits in your slice?

(c) What is the probability that you get extremely lucky and get no green or red bits and
more than five raisins in your slice?

3.58. The number of orders waiting to be processed is given by a Poisson random variable with
parameter where is the average number of orders that arrive in a day, is
the number of orders that can be processed by an employee per day, and n is the number
of employees. Let and Find the number of employees required so the prob-
ability that more than four orders are waiting is less than 10%. What is the probability
that there are no orders waiting?

3.59. The number of page requests that arrive at a Web server is a Poisson random variable
with an average of 6000 requests per minute.

(a) Find the probability that there are no requests in a 100-ms period.

(b) Find the probability that there are between 5 and 10 requests in a 100-ms period.

3.60. Use Octave to plot the pmf of the Poisson random variable with 

3.61. Find the mean and variance of a Poisson random variable.

3.62. For the Poisson random variable, show that for is maximum at 
for is maximum at and if is a positive integer, then is
maximum at and at Hint: Use the approach of Problem 3.50.

3.63. Compare the Poisson approximation and the binomial probabilities for and
and and and 

3.64. At a given time, the number of households connected to the Internet is a Poisson random
variable with mean 50. Suppose that the transmission bit rate available for the household
is 20 Megabits per second.

(a) Find the probability of the distribution of the transmission bit rate per user.

(b) Find the transmission bit rate that is available to a user with probability 90% or
higher.

(c) What is the probability that a user has a share of 1 Megabit per second or higher?

3.65. An LCD display has pixels. A display is accepted if it has 15 or fewer faulty
pixels.The probability that a pixel is faulty coming out of the production line is Find
the proportion of displays that are accepted.

10-5.
1000 * 750

p = 0.01.n = 100p = 0.05;n = 10, p = 0.1; n = 20
k = 0, 1, 2, 3

k = a - 1.k = a,
P3N = k4a3a4;a 7 1, P3N = k4

k = 0;a 6 1, P3N = k4

a = 0.1, 0.75, 2, 20.

m = 1.l = 5

mla = l/nm,

g1m2 = P3M Ú m4.

k 7 1.P3M Ú k + j ƒM Ú j + 14 = P3M Ú k4
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3.66. A data center has 10,000 disk drives. Suppose that a disk drive fails in a given day with
probability
(a) Find the probability that there are no failures in a given day.
(b) Find the probability that there are fewer than 10 failures in two days.
(c) Find the number of spare disk drives that should be available so that all failures in a

day can be replaced with probability 99%.
3.67. A binary communication channel has a probability of bit error of Suppose that

transmissions occur in blocks of 10,000 bits. Let N be the number of errors introduced by
the channel in a transmission block.
(a) Find
(b) For what value of p will the probability of 1 or more errors in a block be 99%?

3.68. Find the mean and variance of the uniform discrete random variable that takes on values
in the set with equal probability. You will need the following formulas:

3.69. A voltage X is uniformly distributed in the set 
(a) Find the mean and variance of X.
(b) Find the mean and variance of 
(c) Find the mean and variance of 
(d) Find the mean and variance of 

3.70. Ten news Web sites are ranked in terms of popularity, and the frequency of requests to
these sites are known to follow a Zipf distribution.
(a) What is the probability that a request is for the top-ranked site?
(b) What is the probability that a request is for one of the bottom five sites?

3.71. A collection of 1000 words is known to have a Zipf distribution.
(a) What is the probability of the 10 top-ranked words?
(b) What is the probability of the 10 lowest-ranked words?

3.72. What is the shape of the log of the Zipf probability vs. the log of the rank?

3.73. Plot the mean and variance of the Zipf random variable for to 

3.74. An online video store has 10,000 titles. In order to provide fast response, the store caches
the most popular titles. How many titles should be in the cache so that with probability
99% an arriving video request will be in the cache?

3.75. (a) Income distribution is perfectly equal if every individual has the same income. What
is the Lorenz curve in this case?

(b) In a perfectly unequal income distribution, one individual has all the income and all
others have none. What is the Lorenz curve in this case?

3.76. Let X be a geometric random variable in the set 
(a) Find the pmf of X.
(b) Find the Lorenz curve of X. Assume L is infinite.
(c) Plot the curve for 

3.77. Let X be a zeta random variable with parameter 
(a) Find an expression for P3X … k4.

a.
p = 0.1, 0.5, 0.9.

51, 2, Á 6.

L = 100.L = 1

Z = cos21pX/82.
W = cos1pX/82.
Y = -2X2 + 3.

5-3, Á , 3, 46.
a
n

i=1
i =
n1n + 12

2 a
n

i=1
i2 =

n1n + 1212n + 12
6

.

51, 2, Á , L6

P3N = 04, P3N … 34.

10-6.

10-3.
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(b) Plot the pmf of X for and 3.
(c) Plot for and 3.

Section 3.6: Generation of Discrete Random Variables

3.78. Octave provides function calls to evaluate the pmf of important discrete random vari-
ables. For example, the function Poisson_pdf(x, lambda) computes the pmf at x for the
Poisson random variable.
(a) Plot the Poisson pmf for as well as and 
(b) Plot the binomial pmf for and as well as 

and
(c) Compare the binomial probabilities with the Poisson approximation for 

3.79. The discrete_pdf function in Octave makes it possible to specify an arbitrary pmf for a
specified
(a) Plot the pmf for Zipf random variables with as well as 

and
(b) Plot the pmf for the reward in the St. Petersburg Paradox for in Problem 3.34, as

well as and (You will need to use a log scale for the values of k.)
3.80. Use Octave to plot the Lorenz curve for the Zipf random variables in Problem 3.79a.
3.81. Repeat Problem 3.80 for the binomial random variable with and 

and 0.9.
3.82. (a) Use the discrete_rnd function in Octave to simulate the urn experiment discussed in

Section 1.3.Compute the relative frequencies of the outcomes in 1000 draws from the urn.
(b) Use the discrete_pdf function in Octave to specify a pmf for a binomial random

variable with and Use discrete_rnd to generate 100 samples and
plot the relative frequencies.

(c) Use binomial_rnd to generate the 100 samples in part b.
3.83. Use the discrete_rnd function to generate 200 samples of the Zipf random vari-

able in Problem 3.79a. Plot the sequence of outcomes as well as the overall relative
frequencies.

3.84. Use the discrete_rnd function to generate 200 samples of the St. Petersburg Paradox
random variable in Problem 3.79b. Plot the sequence of outcomes as well as the overall
relative frequencies.

3.85. Use Octave to generate 200 pairs of numbers, in which the components are inde-
pendent, and each component is uniform in the set 
(a) Plot the relative frequencies of the X and Y outcomes.
(b) Plot the relative frequencies of the random variable Can you discern

the pmf of Z?
(c) Plot the relative frequencies of Can you discern the pmf of Z?
(d) Plot the relative frequencies of Is the pmf discernable?

3.86. Use Octave function binomial_rnd to generate 200 pairs of numbers, in which
the components are independent, and where are binomial with parameter

and are binomial with parameter n = 4, p = 0.5.Yin = 8, p = 0.5
Xi

1Xi , Yi2,
V = X/Y.
W = XY.

Z = X + Y.

51, 2, Á , 9, 106.
1Xi , Yi2,

p = 0.2.n = 5

p = 0.1, 0.5,n = 100

P3X 7 k4.P3X … k4
m = 20

P3X 7 k4.
P3X … k4L = 10, 100, 1000,

SX .

p = 0.01.
n = 100,

P3X 7 k4.
P3X … k4p = 0.10, 0.30, 0.50, 0.75,n = 48

P3X 7 k4.P3X … k4l = 0.5, 5, 50,

a = 1.5, 2,P3X … k4
a = 1.5, 2,
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(a) Plot the relative frequencies of the X and Y outcomes.
(b) Plot the relative frequencies of the random variable Does this corre-

spond to the pmf you would expect? Explain.
3.87. Use Octave function Poisson_rnd to generate 200 pairs of numbers, in which

the components are independent, and where are the number of arrivals to a system in
one second and are the number of arrivals to the system in the next two seconds. As-
sume that the arrival rate is five customers per second.
(a) Plot the relative frequencies of the X and Y outcomes.
(b) Plot the relative frequencies of the random variable Does this corre-

spond to the pmf you would expect? Explain.

Problems Requiring Cumulative Knowledge

3.88. The fraction of defective items in a production line is p. Each item is tested and defective
items are identified correctly with probability a.
(a) Assume nondefective items always pass the test. What is the probability that k items

are tested until a defective item is identified?
(b) Suppose that the identified defective items are removed. What proportion of the

remaining items is defective?
(c) Now suppose that nondefective items are identified as defective with probability b.

Repeat part b.

3.89. A data transmission system uses messages of duration T seconds. After each message
transmission, the transmitter stops and waits T seconds for a reply from the receiver.The re-
ceiver immediately replies with a message indicating that a message was received correctly.
The transmitter proceeds to send a new message if it receives a reply within T seconds; oth-
erwise, it retransmits the previous message. Suppose that messages can be completely gar-
bled while in transit and that this occurs with probability p. Find the maximum possible rate
at which messages can be successfully transmitted from the transmitter to the receiver.

3.90. An inspector selects every nth item in a production line for a detailed inspection. Sup-
pose that the time between item arrivals is an exponential random variable with mean 1
minute, and suppose that it takes 2 minutes to inspect an item. Find the smallest value of
n such that with a probability of 90% or more, the inspection is completed before the ar-
rival of the next item that requires inspection.

3.91. The number X of photons counted by a receiver in an optical communication system is a
Poisson random variable with rate when a signal is present and a Poisson random variable
with rate when a signal is absent. Suppose that a signal is present with probability p.
(a) Find and 
(b) The receiver uses the following decision rule:

If decide signal present;
otherwise, decide signal absent.

Show that this decision rule leads to the following threshold rule:

If decide signal present; otherwise, decide signal absent.

(c) What is the probability of error for the above decision rule?

X 7 T,

P3signal present ƒX = k4 7 P3signal absent ƒX = k4,

P3signal absent ƒX = k4.P3signal present ƒX = k4
l0 6 l1

l1

Z = X + Y.

Yi
Xi

1Xi , Yi2,
Z = X + Y.
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3.92. A binary information source (e.g., a document scanner) generates very long strings of 0’s fol-
lowed by occasional 1’s.Suppose that symbols are independent and that 
is very close to one. Consider the following scheme for encoding the run X of 0’s between
consecutive 1’s:
1. If express n as a multiple of an integer and a remainder r, that is, find

k and r such that where 
2. The binary codeword for n then consists of a prefix consisting of k 0’s followed by a 1,

and a suffix consisting of the m-bit representation of the remainder r.The decoder can
deduce the value of n from this binary string.
(a) Find the probability that the prefix has k zeros, assuming that 
(b) Find the average codeword length when 
(c) Find the compression ratio, which is defined as the ratio of the average run length

to the average codeword length when pM = 1/2.

pM = 1/2.
pM = 1/2.

0 … r 6 M - 1;n = kM + r,
M = 2mX = n,

p = P3symbol = 04



In Chapter 3 we introduced the notion of a random variable and we developed meth-
ods for calculating probabilities and averages for the case where the random variable is
discrete. In this chapter we consider the general case where the random variable may
be discrete, continuous, or of mixed type. We introduce the cumulative distribution
function which is used in the formal definition of a random variable, and which can
handle all three types of random variables. We also introduce the probability density
function for continuous random variables. The probabilities of events involving a ran-
dom variable can be expressed as integrals of its probability density function. The ex-
pected value of continuous random variables is also introduced and related to our
intuitive notion of average. We develop a number of methods for calculating probabil-
ities and averages that are the basic tools in the analysis and design of systems that in-
volve randomness.

4.1 THE CUMULATIVE DISTRIBUTION FUNCTION

The probability mass function of a discrete random variable was defined in terms of
events of the form The cumulative distribution function is an alternative ap-
proach which uses events of the form The cumulative distribution function
has the advantage that it is not limited to discrete random variables and applies to all
types of random variables. We begin with a formal definition of a random variable.

Definition: Consider a random experiment with sample space S and event
class A random variable X is a function from the sample space S to R with
the property that the set is in for every b in R.

The definition simply requires that every set have a well defined probability in
the underlying random experiment, and this is not a problem in the cases we will consider.
Why does the definition use sets of the form and not 
We will see that all events of interest in the real line can be expressed in terms of sets of
the form 

The cumulative distribution function (cdf) of a random variable X is defined as
the probability of the event 

(4.1)FX1x2 = P3X … x4 for -q 6 x 6 +q ,

5X … x6:
5z :X1z2 … b6.

5z :X1z2 = xb6?5z :X1z2 … b6
Ab

FAb = 5z :X1z2 … b6F.

5X … b6.5X = b6.
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that is, it is the probability that the random variable X takes on a value in the set
In terms of the underlying sample space, the cdf is the probability of the

event The event and its probability vary as x is varied; in
other words, is a function of the variable x.

The cdf is simply a convenient way of specifying the probability of all semi-infi-
nite intervals of the real line of the form The events of interest when dealing
with numbers are intervals of the real line, and their complements, unions, and inter-
sections.We show below that the probabilities of all of these events can be expressed in
terms of the cdf.

The cdf has the following interpretation in terms of relative frequency. Suppose
that the experiment that yields the outcome and hence is performed a large
number of times. is then the long-term proportion of times in which 

Before developing the general properties of the cdf, we present examples of the
cdfs for three basic types of random variables.

Example 4.1 Three Coin Tosses

Figure 4.1(a) shows the cdf X, the number of heads in three tosses of a fair coin. From Example 3.1
we know that X takes on only the values 0, 1, 2, and 3 with probabilities 1/8, 3/8, 3/8, and 1/8, respec-
tively, so is simply the sum of the probabilities of the outcomes from that are less
than or equal to x.The resulting cdf is seen to be a nondecreasing staircase function that grows from
0 to 1.The cdf has jumps at the points 0, 1, 2, 3 of magnitudes 1/8, 3/8, 3/8, and 1/8, respectively.

Let us take a closer look at one of these discontinuities, say, in the vicinity of
For a small positive number, we have

so the limit of the cdf as x approaches 1 from the left is 1/8. However,

and furthermore the limit from the right is

FX11 + d2 = P3X … 1 + d4 = P30 or 1 heads4 =
1
2

.

FX112 = P3X … 14 = P30 or 1 heads4 =
1
8

+
3
8

=
1
2

,

FX11 - d2 = P3X … 1 - d4 = P50 heads6 =
1
8

dx = 1.

50, 1, 2, 36FX1x2

X1z2 … b.FX1b2
X1z2,z,

1-q , b4.
FX1x2

5X … x65z :X1z2 … x6.
1-q , x4.

(b)

0 1 2 3
x

(a)

FX(x) fX(x)

0 1 2 3
x

1
8

1
8

3
8

3
8

FIGURE 4.1
cdf (a) and pdf (b) of a discrete random variable.
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Thus the cdf is continuous from the right and equal to 1/2 at the point Indeed,
we note the magnitude of the jump at the point is equal to 

Henceforth we will use dots in the graph to indicate the value of the cdf at
the points of discontinuity.

The cdf can be written compactly in terms of the unit step function:

(4.2)

then

Example 4.2 Uniform Random Variable in the Unit Interval

Spin an arrow attached to the center of a circular board. Let be the final angle of the arrow,
where The probability that falls in a subinterval of is proportional to
the length of the subinterval. The random variable X is defined by Find the cdf
of X:

As increases from 0 to X increases from 0 to 1. No outcomes lead to values so

For occurs when so

(4.3)

Finally, for all outcomes lead to therefore:

We say that X is a uniform random variable in the unit interval. Figure 4.2(a) shows the cdf
of the general uniform random variable X. We see that is a nondecreasing continuous
function that grows from 0 to 1 as x ranges from its minimum values to its maximum values.

FX1x2

FX1x2 = P3X … x4 = P30 6 u … 2p4 = 1 for x 7 1.

5X1u2 … 1 6 x6,ux 7 1,

FX1x2 = P3X … x4 = P35u … 2px64 = 2px/2p = x 0 6 x … 1.

5u … 2px60 6 x … 1, 5X … x6
FX1x2 = P3X … x4 = P3�4 = 0 for x 6 0.

x … 0,u2p,u

X1u2 = u>2p.
10, 2p4u0 6 u … 2p.

u

FX1x2 =
1
8
u1x2 +

3
8
u1x - 12 +

3
8
u1x - 22 +

1
8
u1x - 32.

u1x2 = b0 for
1 for

 
x 6 0
x Ú 0,

- 1/8 = 3/8.
P3X = 14 = 1/2x = 1
x = 1.

a b

(a)

1

x

FX(x)

a b

(b)

fX(x)
1

b � a

x

FIGURE 4.2
cdf (a) and pdf (b) of a continuous random variable.
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0 01 1

(a)

1

x

p

p

FX(x) fX(x)

(b)

1 � p

x

FIGURE 4.3
cdf (a) and pdf (b) of a random variable of mixed type.

Example 4.3

The waiting time X of a customer at a taxi stand is zero if the customer finds a taxi parked at the
stand, and a uniformly distributed random length of time in the interval 0, 1 (in hours) if no
taxi is found upon arrival. The probability that a taxi is at the stand when the customer arrives is
p. Find the cdf of X.

The cdf is found by applying the theorem on total probability:

Note that when and 0 otherwise. Furthermore 
is given by Eq. (4.3), therefore

The cdf, shown in Fig. 4.3(a), combines some of the properties of the cdf in Example 4.1
(discontinuity at 0) and the cdf in Example 4.2 (continuity over intervals). Note that can
be expressed as the sum of a step function with amplitude p and a continuous function of x.

We are now ready to state the basic properties of the cdf.The axioms of probabil-
ity and their corollaries imply that the cdf has the following properties:

(i)

(ii)

(iii)

(iv) is a nondecreasing function of x, that is, if then 

(v) is continuous from the right, that is, for 

These five properties confirm that, in general, the cdf is a nondecreasing function that
grows from 0 to 1 as x increases from to We already observed these properties
in Examples 4.1, 4.2, and 4.3. Property (v) implies that at points of discontinuity, the cdf

q .-q

= FX1b+2.
h 7 0, FX1b2 = lim

h:0
FX1b + h2FX1x2

FX1a2 … FX1b2.a 6 b,FX1x2
lim
x:-q

FX1x2 = 0.

lim
x:q

FX1x2 = 1.

0 … FX1x2 … 1.

FX1x2

FX1x2 = c 0 x 6 0
p + 11 - p2x 0 … x … 1
1 x 7 1.

P3X … x ƒ no taxi4x Ú 0P3X … x ƒ find taxi4 = 1

FX1x2 = P3X … x4 = P3X … x ƒ find taxi4p + P3X … x ƒ no taxi411 - p2.

43
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is equal to the limit from the right. We observed this property in Examples 4.1 and 4.3.
In Example 4.2 the cdf is continuous for all values of x, that is, the cdf is continuous both
from the right and from the left for all x.

The cdf has the following properties which allow us to calculate the probability of
events involving intervals and single values of X:

(vi)

(vii)

(viii)

Property (vii) states that the probability that is given by the magnitude of the
jump of the cdf at the point b. This implies that if the cdf is continuous at a point b, then

Properties (vi) and (vii) can be combined to compute the probabilities
of other types of intervals. For example, since 

then

(4.4)

If the cdf is continuous at the endpoints of an interval, then the endpoints have zero
probability, and therefore they can be included in, or excluded from, the interval with-
out affecting the probability.

Example 4.4

Let X be the number of heads in three tosses of a fair coin. Use the cdf to find the probability of
the events and 

From property (vi) and Fig. 4.1 we have

The cdf is continuous at and so

Since from Eq. (4.4) we have

and using property (vii) for 

Example 4.5

Let X be the uniform random variable from Example 4.2. Use the cdf to find the probability of
the events and 5 ƒX - 0.4 ƒ 7 0.26.5-0.5 6 X 6 0.256, 50.3 6 X 6 0.656,

= FX12-2 - FX11-2 = 4/8 - 1/8 = 3/8.

P51 … X 6 24 = FX122 - FX11-2 - P3X = 24 = FX122 - FX11-2 - 1FX122 - FX12-22
P3X = 24:

P51 … X 6 24 + P3X = 24 = FX122 - FX11-2,
51 … X 6 26 ´ 5X = 26 = 51 … X … 26,

P30.5 … X 6 2.54 = FX12.52 - FX10.52 = 7/8 - 1/8 = 6/8.

x = 2.5,x = 0.5

P31 6 X … 24 = FX122 - FX112 = 7/8 - 1/2 = 3/8.

C = 51 … X 6 26.A = 51 6 X … 26, B = 50.5 … X 6 2.56,

= FX1a2 - FX1a-2 + FX1b2 - FX1a2 = FX1b2 - FX1a-2.
P3a … X … b4 = P3X = a4 + P3a 6 X … b4

… b6, 5a … X … b6 = 5X = a6 ´ 5a 6 X
P3X = b4 = 0.

X = b

P3X 7 x4 = 1 - FX1x2.
P3X = b4 = FX1b2 - FX1b-2.
P3a 6 X … b4 = FX1b2 - FX1a2.
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The cdf of X is continuous at every point so we have:

We now consider the proof of the properties of the cdf.

• Property (i) follows from the fact that the cdf is a probability and hence must sat-
isfy Axiom I and Corollary 2.

• To obtain property (iv), we note that the event is a subset of 
and so it must have smaller or equal probability (Corollary 7).

• To show property (vi), we note that can be expressed as the union of
mutually exclusive events: and so by
Axiom III,

• Property (viii) follows from and Corollary 1.

While intuitively clear, properties (ii), (iii), (v), and (vii) require more advanced limit-
ing arguments that are discussed at the end of this section.

4.1.1 The Three Types of Random Variables

The random variables in Examples 4.1, 4.2, and 4.3 are typical of the three most basic
types of random variable that we are interested in.

Discrete random variables have a cdf that is a right-continuous, staircase function
of x, with jumps at a countable set of points The random variable in
Example 4.1 is a typical example of a discrete random variable. The cdf of a dis-
crete random variable is the sum of the probabilities of the outcomes less than x and
can be written as the weighted sum of unit step functions as in Example 4.1:

(4.5)

where the pmf gives the magnitude of the jumps in the cdf. We
see that the pmf can be obtained from the cdf and vice versa.

A continuous random variable is defined as a random variable whose cdf 
is continuous everywhere, and which, in addition, is sufficiently smooth that it can be
written as an integral of some nonnegative function f(x):

(4.6)

The random variable discussed in Example 4.2 can be written as an integral of the function
shown in Fig. 4.2(b). The continuity of the cdf and property (vii) implies that continuous

FX1x2 = L
x

-q
f1t2 dt.

FX1x2
pX1xk2 = P3X = xk4

FX1x2 = a
xk…x
pX1xk2 = a

k
pX1xk2u1x - xk2,

FX1x2
x0 , x1 , x2 , Á .

5X 7 x6 = 5X … x6c
FX1a2 + P3a 6 X … b4 = FX1b2.

5X … a6 ´ 5a 6 X … b6 = 5X … b6,5X … b6
5X … b6,5X … a6

= FX10.22 + 11 - FX10.622 = 0.2 + 0.4 = 0.6.

P3 ƒX - 0.4 ƒ 7 0.24 = P35X 6 0.26 ´ 5X 7 0.64 = P3X 6 0.24 + P3X 7 0.64
P30.3 6 X 6 0.654 = FX10.652 - FX10.32 = 0.65 - 0.3 = 0.35,

P3-0.5 6 X … 0.254 = FX10.252 - FX1-0.52 = 0.25 - 0 = 0.25,
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random variables have for all x. Every possible outcome has probability
zero! An immediate consequence is that the pmf cannot be used to characterize the proba-
bilities of X.A comparison of Eqs. (4.5) and (4.6) suggests how we can proceed to charac-
terize continuous random variables. For discrete random variables, (Eq. 4.5), we calculate
probabilities as summations of probability masses at discrete points. For continuous ran-
dom variables, (Eq. 4.6), we calculate probabilities as integrals of “probability densities”
over intervals of the real line.

A random variable of mixed type is a random variable with a cdf that has jumps
on a countable set of points but that also increases continuously over at
least one interval of values of x. The cdf for these random variables has the form

where and is the cdf of a discrete random variable and is the cdf
of a continuous random variable. The random variable in Example 4.3 is of mixed type.

Random variables of mixed type can be viewed as being produced by a two-step
process: A coin is tossed; if the outcome of the toss is heads, a discrete random variable
is generated according to otherwise, a continuous random variable is generated
according to 

4.1.2 Fine Point: Limiting properties of cdf

Properties (ii), (iii), (v), and (vii) require the continuity property of the probability
function discussed in Section 2.9. For example, for property (ii), we consider the se-
quence of events which increases to include all of the sample space S as n ap-
proaches that is, all outcomes lead to a value of X less than infinity. The continuity
property of the probability function (Corollary 8) implies that:

For property (iii), we take the sequence which decreases to the empty set
that is, no outcome leads to a value of X less than 

For property (v), we take the sequence of events which decreases to
from the right:

Finally, for property (vii), we take the sequence of events, which
decreases to from the left:

= P3 lim
n:q
5b - 1/n 6 X … b64 = P3X = b4.

lim
n:q
1FX1b2 - FX1b - 1/n22 = lim

n:q
P3b - 1/n 6 X … b4

5b6 5b - 1/n 6 X … b6
= P3 lim

n:q
5X … x + 1/n64 = P35X … x64 = FX1x2.

lim
n:q
FX1x + 1/n2 = lim

n:q
P3X … x + 1/n4

5X … x6 5X … x + 1/n6
lim
n:q
FX1-n2 = lim

n:q
P3X … -n4 = P3 lim

n:q
5X … -n64 = P3�4 = 0.

-q :�,
5X … -n6

lim
n:q
FX1n2 = lim

n:q
P3X … n4 = P3 lim

n:q
5X … n64 = P3S4 = 1.

q ,
5X … n6

*

F21x2.
F11x2;

F21x2F11x20 6 p 6 1,

FX1x2 = pF11x2 + 11 - p2F21x2,

x0 , x1 , x2 , Á ,

P3X = x4 = 0
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4.2 THE PROBABILITY DENSITY FUNCTION

The probability density function of X (pdf), if it exists, is defined as the derivative of

(4.7)

In this section we show that the pdf is an alternative, and more useful, way of specify-
ing the information contained in the cumulative distribution function.

The pdf represents the “density” of probability at the point x in the following
sense: The probability that X is in a small interval in the vicinity of x—that is,

—is

(4.8)

If the cdf has a derivative at x, then as h becomes very small,

(4.9)

Thus represents the “density” of probability at the point x in the sense that the prob-
ability that X is in a small interval in the vicinity of x is approximately The deriva-
tive of the cdf, when it exists, is positive since the cdf is a nondecreasing function of x, thus

(i) (4.10)

Equations (4.9) and (4.10) provide us with an alternative approach to specifying
the probabilities involving the random variable X. We can begin by stating a nonnega-
tive function called the probability density function, which specifies the proba-
bilities of events of the form “X falls in a small interval of width dx about the point x,”
as shown in Fig. 4.4(a). The probabilities of events involving X are then expressed in
terms of the pdf by adding the probabilities of intervals of width dx. As the widths of
the intervals approach zero, we obtain an integral in terms of the pdf. For example, the
probability of an interval [a, b] is

(ii) (4.11)

The probability of an interval is therefore the area under in that interval, as shown
in Fig. 4.4(b). The probability of any event that consists of the union of disjoint inter-
vals can thus be found by adding the integrals of the pdf over each of the intervals.

The cdf of X can be obtained by integrating the pdf:

(iii) (4.12)

In Section 4.1, we defined a continuous random variable as a random variable X whose
cdf was given by Eq. (4.12). Since the probabilities of all events involving X can be
written in terms of the cdf, it then follows that these probabilities can be written in

FX1x2 = L
x

-q
fX1t2 dt.

fX1x2
P3a … X … b4 = L

b

a
fX1x2 dx.

fX1x2,

fX1x2 Ú 0.

fX1x2h.
fX1x2

P3x 6 X … x + h4 M fX1x2h.

=
FX1x + h2 - FX1x2

h
h.

P3x 6 X … x + h4 = FX1x + h2 - FX1x2
… x + h6 5x 6 X

fX1x2 =
dFX1x2
dx

.

FX1x2:
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fX(x) fX(x)

x
x x � dx

P�a � X � b� � 	a
b fX(x)dx

a b

(a) (b)

P�x � X � x � dx� � fX(x)dx

x

FIGURE 4.4
(a) The probability density function specifies the probability of intervals of infinitesimal width. (b) The probability of an
interval [a, b] is the area under the pdf in that interval.

terms of the pdf. Thus the pdf completely specifies the behavior of continuous random
variables.

By letting x tend to infinity in Eq. (4.12), we obtain a normalization condition for
pdf’s:

(iv) (4.13)

The pdf reinforces the intuitive notion of probability as having attributes similar
to “physical mass.” Thus Eq. (4.11) states that the probability “mass” in an interval is
the integral of the “density of probability mass” over the interval. Equation (4.13)
states that the total mass available is one unit.

A valid pdf can be formed from any nonnegative, piecewise continuous function
g(x) that has a finite integral:

(4.14)

By letting we obtain a function that satisfies the normalization condi-
tion. Note that the pdf must be defined for all real values of x; if X does not take on val-
ues from some region of the real line, we simply set in the region.

Example 4.6 Uniform Random Variable

The pdf of the uniform random variable is given by:

(4.15a)fX1x2 = c 1
b - a

a … x … b

0 x 6 a and x 7 b

fX1x2 = 0

fX1x2 = g1x2/c,
L

q

-q
g1x2 dx = c 6 q .

1 = L
+q

-q
fX1t2 dt.



150 Chapter 4 One Random Variable

and is shown in Fig. 4.2(b). The cdf is found from Eq. (4.12):

(4.15b)

The cdf is shown in Fig. 4.2(a).

Example 4.7 Exponential Random Variable

The transmission time X of messages in a communication system has an exponential distrib-
ution:

Find the cdf and pdf of X.
The cdf is given by 

(4.16a)

The pdf is obtained by applying Eq. (4.7):

(4.16b)

Example 4.8 Laplacian Random Variable

The pdf of the samples of the amplitude of speech waveforms is found to decay exponentially at
a rate so the following pdf is proposed:

(4.17)

Find the constant c, and then find the probability 

We use the normalization condition in (iv) to find c:

Therefore The probability is found by integrating the pdf:

4.2.1 pdf of Discrete Random Variables

The derivative of the cdf does not exist at points where the cdf is not continuous. Thus
the notion of pdf as defined by Eq. (4.7) does not apply to discrete random variables
at the points where the cdf is discontinuous. We can generalize the definition of the

P3 ƒX ƒ 6 v4 =
a

2L
v

-v
e-a ƒx ƒ dx = 2aa

2
bL

v

0
e-ax dx = 1 - e-av.

P[ ƒX ƒ 6 v]c = a/2.

1 = L
q

-q
ce-a ƒx ƒ dx = 2L

q

0
ce-ax dx =

2c
a

.

P3 ƒX ƒ 6 v4.
fX1x2 = ce-a ƒx ƒ - q 6 x 6 q .

a,

fX1x2 = Fœ
X1x2 = b0 x 6 0

le-lx x Ú 0.

FX1x2 = b0 x 6 0
1 - e-lx x Ú 0.

FX1x2 = 1 - P3X 7 x4

P3X 7 x4 = e-lx x 7 0.

FX1x2 = d 0 x 6 a
x - a
b - a

a … x … b

1 x 7 b.
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probability density function by noting the relation between the unit step function and
the delta function. The unit step function is defined as

(4.18a)

The delta function is related to the unit step function by the following equation:

(4.18b)

A translated unit step function is then:

(4.18c)

Substituting Eq. (4.18c) into the cdf of a discrete random variables:

(4.19)

This suggests that we define the pdf for a discrete random variable by

(4.20)

Thus the generalized definition of pdf places a delta function of weight at
the points where the cdf is discontinuous.

To provide some intuition on the delta function, consider a narrow rectangular
pulse of unit area and width centered at 

Consider the integral of :

(4.21)

As we see that the integral of the narrow pulse approaches the unit step func-
tion. For this reason, we visualize the delta function as being zero everywhered1t2¢: 0,

L
x

-q
p¢1t2 dt = e L

x

-q
p¢1t2 dt = L

x

-q
0 dt = 0 for x 6 -¢/2

L
x

-q
p¢1t2 dt = L

¢/2

-¢/2
1/¢ dt = 1 for x 7 ¢/2

u : u1x2.
p¢(t)

p¢1t2 = b1/¢  -¢/2 … t … ¢/2
0 ƒ t ƒ 7 ¢.

t = 0:¢

xk

P3X = xk4
fX1x2 =

d

dx
FX1x2 = a

k
pX1xk2d1x - xk2.

= L
x

-q
a
k
pX1xk2d1t - xk2 dt.

FX1x2 = a
k
pX1xk2u1x - xk2 = a

k
pX1xk2L

x

-q
d1t - xk2 dt

u1x - x02 = L
x-x0

-q
d1t2 dt = L

x

-q
d1t¿ - x02 dt¿.

u1x2 = L
x

-q
d1t2 dt.

d1t2
u1x2 = b0 x 6 0

1 x Ú 0.
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except at where it is unbounded.The above equation does not apply at the value
To maintain the right continuity in Eq. (4.18a), we use the convention:

If we replace in the above derivation with we obtain the “sifting”
property of the delta function:

(4.22)

The delta function is viewed as sifting through x and picking out the value of g at the
point where the delta functions is centered, that is, for the expression on the right.

The pdf for the discrete random variable discussed in Example 4.1 is shown in
Fig. 4.1(b).The pdf of a random variable of mixed type will also contain delta functions
at the points where its cdf is not continuous. The pdf for the random variable discussed
in Example 4.3 is shown in Fig. 4.3(b).

Example 4.9

Let X be the number of heads in three coin tosses as in Example 4.1. Find the pdf of X. Find
and by integrating the pdf.

In Example 4.1 we found that the cdf of X is given by

It then follows from Eqs. (4.18) and (4.19) that

When delta functions appear in the limits of integration, we must indicate whether the delta
functions are to be included in the integration. Thus in the
delta function located at 1 is excluded from the integral and the delta function at 2 is included:

Similarly, we have that

4.2.2 Conditional cdf’s and pdf’s

Conditional cdf’s can be defined in a straightforward manner using the same approach
we used for conditional pmf’s. Suppose that event C is given and that The
conditional cdf of X given C is defined by

(4.23)FX1x ƒC2 =
P35X … x6 ¨ C4

P3C4  if P3C4 7 0.

P3C4 7 0.

P32 … X 6 34 = L
3-

2-
fX1x2 dx =

3
8

.

P31 6 X … 24 = L
2+

1+
fX1x2 dx =

3
8

.

P31 6 X … 24 = P3X in 11, 244,

fX1x2 =
1
8
d1x2 +

3
8
d1x - 12 +

3
8
d1x - 22 +

1
8
d1x - 32.

FX1x2 =
1
8
u1x2 +

3
8
u1x - 12 +

3
8
u1x - 22 +

1
8
u1x - 32.

P32 … X 6 34P31 6 X … 24

g1x02

g102 = L
q

-q
g1t2d1t2 dt and g1x02 = L

q

-q
g1t2d1t - x02 dt.

g1t2p¢1t2,p¢1t2
u102 = 1 = L

0

-q
d1t2 dt.

x = 0.
x = 0
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It is easy to show that satisfies all the properties of a cdf. (See Problem 4.29.)
The conditional pdf of X given C is then defined by

(4.24)

Example 4.10

The lifetime X of a machine has a continuous cdf Find the conditional cdf and pdf given
the event (i.e., “machine is still working at time t”).

The conditional cdf is

The intersection of the two events in the numerator is equal to the empty set when and to
when Thus

The conditional pdf is found by differentiating with respect to x:

Now suppose that we have a partition of the sample space S into the union of dis-
joint events Let be the conditional cdf of X given event 
The theorem on total probability allows us to find the cdf of X in terms of the condi-
tional cdf’s:

(4.25)

The pdf is obtained by differentiation:

(4.26)

Example 4.11

A binary transmission system sends a “0” bit by transmitting a voltage signal, and a “1” bit by
transmitting a The received signal is corrupted by Gaussian noise and given by:

where X is the transmitted signal, and N is a noise voltage with pdf Assume that
Find the pdf of Y.P3“1”4 = p = 1 - P3“0”4.

fN1x2.
Y = X + N

+v.
-v

fX1x2 =
d

dx
FX1x2 = a

n

i=1
fX1x ƒ Bi2P3Bi4.

FX1x2 = P3X … x4 = a
n

i=1
P3X … x ƒ Bi4P3Bi4 = a

n

i=1
FX1x ƒ Bi2P3Bi4.

Bi .FX1x ƒBi2B1 , B2 , Á , Bn .

fX1x ƒX 7 t2 =
fX1x2

1 - FX1t2 x Ú t.

FX1x ƒX 7 t2 = c 0 x … t
FX1x2 - FX1t2

1 - FX1t2 x 7 t.

x Ú t.5t 6 X … x6
x 6 t

FX1x ƒX 7 t2 = P3X … x ƒX 7 t4 =
P35X … x6 ¨ 5X 7 t64

P3X 7 t4 .

C = 5X 7 t6
FX1x2.

fX1x ƒ C2 =
d

dx
FX1x ƒC2.

FX1x ƒC2
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Let be the event “0” is transmitted and be the event “1” is transmitted, then 
form a partition, and

Since the event is equivalent to and 
and the event is equivalent to Therefore the conditional
cdf’s are:

and

The cdf is:

The pdf of N is then:

The Gaussian random variable has pdf:

The conditional pdfs are:

fY1x ƒB02 = fN1x + v2 =
1

22ps2
e-1x+v22/2s2

fN1x2 =
1

22ps2
e-x

2/2s2
-q 6 x 6 q .

= fN1x + v211 - p2 + fN1x - v2p.

=
d

dx
FN1x + v211 - p2 +

d

dx
FN1x - v2p

fY1x2 =
d

dx
FY1x2

FY1x2 = FN1x + v211 - p2 + FN1x - v2p.

FY1x ƒB12 = P3N … x - v4 = FN1x - v2.

FY1x ƒB02 = P3N … x + v4 = FN1x + v2
5N 6 x + v6.5Y 6 x ƒX = -v6

5N 6 x - v6,5v + N 6 x65Y 6 x ƒX = v6Y = X + N,

= P3Y … x ƒX = -v411 - p2 + P3Y … x ƒX = v4p.

FY1x2 = FY1x ƒ B023B04 + FY1x ƒ B123B14

B0 , B1B1B0

fN(x � v)

0�v v
x

fN(x � v)

FIGURE 4.5
The conditional pdfs given the input signal
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and

The pdf of the received signal Y is then:

Figure 4.5 shows the two conditional pdfs.We can see that the transmitted signal X shifts the cen-
ter of mass of the Gaussian pdf.

4.3 THE EXPECTED VALUE OF X

We discussed the expected value for discrete random variables in Section 3.3, and found
that the sample mean of independent observations of a random variable approaches
E X . Suppose we perform a series of such experiments for continuous random vari-
ables. Since continuous random variables have for any specific value
of x, we divide the real line into small intervals and count the number of times 
the observations fall in the interval As n becomes large, then the
relative frequency will approach the probability of the inter-
val. We calculate the sample mean in terms of the relative frequencies and let 

The expression on the right-hand side approaches an integral as we decrease 
The expected value or mean of a random variable X is defined by

(4.27)

The expected value E[X] is defined if the above integral converges absolutely, that is,

If we view as the distribution of mass on the real line, then E[X] represents the
center of mass of this distribution.

We already discussed E[X] for discrete random variables in detail, but it is worth
noting that the definition in Eq. (4.27) is applicable if we express the pdf of a discrete
random variable using delta functions:

= a
k
pX1xk2xk .

= a
k
pX1xk2L

+q

-q
ta
k
d1t - xk2 dt

E3X4 = L
+q

-q
ta
k
pX1xk2d1t - xk2 dt

fX1x2
E3 ƒX ƒ 4 = L

+q

-q
ƒ t ƒfX1t2 dt 6q .

E3X4 = L
+q

-q
tfX1t2 dt.

¢.

8X9n = a
k
xkfk1n2: a

k
xkfX1xk2¢.

n: q :
fX1xk2¢,fk1n2 = Nk1n2/n

5xk 6 X 6 xk + ¢6. Nk1n2
P3X = x4 = 0

43

fY1x2 =
1

22ps2
e-1x+v22/2s211 - p2 +

1

22ps2
e-1x-v22/2s2

p.

fY1x ƒB12 = fN1x - v2 =
1

22ps2
e-1x-v22/2s2

.
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Example 4.12 Mean of a Uniform Random Variable

The mean for a uniform random variable is given by

which is exactly the midpoint of the interval [a, b].The results shown in Fig. 3.6 were obtained by
repeating experiments in which outcomes were random variables Y and X that had uniform cdf’s
in the intervals and [3, 7], respectively. The respective expected values, 0 and 5, corre-
spond to the values about which X and Y tend to vary.

The result in Example 4.12 could have been found immediately by noting that
when the pdf is symmetric about a point m. That is, if

then, assuming that the mean exists,

The first equality above follows from the symmetry of about and the odd
symmetry of about the same point. We then have that 

Example 4.13 Mean of a Gaussian Random Variable

The pdf of a Gaussian random variable is symmetric about the point Therefore 

The following expressions are useful when X is a nonnegative random variable:

(4.28)

and

(4.29)

The derivation of these formulas is discussed in Problem 4.47.

Example 4.14 Mean of Exponential Random Variable

The time X between customer arrivals at a service station has an exponential distribution. Find
the mean interarrival time.

Substituting Eq. (4.17) into Eq. (4.27) we obtain

E3X4 = L
q

0
tle-lt dt.

E3X4 = a
q

k=0
P3X 7 k4 ifX nonnegative, integer-valued.

E3X4 = L
q

0
11 - FX1t22 dt ifX continuous and nonnegative

E3X4 = m.x = m.

E3X4 = m.1m - t2 t = mfX1t2
0 = L

+q

-q
1m - t2fX1t2 dt = m - L

+q

-q
tfX1t2 dt.

fX1m - x2 = fX1m + x2 for all x,

E3X4 = m

3-1, 14

E3X4 = 1b - a2-1

L
b

a
t dt =

a + b
2

,
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We evaluate the integral using integration by parts with and

where we have used the fact that and go to zero as t approaches infinity.
For this example, Eq. (4.28) is much easier to evaluate:

Recall that is the customer arrival rate in customers per second. The result that the mean inter-
arrival time seconds per customer then makes sense intuitively.

4.3.1 The Expected Value of 

Suppose that we are interested in finding the expected value of As in the
case of discrete random variables (Eq. (3.16)), E[Y] can be found directly in terms of
the pdf of X:

(4.30)

To see how Eq. (4.30) comes about, suppose that we divide the y-axis into intervals
of length h, we index the intervals with the index k and we let be the value in the
center of the kth interval. The expected value of Y is approximated by the follow-
ing sum:

Suppose that g(x) is strictly increasing, then the kth interval in the y-axis has a unique
corresponding equivalent event of width in the x-axis as shown in Fig. 4.6. Let be
the value in the kth interval such that then since 

By letting h approach zero, we obtain Eq. (4.30). This equation is valid even if g(x) is
not strictly increasing.

E3Y4 M a
k
g1xk2fX1xk2hk .

fY1yk2h = fX1xk2hk ,g1xk2 = yk ,
xkhk

E3Y4 M a
k
ykfY1yk2h.

yk

E3Y4 = L
q

-q
g1x2fX1x2 dx.

Y = g1X2.
Y � g1X2

E3X4 = 1/l
l

E3X4 = L
q

0
e-lt dt =

1
l

.

te-lte-lt

= lim
t:q

-e-lt

l
+

1
l

=
1
l

,

= lim
t:q
te-lt - 0 + b -e-lt

l
r

0

q

E3X4 = - te-lt `
0

q

+ L
q

0
e-lt dt

dv = le-lt dt:
u = t11udv = uv - 1vdu2,
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y � g(x)

yk

hk

xk

x

h

FIGURE 4.6
Two infinitesimal equivalent events.

Example 4.15 Expected Values of a Sinusoid with Random Phase

Let where and t are constants, and is a uniform random variable
in the interval The random variable Y results from sampling the amplitude of a sinu-
soid with random phase Find the expected value of Y and expected value of the power of

The average power is

Note that these answers are in agreement with the time averages of sinusoids: the time average
(“dc” value) of the sinusoid is zero; the time-average power is a2/2.

=
a2

2
+
a2

2 L
2p

0
 cos12vt + u2 du

2p
=
a2

2
.

E3Y24 = E3a2 cos21vt + ®24 = EBa2

2
+
a2

2
cos12vt + 2®2R

= -a sin1vt + 2p2 + a sin1vt2 = 0.

= L
2p

0
a cos1vt + u2 du

2p
= -a sin1vt + u2 `

0

2p

E3Y4 = E3a cos1vt + ®24
Y, Y2.

®.
10, 2p2.

®a, v,Y = a cos1vt + ®2
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Example 4.16 Expected Values of the Indicator Function

Let be the indicator function for the event in where C is some interval or
union of intervals in the real line:

then

Thus the expected value of the indicator of an event is equal to the probability of the event.

It is easy to show that Eqs. (3.17a)–(3.17e) hold for continuous random variables
using Eq. (4.30). For example, let c be some constant, then

(4.31)

and

(4.32)

The expected value of a sum of functions of a random variable is equal to the sum
of the expected values of the individual functions:

(4.33)

Example 4.17

Let where are constants, then

where we have used Eq. (4.33), and Eqs. (4.31) and (4.32). A special case of this result is that

that is, we can shift the mean of a random variable by adding a constant to it.

E3X + c4 = E3X4 + c,

= a0 + a1E3X4 + a2E3X24 + Á + anE3Xn4,
E3Y4 = E3a04 + E3a1X4 + Á + E3anXn4

akY = g1X2 = a0 + a1X + a2X
2 + Á + anXn,

= a
n

k=1
E3gk1X24.

= L
q

-q
a
n

k=1
gk1x2fX1x2 dx = a

n

k=1L
q

-q
gk1x2fX1x2 dx

E3Y4 = EBan
k=1
gk1X2R

E3cX4 = L
q

-q
cxfX1x2 dx = cL

q

-q
xfX1x2 dx = cE3X4.

E3c4 = L
q

-q
cfX1x2 dx = cL

q

-q
fX1x2 dx = c

E3Y4 = L
+q

-q
g1X2fX1x2 dx = LCfX1x2 dx = P3X in C4.

g1X2 = b0 X not in C
1 X in C,

C6,5Xg1X2 = IC1X2
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4.3.2 Variance of X

The variance of the random variable X is defined by

(4.34)

The standard deviation of the random variable X is defined by

(4.35)

Example 4.18 Variance of Uniform Random Variable

Find the variance of the random variable X that is uniformly distributed in the interval [a, b].
Since the mean of X is

Let

The random variables in Fig. 3.6 were uniformly distributed in the interval and [3, 7], re-
spectively. Their variances are then 1/3 and 4/3. The corresponding standard deviations are 0.577
and 1.155.

Example 4.19 Variance of Gaussian Random Variable

Find the variance of a Gaussian random variable.
First multiply the integral of the pdf of X by to obtain

Differentiate both sides with respect to 

By rearranging the above equation, we obtain

This result can also be obtained by direct integration. (See Problem 4.46.) Figure 4.7 shows the
Gaussian pdf for several values of it is evident that the “width” of the pdf increases with 

The following properties were derived in Section 3.3:

(4.36)

(4.37)

(4.38)

where c is a constant.

VAR3cX4 = c2 VAR3X4,
VAR3X + c4 = VAR3X4
VAR3c4 = 0

s.s;

VAR3X4 =
1

22p sL
q

-q
1x - m22e-1x-m22/2s2

dx = s2.

L
q

-q
¢ 1x - m22

s3 ≤e-1x-m22/2s2
dx = 22p .

s:

L
q

-q
e-1x-m22/2s2

dx = 22p s.

22p s

3-1, 14
VAR3X4 =

1
b - aL

1b-a2/2

-1b-a2/2
y2 dy =

1b - a22
12

.

y = 1x - 1a + b2/22,
VAR3X4 =

1
b - aL

b

a
ax -

a + b
2
b2

dx.

1a + b2/2,

STD3X4 = VAR3X41/2.

VAR3X4 = E31X - E3X4224 = E3X24 - E3X42
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FIGURE 4.7
Probability density function of Gaussian random variable.

The mean and variance are the two most important parameters used in summa-
rizing the pdf of a random variable. Other parameters are occasionally used. For ex-
ample, the skewness defined by measures the degree of
asymmetry about the mean. It is easy to show that if a pdf is symmetric about its
mean, then its skewness is zero. The point to note with these parameters of the pdf is
that each involves the expected value of a higher power of X. Indeed we show in a
later section that, under certain conditions, a pdf is completely specified if the expect-
ed values of all the powers of X are known. These expected values are called the mo-
ments of X.

The nth moment of the random variable X is defined by

(4.39)

The mean and variance can be seen to be defined in terms of the first two moments,
E X and

Example 4.20 Analog-to-Digital Conversion: A Detailed Example

A quantizer is used to convert an analog signal (e.g., speech or audio) into digital form. A quan-
tizer maps a random voltage X into the nearest point q(X) from a set of representation values
as shown in Fig. 4.8(a).The value X is then approximated by q(X), which is identified by an R-bit
binary number. In this manner, an “analog” voltage X that can assume a continuum of values is
converted into an R-bit number.

The quantizer introduces an error as shown in Fig. 4.8(b). Note that Z is a
function of X and that it ranges in value between and d/2, where d is the quantizer step size.
Suppose that X has a uniform distribution in the interval that the quantizer has 
levels, and that It is easy to show that Z is uniformly distributed in the interval

(see Problem 4.93).3-d/2, d/24
2xmax = 2Rd.

2R3-xmax , xmax4,
-d/2

Z = X - q1X2

2R

*

E3X24.43

E3Xn4 = L
q

-q
xnfX1x2 dx.

E31X - E3X4234/STD3X43
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FIGURE 4.8
(a) A uniform quantizer maps the input x into the closest point from the set (b) The uniform
quantizer error for the input x is x - q1x2.

5;d/2, ;3d/2, ;5d/2, ;7d/26.

Therefore from Example 4.12,

The error Z thus has mean zero.
By Example 4.18,

This result is approximately correct for any pdf that is approximately flat over each quantizer in-
terval. This is the case when is large.

The approximation q(x) can be viewed as a “noisy” version of X since

where Z is the quantization error Z. The measure of goodness of a quantizer is specified by the
SNR ratio, which is defined as the ratio of the variance of the “signal” X to the variance of the
distortion or “noise” Z:

where we have used the fact that When X is nonuniform, the value is select-
ed so that is small. A typical choice is The SNR is then

This important formula is often quoted in decibels:

SNR dB = 10 log10 SNR = 6R - 7.3 dB.

SNR =
3

16
22R.

xmax = 4 STD3X4.P3 ƒX ƒ 7 xmax4
xmaxd = 2xmax/2

R.

=
VAR3X4
xmax

2 /3
22R,

SNR =
VAR3X4
VAR3Z4 =

VAR3X4
d2/12

Q1X2 = X - Z,

2R

VAR3Z4 =
1d/2 - 1-d/2222

12
=
d2

12
.

E3Z4 =
d/2 - d/2

2
= 0.
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The SNR increases by a factor of 4 (6 dB) with each additional bit used to represent X. This
makes sense since each additional bit doubles the number of quantizer levels, which in turn re-
duces the step size by a factor of 2. The variance of the error should then be reduced by the
square of this, namely 

4.4 IMPORTANT CONTINUOUS RANDOM VARIABLES

We are always limited to measurements of finite precision, so in effect, every random
variable found in practice is a discrete random variable. Nevertheless, there are several
compelling reasons for using continuous random variable models. First, in general, con-
tinuous random variables are easier to handle analytically. Second, the limiting form of
many discrete random variables yields continuous random variables. Finally, there are
a number of “families” of continuous random variables that can be used to model a
wide variety of situations by adjusting a few parameters. In this section we continue
our introduction of important random variables. Table 4.1 lists some of the more im-
portant continuous random variables.

4.4.1 The Uniform Random Variable

The uniform random variable arises in situations where all values in an interval of the real
line are equally likely to occur.The uniform random variable U in the interval [a,b] has pdf:

(4.40)

and cdf

(4.41)

See Figure 4.2. The mean and variance of U are given by:

(4.42)

The uniform random variable appears in many situations that involve equally
likely continuous random variables. Obviously U can only be defined over intervals
that are finite in length. We will see in Section 4.9 that the uniform random variable
plays a crucial role in generating random variables in computer simulation models.

4.4.2 The Exponential Random Variable

The exponential random variable arises in the modeling of the time between occur-
rence of events (e.g., the time between customer demands for call connections), and in
the modeling of the lifetime of devices and systems. The exponential random variable
X with parameter has pdfl

E3U4 =
a + b

2
 and VAR3X4 =

1b - a22
2

.

FU1x2 = d 0 x 6 a
x - a
b - a

a … x … b

1 x 7 b.

fU1x2 = c 1
b - a

a … x … b

0 x 6 a and x 7 b

22 = 4.
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TABLE 4.1 Continuous random variables.

Uniform Random Variable

E3X4 =
a + b

2
VAR3X4 =

1b - a22
12

£X1v2 =
ejvb - ejva

jv1b - a2

fX1x2 =
1

b - a
a … x … b

SX = 3a, b4

Exponential Random Variable

Remarks: The exponential random variable is the only continuous random variable with the memoryless
property.

E3X4 =
1
l

VAR3X4 =
1

l2
£X1v2 =

l

l - jv

fX1x2 = le-lx x Ú 0 and l 7 0

SX = 30, q2

Gaussian (Normal) Random Variable

Remarks: Under a wide range of conditions X can be used to approximate the sum of a large number of in-
dependent random variables.

E3X4 = m VAR3X4 = s2 £X1v2 = ejmv-s2v2/2

fX1x2 =
e-1x-m22/2s2

22ps
-q 6 x 6 +q and s 7 0

SX = 1-q , +q2

Gamma Random Variable

where is the gamma function (Eq. 4.56).

Special Cases of Gamma Random Variable

m–1 Erlang Random Variable: a positive integer

Remarks: An m–1 Erlang random variable is obtained by adding m independent exponentially distributed
random variables with parameter 

Chi-Square Random Variable with k degrees of freedom: k a positive integer, and 

Remarks: The sum of k mutually independent, squared zero-mean, unit-variance Gaussian random vari-
ables is a chi-square random variable with k degrees of freedom.

fX1x2 =
x1k-22/2e-x/2
2k/2≠1k/22 x 7 0 £X1v2 = a 1

1 - 2jv
bk/2

l = 1/2a = k/2,

l.

fX1x2 =
le-lx1lx2m-2

1m - 12! x 7 0 £X1v2 = a 1
1 - jv/l

bm
a = m,

E3X4 = a/l VAR3X4 = a/l2 £X1v2 =
1

11 - jv/l2a
≠1z2

fX1x2 =
l1lx2a-1e-lx

≠1a2 x 7 0 and a 7 0, l 7 0

SX = 10, +q2
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TABLE 4.1 Continuous random variables.

Laplacian Random Variable

E3X4 = 0 VAR3X4 = 2/a2 £X1v2 =
a2

v2 + a2

fX1x2 =
a

2
e-a ƒx ƒ - q 6 x 6 +q and a 7 0

SX = 1-q , q2

Rayleigh Random Variable

E3X4 = a2p/2 VAR3X4 = 12 - p/22a2

fX1x2 =
x

a2
e-x

2/2a2
x Ú 0 and a 7 0

SX = [0, q2

Cauchy Random Variable

Mean and variance do not exist. £X1v2 = e-a ƒv ƒ

fX1x2 =
a/p

x2 + a2
-q 6 x 6 +q and a 7 0

SX = 1-q , +q2

Pareto Random Variable

Remarks: The Pareto random variable is the most prominent example of random variables with “long
tails,” and can be viewed as a continuous version of the Zipf discrete random variable.

E3X4 =
axm
a - 1

 for a 7 1 VAR3X4 =
axm

2

1a - 221a - 122 for a 7 2

fX1x2 = c 0 x 6 xm

a
xm
a

xa+1
x Ú xm

SX = 3xm , q2xm 7 0.

Beta Random Variable

Remarks: The beta random variable is useful for modeling a variety of pdf shapes for random variables
that range over finite intervals.

E[X] =
a

a + b
VAR3X4 =

ab

1a + b221a + b + 12

fX1x2 = c ≠1a + b2
≠1a2 ≠1b2 xa-111 - x2b-1 0 6 x 6 1 and a 7 0, b 7 0

0 otherwise
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(4.43)

and cdf

(4.44)

The cdf and pdf of X are shown in Fig. 4.9.
The parameter is the rate at which events occur, so in Eq. (4.44) the probability

of an event occurring by time x increases at the rate increases. Recall from Example
3.31 that the interarrival times between events in a Poisson process (Fig. 3.10) is an ex-
ponential random variable.

The mean and variance of X are given by:

(4.45)

In event interarrival situations, is in units of events/second and is in units of sec-
onds per event interarrival.

The exponential random variable satisfies the memoryless property:

(4.46)

The expression on the left side is the probability of having to wait at least h additional
seconds given that one has already been waiting t seconds. The expression on the right
side is the probability of waiting at least h seconds when one first begins to wait. Thus
the probability of waiting at least an additional h seconds is the same regardless of how
long one has already been waiting! We see later in the book that the memoryless prop-
erty of the exponential random variable makes it the cornerstone for the theory of

P3X 7 t + h ƒX 7 t4 = P3X 7 h4.

1/ll

E3U4 =
1
l
 and VAR3X4 =

1

l2 .

l

l

FX1x2 = b0 x 6 0
1 - e-lx x Ú 0.

fX1x2 = b0 x 6 0
le-lx x Ú 0

x

FX(x)

1

0

1 � e�lx le�lx

x

fX(x)

0

(a) (b)

FIGURE 4.9
An example of a continuous random variable—the exponential random variable. Part (a) is the cdf and part (b) is the pdf.
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1This result, called the central limit theorem, will be discussed in Chapter 7.

Markov chains, which is used extensively in evaluating the performance of computer
systems and communications networks.

We now prove the memoryless property:

It can be shown that the exponential random variable is the only continuous random
variable that satisfies the memoryless property.

Examples 2.13, 2.28, and 2.30 dealt with the exponential random variable.

4.4.3 The Gaussian (Normal) Random Variable

There are many situations in manmade and in natural phenomena where one deals with a
random variable X that consists of the sum of a large number of “small” random variables.
The exact description of the pdf of X in terms of the component random variables can be-
come quite complex and unwieldy. However, one finds that under very general conditions,
as the number of components becomes large, the cdf of X approaches that of the Gaussian
(normal) random variable.1 This random variable appears so often in problems involving
randomness that it has come to be known as the “normal” random variable.

The pdf for the Gaussian random variable X is given by

(4.47)

where m and are real numbers, which we showed in Examples 4.13 and 4.19 to be
the mean and standard deviation of X. Figure 4.7 shows that the Gaussian pdf is a “bell-
shaped” curve centered and symmetric about m and whose “width” increases with 

The cdf of the Gaussian random variable is given by

(4.48)

The change of variable results in

(4.49)

where is the cdf of a Gaussian random variable with and 

(4.50)£1x2 =
1

22pL
x

-q
e-t

2/2 dt.

s = 1:m = 0£1x2
= £ ax - m

s
b

FX1x2 =
1

22pL
1x-m2/s

-q
e-t

2/2 dt

t = 1x¿ - m2/s
P3X … x4 =

1

22psL
x

-q
e-1x¿ -m22/2s2

dx¿.

s.

s 7 0

fX1x2 =
1

22ps
e-1x-m22/2s2

-q 6 x 6 q ,

= e-lh = P3X 7 h4.
=
P3X 7 t + h4
P3X 7 t4 =

e-l1t+h2
e-lt

P3X 7 t + h ƒX 7 t4 =
P35X 7 t + h6 ¨ 5X 7 t64

P3X 7 t4 for h 7 0
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Therefore any probability involving an arbitrary Gaussian random variable can be ex-
pressed in terms of 

Example 4.21

Show that the Gaussian pdf integrates to one. Consider the square of the integral of the pdf:

Let and and carry out the change from Cartesian to polar coordinates,
then we obtain:

In electrical engineering it is customary to work with the Q-function, which is de-
fined by

(4.51)

(4.52)

Q(x) is simply the probability of the “tail” of the pdf. The symmetry of the pdf im-
plies that

(4.53)

The integral in Eq. (4.50) does not have a closed-form expression. Traditionally
the integrals have been evaluated by looking up tables that list Q(x) or by using ap-
proximations that require numerical evaluation [Ross]. The following expression has
been found to give good accuracy for Q(x) over the entire range 

(4.54)

where and [Gallager]. Table 4.2 shows Q(x) and the value given by the
above approximation. In some problems, we are interested in finding the value of x for
which Table 4.3 gives these values for 

The Gaussian random variable plays a very important role in communication sys-
tems, where transmission signals are corrupted by noise voltages resulting from the
thermal motion of electrons. It can be shown from physical principles that these volt-
ages will have a Gaussian pdf.

k = 1, Á , 10.Q1x2 = 10-k.

b = 2pa = 1/p

Q1x2 M B 1

11 - a2x + a2x2 + b
R 1

22p
e-x

2/2,

0 6 x 6 q :

Q102 = 1/2 and Q1-x2 = 1 - Q1x2.

=
1

22pL
q

x
e-t

2/2 dt.

Q1x2 = 1 - £1x2

= 1.

= 3-e-r2/240q
1

2pL
q

0 L
2p

0
e-r

2/2r dr du = L
q

0
re-r

2/2 dr

y = r sin ux = r cos u

=
1

2pL
q

-qL
q

-q
e-1x2+y22/2 dx dy.

B 1

22pL
q

-q
e-x

2/2 dxR2

=
1

2pL
q

-q
e-x

2/2 dxL
q

-q
e-y

2/2 dy

£1x2.
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TABLE 4.2 Comparison of Q(x) and approximation given by Eq. (4.54).

x Q(x) Approximation x Q(x) Approximation

0 5.00E-01 5.00E-01 2.7 3.47E-03 3.46E-03

0.1 4.60E-01 4.58E-01 2.8 2.56E-03 2.55E-03

0.2 4.21E-01 4.17E-01 2.9 1.87E-03 1.86E-03

0.3 3.82E-01 3.78E-01 3.0 1.35E-03 1.35E-03

0.4 3.45E-01 3.41E-01 3.1 9.68E-04 9.66E-04

0.5 3.09E-01 3.05E-01 3.2 6.87E-04 6.86E-04

0.6 2.74E-01 2.71E-01 3.3 4.83E-04 4.83E-04

0.7 2.42E-01 2.39E-01 3.4 3.37E-04 3.36E-04

0.8 2.12E-01 2.09E-01 3.5 2.33E-04 2.32E-04

0.9 1.84E-01 1.82E-01 3.6 1.59E-04 1.59E-04

1.0 1.59E-01 1.57E-01 3.7 1.08E-04 1.08E-04

1.1 1.36E-01 1.34E-01 3.8 7.24E-05 7.23E-05

1.2 1.15E-01 1.14E-01 3.9 4.81E-05 4.81E-05

1.3 9.68E-02 9.60E-02 4.0 3.17E-05 3.16E-05

1.4 8.08E-02 8.01E-02 4.5 3.40E-06 3.40E-06

1.5 6.68E-02 6.63E-02 5.0 2.87E-07 2.87E-07

1.6 5.48E-02 5.44E-02 5.5 1.90E-08 1.90E-08

1.7 4.46E-02 4.43E-02 6.0 9.87E-10 9.86E-10

1.8 3.59E-02 3.57E-02 6.5 4.02E-11 4.02E-11

1.9 2.87E-02 2.86E-02 7.0 1.28E-12 1.28E-12

2.0 2.28E-02 2.26E-02 7.5 3.19E-14 3.19E-14

2.1 1.79E-02 1.78E-02 8.0 6.22E-16 6.22E-16

2.2 1.39E-02 1.39E-02 8.5 9.48E-18 9.48E-18

2.3 1.07E-02 1.07E-02 9.0 1.13E-19 1.13E-19

2.4 8.20E-03 8.17E-03 9.5 1.05E-21 1.05E-21

2.5 6.21E-03 6.19E-03 10.0 7.62E-24 7.62E-24

2.6 4.66E-03 4.65E-03

Example 4.22

A communication system accepts a positive voltage V as input and outputs a voltage
where and N is a Gaussian random variable with parameters and

Find the value of V that gives 
The probability is written in terms of N as follows:

From Table 4.3 we see that the argument of the Q-function should be Thus
V = 14.7532s/a = 950.6.

aV/s = 4.753.

= P3N 6 -aV4 = £ a -aV
s
b = QaaV

s
b = 10-6.

P3Y 6 04 = P3aV + N 6 04
P3Y 6 04

P3Y 6 04 = 10-6.s = 2.
m = 0a = 10-2Y = aV + N,
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TABLE 4.3 Q1x2 = 10-k

k x = Q�1110�k2
1 1.2815

2 2.3263

3 3.0902
4 3.7190
5 4.2649
6 4.7535
7 5.1993
8 5.6120
9 5.9978

10 6.3613

4.4.4 The Gamma Random Variable

The gamma random variable is a versatile random variable that appears in many appli-
cations. For example, it is used to model the time required to service customers in queue-
ing systems, the lifetime of devices and systems in reliability studies, and the defect
clustering behavior in VLSI chips.

The pdf of the gamma random variable has two parameters, and 
and is given by

(4.55)

where is the gamma function, which is defined by the integral

(4.56)

The gamma function has the following properties:

The versatility of the gamma random variable is due to the richness of the gamma
function The pdf of the gamma random variable can assume a variety of shapes
as shown in Fig. 4.10. By varying the parameters and it is possible to fit the gamma
pdf to many types of experimental data. In addition, many random variables are spe-
cial cases of the gamma random variable. The exponential random variable is obtained
by letting By letting and where k is a positive integer, we ob-
tain the chi-square random variable, which appears in certain statistical problems. The
m-Erlang random variable is obtained when a positive integer. The m-Erlang
random variable is used in the system reliability models and in queueing systems mod-
els. Both of these random variables are discussed in later examples.

a = m,

a = k/2,l = 1/2a = 1.

la

≠1z2.

≠1z + 12 = z≠1z2 for z 7 0, and
≠1m + 12 = m! form a nonnegative integer.

≠a1
2
b = 2p ,

≠1z2 = L
q

0
xz-1e-x dx z 7 0.

≠1z2
fX1x2 =

l1lx2a-1e-lx

≠1a2 0 6 x 6 q ,

l 7 0,a 7 0
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FIGURE 4.10
Probability density function of gamma random variable.

Example 4.23

Show that the pdf of a gamma random variable integrates to one.
The integral of the pdf is

Let then and the integral becomes

where we used the fact that the integral equals 

In general, the cdf of the gamma random variable does not have a closed-form
expression. We will show that the special case of the m-Erlang random variable does
have a closed-form expression for the cdf by using its close interrelation with the expo-
nential and Poisson random variables. The cdf can also be obtained by integration of
the pdf (see Problem 4.74).

Consider once again the limiting procedure that was used to derive the Poisson
random variable. Suppose that we observe the time that elapses until the occur-
rence of the mth event. The times between events are exponential ran-
dom variables, so we must have

Sm = X1 + X2 + Á + Xm .

X1 ,X2 , Á ,Xm
Sm

≠1a2.

la

≠1a2laL
q

0
ya-1e-y dy = 1,

dx = dy/ly = lx,

=
la

≠1a2L
q

0
xa-1e-lx dx.

L
q

0
fX1x2 dx = L

q

0

l1lx2a-1e-lx

≠1a2 dx
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We will show that is an m-Erlang random variable. To find the cdf of let N(t) be
the Poisson random variable for the number of events in t seconds. Note that the mth
event occurs before time t—that is, —if and only if m or more events occur in t
seconds, namely The reasoning goes as follows. If the mth event has oc-
curred before time t, then it follows that m or more events will occur in time t. On the
other hand, if m or more events occur in time t, then it follows that the mth event oc-
curred by time t. Thus

(4.57)

(4.58)

where we have used the result of Example 3.31. If we take the derivative of the above
cdf, we finally obtain the pdf of the m-Erlang random variable. Thus we have shown
that is an m-Erlang random variable.

Example 4.24

A factory has two spares of a critical system component that has an average lifetime of 
month. Find the probability that the three components (the operating one and the two spares)
will last more than 6 months.Assume the component lifetimes are exponential random variables.

The remaining lifetime of the component in service is an exponential random variable
with rate by the memoryless property. Thus, the total lifetime X of the three components is the
sum of three exponential random variables with parameter Thus X has a 3-Erlang distri-
bution with From Eq. (4.58) the probability that X is greater than 6 is

4.4.5 The Beta Random Variable

The beta random variable X assumes values over a closed interval and has pdf:

(4.59)

where the normalization constant is the reciprocal of the beta function

and where the beta function is related to the gamma function by the following expression:

When we have the uniform random variable. Other choices of a and b give
pdfs over finite intervals that can differ markedly from the uniform. See Problem 4.75. If

a = b = 1,

B1a, b2 =
≠1a2≠1b2
≠1a + b2 .

1
c

= B1a, b2 =L
1

0

 

 

xa-111 - x2b-1 dx

fX1x2 = cxa-111 - x2b-1 for 0 6 x 6 1

= a
2

k=0

6k

k!
e-6 = .06197.

P3X 7 64 = 1 - P3X … 64
l = 1.

l = 1.
l

1/l = 1

Sm

= 1 - a
m-1

k=0

1lt2k
k!
e-lt,

FSm1t2 = P3Sm … t4 = P3N1t2 Ú m4

N1t2 Ú m.
Sm … t

Sm ,Sm
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then the pdf is symmetric about and is concentrated about 
as well.When then the pdf is symmetric but the density is concentrated at the
edges of the interval.When (or ) the pdf is skewed to the right (or left).

The mean and variance are given by:

(4.60)

The versatility of the pdf of the beta random variable makes it useful to model a
variety of behaviors for random variables that range over finite intervals. For example,
in a Bernoulli trial experiment, the probability of success p could itself be a random
variable. The beta pdf is frequently used to model p.

4.4.6 The Cauchy Random Variable

The Cauchy random variable X assumes values over the entire real line and has pdf:

(4.61)

It is easy to verify that this pdf integrates to 1. However, X does not have any moments
since the associated integrals do not converge. The Cauchy random variable arises as
the tangent of a uniform random variable in the unit interval.

4.4.7 The Pareto Random Variable

The Pareto random variable arises in the study of the distribution of wealth where it
has been found to model the tendency for a small portion of the population to own a
large portion of the wealth. Recently the Pareto distribution has been found to cap-
ture the behavior of many quantities of interest in the study of Internet behavior,
e.g., sizes of files, packet delays, audio and video title preferences, session times in
peer-to-peer networks, etc.The Pareto random variable can be viewed as a continuous
version of the Zipf discrete random variable.

The Pareto random variable X takes on values in the range where 
is a positive real number. X has complementary cdf with shape parameter 
given by:

(4.62)

The tail of X decays algebraically with x which is rather slower in comparison to the ex-
ponential and Gaussian random variables. The Pareto random variable is the most
prominent example of random variables with “long tails.”

The cdf and pdf of X are:

(4.63)FX1x2 = c 0 x 6 xm

1 -
xm
a

xa
x Ú xm .

P3X 7 x4 = c 1 x 6 xm
xm
a

xa
x Ú xm .

a 7 0
xmx 7 xm ,

fX1x2 =
1/p

1 + x2 .

E3X4 =
a

a + b
 and VAR3X4 =

ab

1a + b221a + b + 12 .

a 7 ba 6 b
a = b 6 1,

x = 1/2x = 1/2a = b 7 1,
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Because of its long tail, the cdf of X approaches 1 rather slowly as x increases.

(4.64)

Example 4.25 Mean and Variance of Pareto Random Variable

Find the mean and variance of the Pareto random variable.

(4.65)

where the integral is defined for and

where the second moment is defined for 
The variance of X is then:

(4.66)

4.5 FUNCTIONS OF A RANDOM VARIABLE

Let X be a random variable and let g(x) be a real-valued function defined on the real
line. Define that is, Y is determined by evaluating the function g(x) at the
value assumed by the random variable X. Then Y is also a random variable. The prob-
abilities with which Y takes on various values depend on the function g(x) as well as
the cumulative distribution function of X. In this section we consider the problem of
finding the cdf and pdf of Y.

Example 4.26

Let the function be defined as follows:

For example, let X be the number of active speakers in a group of N speakers, and let Y be the
number of active speakers in excess of M, then In another example, let X be a 
voltage input to a halfwave rectifier, then is the output.Y = 1X2+

Y = 1X - M2+.

1x2+ = b 0 if x 6 0
x if x Ú 0.

h1x2 = 1x2+

Y = g1X2,

VAR3X4 =
axm

2

a - 2
- ¢ axm2
a - 1

≤2

=
axm

2

1a - 221a - 122 for a 7 2.

a 7 2.

E3X24 = L
q

xm

t2a
xm
a

ta+1
dt = L

q

xm

a
xm
a

ta-1 dt =
a

a - 2

xm
a

xm
a-2 =

axm
2

a - 2
for a 7 2

a 7 1,

E3X4 = L
q

xm

ta
xm
a

ta+1
dt = L

q

xm

a
xm
a

ta
dt =

a

a - 1

xm
a

xm
a-1 =

axm
a - 1

for a 7 1

fX1x2 = c 0 x 6 xm

a
xm
a

xa+1 x Ú xm .
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Example 4.27

Let the function q(x) be defined as shown in Fig. 4.8(a), where the set of points on the real line are
mapped into the nearest representation point from the set 

Thus, for example, all the points in the interval (0, d) are mapped into the
point d/2.The function q(x) represents an eight-level uniform quantizer.

Example 4.28

Consider the linear function where a and b are constants. This function arises in
many situations. For example, c(x) could be the cost associated with the quantity x, with the constant
a being the cost per unit of x, and b being a fixed cost component. In a signal processing context,

could be the amplified version (if ) or attenuated version (if ) of the voltage x.

The probability of an event C involving Y is equal to the probability of the equiv-
alent event B of values of X such that g(X) is in C:

Three types of equivalent events are useful in determining the cdf and pdf of 
(1) The event is used to determine the magnitude of the jump at a point 
where the cdf of Y is known to have a discontinuity; (2) the event is used to
find the cdf of Y directly; and (3) the event is useful in determining
the pdf of Y. We will demonstrate the use of these three methods in a series of examples.

The next two examples demonstrate how the pmf is computed in cases where
is discrete. In the first example, X is discrete. In the second example, X is

continuous.

Example 4.29

Let X be the number of active speakers in a group of N independent speakers. Let p be the prob-
ability that a speaker is active. In Example 2.39 it was shown that X has a binomial distribution
with parameters N and p. Suppose that a voice transmission system can transmit up to M voice
signals at a time, and that when X exceeds M, randomly selected signals are discarded.
Let Y be the number of signals discarded, then

Y takes on values from the set Y will equal zero whenever X is less
than or equal to M, and Y will equal when X is equal to Therefore

and

where is the pmf of X.pj

P3Y = k4 = P3X = M + k4 = pM+k 0 6 k … N - M,

P3Y = 04 = P3X in 50, 1, Á ,M64 = a
M

j=0
pj

M + k.k 7 0
SY = 50, 1, Á ,N - M6.

Y = 1X - M2+.

X - M

Y = g1X2

5y 6 g1X2 … y + h65g1X2 … y6 yk5g1X2 = yk6
Y = g1X2:

P3Y in C4 = P3g1X2 in C4 = P3X in B4.

a 6 1a 7 1c1x2 = ax

c1x2 = ax + b,

0.5d, 1.5d, 2.5d, 3.5d6.
SY = 5-3.5d, -2.5d, -1.5d, -0.5d,



176 Chapter 4 One Random Variable

Example 4.30

Let X be a sample voltage of a speech waveform, and suppose that X has a uniform distribution
in the interval Let where the quantizer input-output characteristic is as
shown in Fig. 4.10. Find the pmf for Y.

The event for q in is equivalent to the event where is an interval
of points mapped into the representation point q. The pmf of Y is therefore found by evaluating

It is easy to see that the representation point has an interval of length d mapped into it. Thus the
eight possible outputs are equiprobable, that is, for q in

In Example 4.30, each constant section of the function q(X) produces a delta
function in the pdf of Y. In general, if the function g(X) is constant during certain in-
tervals and if the pdf of X is nonzero in these intervals, then the pdf of Y will contain
delta functions. Y will then be either discrete or of mixed type.

The cdf of Y is defined as the probability of the event In principle, it
can always be obtained by finding the probability of the equivalent event 
as shown in the next examples.

Example 4.31 A Linear Function

Let the random variable Y be defined by

where a is a nonzero constant. Suppose that X has cdf then find 
The event occurs when occurs. If then 

(see Fig. 4.11), and thus

On the other hand, if then and

We can obtain the pdf of Y by differentiating with respect to y. To do this we need to use the
chain rule for derivatives:

where u is the argument of F. In this case, and we then obtain

fY1y2 =
1
a
fXay - b

a
b a 7 0

u = 1y - b2/a,

dF

dy
=
dF

du

du

dy
,

FY1y2 = P cX Ú
y - b
a
d = 1 - FXay - b

a
b a 6 0.

A = 5X Ú 1y - b2/a6,a 6 0,

FY1y2 = P cX …
y - b
a
d = FXay - b

a
b a 7 0.

(y - b2/a6
A = 5X …a 7 0,A = 5aX + b … y65Y … y6

FY1y2.FX1x2,
Y = aX + b,

5g1X2 … y65Y … y6.

SY .P3Y = q4 = 1/8

P3Y = q4 = LIqfX1t2 dt.

Iq5X in Iq6,SY5Y = q6
Y = q1X2,3-4d, 4d4.
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y

x

{X �

y � b
a

y � b
a

{Y � y}

Y �
aX



b

}

FIGURE 4.11
The equivalent event for is the event

if a 7 0.5X … 1y - b2/a6,
5Y … y6

and

The above two results can be written compactly as

(4.67)

Example 4.32 A Linear Function of a Gaussian Random Variable

Let X be a random variable with a Gaussian pdf with mean m and standard deviation 

(4.68)

Let then find the pdf of Y.
Substitution of Eq. (4.68) into Eq. (4.67) yields

Note that Y also has a Gaussian distribution with mean and standard deviation 
Therefore a linear function of a Gaussian random variable is also a Gaussian random variable.

Example 4.33

Let the random variable Y be defined by

where X is a continuous random variable. Find the cdf and pdf of Y.

Y = X2,

ƒa ƒ s.b + am

fY1y2 =
1

22p ƒas ƒ
e-1y-b-am22/21as22.

Y = aX + b,

fX1x2 =
1

22p s
e-1x-m22/2s2

-q 6 x 6 q .

s:

fY1y2 =
1

ƒa ƒ
fXay - b

a
b .

fY1y2 =
1
-a
fXay - b

a
b a 6 0.
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�Y � y�

Y � X2

�y� �y

FIGURE 4.12
The equivalent event for is the event

if y Ú 0.5-1y … X … 1y6,
5Y … y6

The event occurs when or equivalently when 
for y nonnegative; see Fig. 4.12. The event is null when y is negative. Thus

and differentiating with respect to y,

(4.69)

Example 4.34 A Chi-Square Random Variable

Let X be a Gaussian random variable with mean and standard deviation X is then
said to be a standard normal random variable. Let Find the pdf of Y.

Substitution of Eq. (4.68) into Eq. (4.69) yields

(4.70)

From Table 4.1 we see that is the pdf of a chi-square random variable with one degree of
freedom.

The result in Example 4.33 suggests that if the equation has n solu-
tions, then will be equal to n terms of the type on the right-handfY1y02x0 , x1 , Á , xn ,

y0 = g1x2

fY1y2
fY1y2 =

e-y/2

22yp
y Ú 0.

Y = X2.
s = 1.m = 0

=
fX11y2

21y +
fX1-1y2

21y .

fY1y2 =
fX11y2

21y -
fX1-1y2

-21y y 7 0

FY1y2 = b0 y 6 0
FX11y2 - FX1-1y2 y 7 0

5-1y … X … 1y65X2 … y65Y … y6
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x1 x2x1 � dx1

y
y 
 dy

y � g(x)

x2 � dx2 x3 x3 � dx3

FIGURE 4.13
The equivalent event of is 
´ 5x2 + dx2 6 X 6 x26 ´ 5x3 6 X 6 x3 + dx36.

5x1 6 X 6 x1 + dx165y 6 Y 6 y + dy6

side of Eq. (4.69).We now show that this is generally true by using a method for direct-
ly obtaining the pdf of Y in terms of the pdf of X.

Consider a nonlinear function such as the one shown in Fig. 4.13. Con-
sider the event and let be its equivalent event. For y indi-
cated in the figure, the equation has three solutions and and the
equivalent event has a segment corresponding to each solution:

The probability of the event is approximately

(4.71)

where is the length of the interval Similarly, the probability of
the event is approximately

(4.72)

Since and are equivalent events, their probabilities must be equal. By equating
Eqs. (4.71) and (4.72) we obtain

(4.73)

(4.74)

It is clear that if the equation has n solutions, the expression for the pdf of Y
at that point is given by Eqs. (4.73) and (4.74), and contains n terms.

g1x2 = y

= a
k
fX1x2 ` dxdy ` ` x=xk .

fY1y2 = a
k

fX1x2
ƒdy>dx ƒ ` x=xk

ByCy

P3By4 = fX1x12 ƒdx1 ƒ + fX1x22 ƒdx2 ƒ + fX1x32 ƒdx3 ƒ .

By

y 6 Y … y + dy.ƒdy ƒ

P3Cy4 = fY1y2 ƒdy ƒ ,
Cy

´ 5x3 6 X 6 x3 + dx36.
By = 5x1 6 X 6 x1 + dx16 ´ 5x2 + dx2 6 X 6 x26
By

x3 ,x1 , x2 ,g1x2 = y
ByCy = 5y 6 Y 6 y + dy6Y = g1X2
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1

0

�1

y x
p 2p

0.5

�0.5

Y � cos X

cos�1(y) 2p �cos�1y

FIGURE 4.14
has two roots in the interval 10, 2p2.y = cos x

Example 4.35

Let as in Example 4.34. For the equation has two solutions, and
so Eq. (4.73) has two terms. Since Eq. (4.73) yields

This result is in agreement with Eq. (4.69). To use Eq. (4.74), we note that

which when substituted into Eq. (4.74) then yields Eq. (4.69) again.

Example 4.36 Amplitude Samples of a Sinusoidal Waveform

Let where X is uniformly distributed in the interval Y can be viewed as the
sample of a sinusoidal waveform at a random instant of time that is uniformly distributed over
the period of the sinusoid. Find the pdf of Y.

It can be seen in Fig. 4.14 that for the equation has two solutions in 
the interval of interest, and Since (see an introductory calculus
textbook)

and since in the interval of interest, Eq. (4.73) yields

=
1

p21 - y2
for -1 6 y 6 1.

fY1y2 =
1

2p21 - y2
+

1

2p21 - y2

fX1x2 = 1/2p

dy

dx
`
x0

= -sin1x02 = -sin1cos-11y22 = -21 - y2 ,

x1 = 2p - x0 .x0 = cos-11y2
y = cos1x2-1 6 y 6 1

10, 2p].Y = cos1X2,

dx

dy
=
d

dy
; 1y = ;

1
21y ,

fY1y2 =
fX11y2

21y +
fX1-1y2

21y .

dy/dx = 2x,x1 = -1y ,
x0 = 1yy = x2y Ú 0,Y = X2
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The cdf of Y is found by integrating the above:

Y is said to have the arcsine distribution.

4.6 THE MARKOV AND CHEBYSHEV INEQUALITIES

In general, the mean and variance of a random variable do not provide enough infor-
mation to determine the cdf/pdf. However, the mean and variance of a random vari-
able X do allow us to obtain bounds for probabilities of the form Suppose
first that X is a nonnegative random variable with mean E X . The Markov inequality
then states that

(4.75)

We obtain Eq. (4.75) as follows:

The first inequality results from discarding the integral from zero to a; the second in-
equality results from replacing t with the smaller number a.

Example 4.37

The mean height of children in a kindergarten class is 3 feet, 6 inches. Find the bound on the prob-
ability that a kid in the class is taller than 9 feet.The Markov inequality gives 

The bound in the above example appears to be ridiculous. However, a bound, by
its very nature, must take the worst case into consideration. One can easily construct a
random variable for which the bound given by the Markov inequality is exact.The rea-
son we know that the bound in the above example is ridiculous is that we have knowl-
edge about the variability of the children’s height about their mean.

Now suppose that the mean and the variance of a 
random variable are known, and that we are interested in bounding 
The Chebyshev inequality states that

(4.76)P3 ƒX - m ƒ Ú a4 …
s2

a2 .

P3 ƒX - m ƒ Ú a4.
VAR3X4 = s2E3X4 = m

= .389.
P3H Ú 94 … 42/108

Ú L
q

a
afX1t2 dt = aP3X Ú a4.

E3X4 = L
a

0
tfX1t2 dt + L

q

a
tfX1t2 dt Ú L

q

a
tfX1t2 dt

P3X Ú a4 …
E3X4
a

forX nonnegative.

43 P3 ƒX ƒ Ú t4.

FY1y2 = d 0 y 6 -1
1
2

+
sin-1y

p
-1 … y … 1

1 y 7 1.
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The Chebyshev inequality is a consequence of the Markov inequality. Let 
be the squared deviation from the mean.Then the Markov inequality applied to

gives

Equation (4.76) follows when we note that and are equiv-
alent events.

Suppose that a random variable X has zero variance; then the Chebyshev in-
equality implies that

(4.77)

that is, the random variable is equal to its mean with probability one. In other words, X
is equal to the constant m in almost all experiments.

Example 4.38

The mean response time and the standard deviation in a multi-user computer system are known
to be 15 seconds and 3 seconds, respectively. Estimate the probability that the response time is
more than 5 seconds from the mean.

The Chebyshev inequality with seconds, seconds, and seconds gives

Example 4.39

If X has mean m and variance then the Chebyshev inequality for gives

Now suppose that we know that X is a Gaussian random variable, then for 
whereas the Chebyshev inequality gives the upper bound .25.

Example 4.40 Chebyshev Bound Is Tight

Let the random variable X have The mean is zero and the vari-
ance is 

Note that The Chebyshev inequality states:

We see that the bound and the exact value are in agreement, so the bound is tight.

P3 ƒX ƒ Ú v4 … 1 -
VAR3X4
v2 = 1.

P3 ƒX ƒ Ú v4 = 1.
VAR3X4 = E3X24 = 1-v22 0.5 + v2 0.5 = v2.

P3X = -v4 = P3X = v4 = 0.5.

= .0456,
k = 2, P3 ƒX - m ƒ Ú 2s4

P3 ƒX - m ƒ Ú ks4 …
1
k2 .

a = kss2,

P3 ƒX - 15 ƒ Ú 54 …
9

25
= .36.

a = 5s = 3m = 15

P3X = m4 = 1,

5 ƒX - m ƒ Ú a65D2 Ú a26
P3D2 Ú a24 …

E31X - m224
a2 =

s2

a2 .

D2
- m22

D2 = 1X
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0 a

es(t � a)

FIGURE 4.15
Bounds on indicator function for .A = 5t Ú a6

We see from Example 4.38 that for certain random variables, the Chebyshev in-
equality can give rather loose bounds. Nevertheless, the inequality is useful in situations
in which we have no knowledge about the distribution of a given random variable other
than its mean and variance. In Section 7.2, we will use the Chebyshev inequality to prove
that the arithmetic average of independent measurements of the same random variable
is highly likely to be close to the expected value of the random variable when the num-
ber of measurements is large. Problems 4.100 and 4.101 give examples of this result.

If more information is available than just the mean and variance, then it is possi-
ble to obtain bounds that are tighter than the Markov and Chebyshev inequalities.
Consider the Markov inequality again. The region of interest is so let

be the indicator function, that is, if and otherwise. The
key step in the derivation is to note that in the region of interest. In effect we
bounded by t/a as shown in Fig. 4.15. We then have:

By changing the upper bound on we can obtain different bounds on 
Consider the bound also shown in Fig. 4.15, where The resulting
bound is:

(4.78)

This bound is called the Chernoff bound, which can be seen to depend on the expected
value of an exponential function of X. This function is called the moment generating
function and is related to the transforms that are introduced in the next section.We de-
velop the Chernoff bound further in the next section.

= e-saL
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0
estfX1t2 dt = e-saE3esX4.
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0
IA1t2fX1t2 dt … L

q

0
es1t-a2fX1t2 dt

s 7 0.IA1t2 … es1t-a2,
P3X Ú a4.IA1t2,
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fX1t2 dt =

E3X4
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IA1t2
t/a Ú 1

IA1t2 = 0t H AIA1t2 = 1IA1t2
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4.7 TRANSFORM METHODS

In the old days, before calculators and computers, it was very handy to have loga-
rithm tables around if your work involved performing a large number of multiplica-
tions. If you wanted to multiply the numbers x and y, you looked up log(x) and
log(y), added log(x) and log(y), and then looked up the inverse logarithm of the
result. You probably remember from grade school that longhand multiplication is
more tedious and error-prone than addition. Thus logarithms were very useful as a
computational aid.

Transform methods are extremely useful computational aids in the solution of
equations that involve derivatives and integrals of functions. In many of these problems,
the solution is given by the convolution of two functions: * We will define
the convolution operation later. For now, all you need to know is that finding the con-
volution of two functions can be more tedious and error-prone than longhand multipli-
cation! In this section we introduce transforms that map the function into another
function and that satisfy the property that * In
other words, the transform of the convolution is equal to the product of the individual
transforms. Therefore transforms allow us to replace the convolution operation by
the much simpler multiplication operation. The transform expressions introduced in
this section will prove very useful when we consider sums of random variables in
Chapter 7.

4.7.1 The Characteristic Function

The characteristic function of a random variable X is defined by

(4.79a)

(4.79b)

where is the imaginary unit number. The two expressions on the right-hand
side motivate two interpretations of the characteristic function. In the first expression,

can be viewed as the expected value of a function of X, in which the para-
meter is left unspecified. In the second expression, is simply the Fourier
transform of the pdf (with a reversal in the sign of the exponent). Both of these
interpretations prove useful in different contexts.

If we view as a Fourier transform, then we have from the Fourier trans-
form inversion formula that the pdf of X is given by

(4.80)

It then follows that every pdf and its characteristic function form a unique Fourier
transform pair. Table 4.1 gives the characteristic function of some continuous random
variables.

fX1x2 =
1

2pL
q

-q
£X1v2e-jvx dv.

£X1v2
fX1x2

£X1v2v

ejvX,£X1v2
j = 2-1

= L
q

-q
fX1x2ejvx dx,

£X1v2 = E3ejvX4

f21x24 = f11v2f21v2.f 3f11x2fk1v2,
fk1x2

f21x2.f11x2
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Example 4.41 Exponential Random Variable

The characteristic function for an exponentially distributed random variable with parameter is
given by

If X is a discrete random variable, substitution of Eq. (4.20) into the definition of
gives

Most of the time we deal with discrete random variables that are integer-valued. The
characteristic function is then

(4.81)

Equation (4.81) is the Fourier transform of the sequence Note that the
Fourier transform in Eq. (4.81) is a periodic function of with period since 

and Therefore the characteristic function of integer-
valued random variables is a periodic function of The following inversion formula
allows us to recover the probabilities from 

(4.82)

Indeed, a comparison of Eqs. (4.81) and (4.82) shows that the are simply the co-
efficients of the Fourier series of the periodic function 

Example 4.42 Geometric Random Variable

The characteristic function for a geometric random variable is given by

Since and form a transform pair, we would expect to be able to ob-
tain the moments of X from The moment theorem states that the moments of£X1v2.

£X1v2fX1x2

=
p

1 - qejv
.

£X1v2 = a
q

k=0
pqkejvk = pa

q

k=0
1qejv2k

£X1v2.
pX1k2

pX1k2 =
1

2pL
2p

0
£X1v2e-jvk dv k = 0, ;1, ;2, Á

£X1v2:pX1k2
v.

ejk2p = 1.ej1v+2p2k= ejvkejk2p
2p,v

pX1k2.
£X1v2 = a

q

k=-q
pX1k2ejvk integer-valued random variables.

£X1v2 = a
k
pX1xk2ejvxk discrete random variables.

£X1v2

=
l

l - jv
.

£X1v2 = L
q

0
le-lxejvx dx = L

q

0
le-1l- jv2x dx

l
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X are given by

(4.83)

To show this, first expand in a power series in the definition of 

Assuming that all the moments of X are finite and that the series can be integrated
term by term, we obtain

If we differentiate the above expression once and evaluate the result at we obtain

If we differentiate n times and evaluate at we finally obtain

which yields Eq. (4.83).
Note that when the above power series converges, the characteristic function and

hence the pdf by Eq. (4.80) are completely determined by the moments of X.

Example 4.43

To find the mean of an exponentially distributed random variable, we differentiate 
once, and obtain

The moment theorem then implies that 
If we take two derivatives, we obtain

so the second moment is then The variance of X is then given by

VAR3X4 = E3X24 - E3X42 =
2
l2 -

1
l2 =

1
l2 .

E3X24 = £fl
X102/j2 = 2/l2.

£fl
X1v2 =

-2l
1l - jv23 ,

E3X4 = £œ
X102/j = 1/l.

£œ
X1v2 =

lj

1l - jv22 .

= l1l - jv2-1
£X1v2

dn

dvn
£X1v2 `

v=0
= jnE3Xn4,

v = 0,

d

dv
£X1v2 `

v=0
= jE3X4.

v = 0

£X1v2 = 1 + jvE3X4 +
1jv22E3X24

2!
+ Á +

1jv2nE3Xn4
n!

+ Á .

£X1v2 = L
q

-q
fX1x2b1 + jvX +

1jvX22
2!

+ Á r dx.£X1v2:ejvx

E3Xn4 =
1
jn
dn

dvn
£X1v2 `

v=0
.
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Example 4.44 Chernoff Bound for Gaussian Random Variable

Let X be a Gaussian random variable with mean m and variance Find the Chernoff bound
for X.

The Chernoff bound (Eq. 4.78) depends on the moment generating function:

In terms of the characteristic function the bound is given by:

The parameter s can be selected to minimize the upper bound.
The bound for the Gaussian random variable is:

We minimize the upper bound by minimizing the exponent:

The resulting upper bound is:

This bound is much better than the Chebyshev bound and is similar to the estimate given in
Eq. (4.54).

4.7.2 The Probability Generating Function

In problems where random variables are nonnegative, it is usually more convenient to
use the z-transform or the Laplace transform. The probability generating function

of a nonnegative integer-valued random variable N is defined by

(4.84a)

(4.84b)

The first expression is the expected value of the function of The second expres-
sion is the z-transform of the pmf (with a sign change in the exponent). Table 3.1 shows
the probability generating function for some discrete random variables. Note that the
characteristic function of N is given by 

Using a derivation similar to that used in the moment theorem, it is easy to show
that the pmf of N is given by

(4.85)

This is why is called the probability generating function. By taking the first two
derivatives of and evaluating the result at it is possible to find the firstz = 1,GN1z2

GN1z2
pN1k2 =

1
k!
dk

dzk
GN1z2 `

z=0
.

£N1v2 = GN1ejv2.

N, zN.

= a
q

k=0
pN1k2zk.

GN1z2 = E3zN4
GN1z2

P3X Ú a4 = Qaa - m
s
b … e-1a-m22/2s2

.

0 =
d

ds
1-s1a - m2 + s2s2/22 which implies s =

a - m
s2 .

P3X Ú a4 … e-saems+s
2s2/2 = e-s1a-m2+s2s2/2 for s Ú 0.

P3X Ú a4 … e-sa£X1-js2 for s Ú 0.

E3esX4 = £X1-js2.

s2.
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two moments of X:

and

Thus the mean and variance of X are given by

(4.86)

and

(4.87)

Example 4.45 Poisson Random Variable

The probability generating function for the Poisson random variable with parameter is given by

The first two derivatives of are given by

and

Therefore the mean and variance of the Poisson are

4.7.3 The Laplace Transform of the pdf

In queueing theory one deals with service times, waiting times, and delays. All of these
are nonnegative continuous random variables. It is therefore customary to work with
the Laplace transform of the pdf,

(4.88)

Note that can be interpreted as a Laplace transform of the pdf or as an expected 
value of a function of X, e-sX.

X*1s2
X*1s2 = L

q

0
fX1x2e-sx dx = E3e-sX4.

VAR3N4 = a2 + a - a2 = a.

E3N4 = a

Gfl
N1z2 = a2ea1z-12.

Gœ
N1z2 = aea1z-12

GN1z2
= e-aeaz = ea1z-12.

GN1z2 = a
q

k=0

ak

k!
e-azk = e-aa

q

k=0

1az2k
k!

a

VAR3N4 = Gfl
N112 + Gœ

N112 - 1Gœ
N11222.

E3N4 = Gœ
N112

= a
q

k=0
k1k - 12pN1k2 = E3N1N - 124 = E3N24 - E3N4.

d2

dz2GN1z2 `
z=1

= a
q

k=0
pN1k2k1k - 12zk-2 `
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d

dz
GN1z2 `

z=1
= a

q

k=0
pN1k2kzk-1 `

z=1
= a

q

k=0
kpN1k2 = E3N4
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The moment theorem also holds for 

(4.89)

Example 4.46 Gamma Random Variable

The Laplace transform of the gamma pdf is given by

where we used the change of variable We can then obtain the first two moments
of X as follows:

and

Thus the variance of X is

4.8 BASIC RELIABILITY CALCULATIONS

In this section we apply some of the tools developed so far to the calculation of
measures that are of interest in assessing the reliability of systems. We also show
how the reliability of a system can be determined in terms of the reliability of its
components.

4.8.1 The Failure Rate Function

Let T be the lifetime of a component, a subsystem, or a system. The reliability at time t
is defined as the probability that the component, subsystem, or system is still function-
ing at time t:

(4.90)

The relative frequency interpretation implies that, in a large number of components or
systems, R(t) is the fraction that fail after time t. The reliability can be expressed in
terms of the cdf of T:

(4.91)R1t2 = 1 - P3T … t4 = 1 - FT1t2.

R1t2 = P3T 7 t4.

VAR1X2 = E3X24 - E3X42 =
a

l2 .

E3X24 =
d2

ds2
la

1l + s2a ` s=0
=
a1a + 12la
1l + s2a+2 `

s=0
=
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l2 .

E3X4 = -
d
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la

1l + s2a ` s=0
=

ala

1l + s2a+1 `
s=0

=
a

l

y = 1l + s2x.
=
la

≠1a2
1

1l + s2aL
q

0
ya-1e-y dy =

la

1l + s2a ,

X*1s2 = L
q

0

laxa-1e-lxe-sx

≠1a2 dx =
la

≠1a2L
q

0
xa-1e-1l+ s2x dx

E3Xn4 = 1-12n dn
dsn
X*1s2 `

s=0
.

X*1s2:
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Note that the derivative of R(t) gives the negative of the pdf of T:

(4.92)

The mean time to failure (MTTF) is given by the expected value of T:

where the second expression was obtained using Eqs. (4.28) and (4.91).
Suppose that we know a system is still functioning at time t; what is its future be-

havior? In Example 4.10, we found that the conditional cdf of T given that is
given by

(4.93)

The pdf associated with is

(4.94)

Note that the denominator of Eq. (4.94) is equal to R(t).
The failure rate function r(t) is defined as evaluated at 

(4.95)

since by Eq. (4.92), The failure rate function has the following meaning:

(4.96)

In words, r(t) dt is the probability that a component that has functioned up to time t will
fail in the next dt seconds.

Example 4.47 Exponential Failure Law

Suppose a component has a constant failure rate function, say Find the pdf and the
MTTF for its lifetime T.

Equation (4.95) implies that

(4.97)

Equation (4.97) is a first-order differential equation with initial condition If we
integrate both sides of Eq. (4.97) from 0 to t, we obtain

- L
t

0
l dt¿ + k = L

t

0

R¿1t¿2
R1t¿2 dt¿ = ln R1t2,

R102 = 1.

R¿1t2
R1t2 = -l.

r1t2 = l.

P3t 6 T … t + dt ƒT 7 t4 = fT1t ƒT 7 t2 dt = r1t2 dt.
R¿1t2 = -fT1t2.

=
-R¿1t2
R1t2 ,

r1t2 = fT1t ƒT 7 t2
x = t:fT1x ƒT 7 t2

fT1x ƒT 7 t2 =
fT1x2

1 - FT1t2 x Ú t.

FT1x ƒT 7 t2

= c 0 x 6 t
FT1x2 - FT1t2

1 - FT1t2 x Ú t.

FT1x ƒT 7 t2 = P3T … x ƒT 7 t4
T 7 t

E3T4 = L
q

0
fT1t2 dt = L

q

0
R1t2 dt,

R¿1t2 = -fT1t2.
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r(t)

t

FIGURE 4.16
Failure rate function for a typical system.

which implies that

The initial condition implies that Thus

(4.98)

and

Thus if T has a constant failure rate function, then T is an exponential random variable. This is
not surprising, since the exponential random variable satisfies the memoryless property. The

The derivation that was used in Example 4.47 can be used to show that, in gener-
al, the failure rate function and the reliability are related by

(4.99)

and from Eq. (4.92),

(4.100)

Figure 4.16 shows the failure rate function for a typical system. Initially there may
be a high failure rate due to defective parts or installation. After the “bugs” have been
worked out, the system is stable and has a low failure rate. At some later point, ageing
and wear effects set in, resulting in an increased failure rate. Equations (4.99) and
(4.100) allow us to postulate reliability functions and the associated pdf’s in terms of
the failure rate function, as shown in the following example.

fT1t2 = r1t2 expb -L t0
r1t¿2 dt¿ r .

R1t2 = expb -L t0
r1t¿2 dt¿ r

MTTF = E3T4 = 1/l.

fT1t2 = le-lt t 7 0.

R1t2 = e-lt t 7 0

K = 1.R102 = 1

R1t2 = Ke-lt, whereK = ek.
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FIGURE 4.17
Probability density function of Weibull random variable, and
b = 1, 2, 4.

a = 1

Example 4.48 Weibull Failure Law

The Weibull failure law has failure rate function given by

(4.101)

where and are positive constants. Equation (4.99) implies that the reliability is given by

Equation (4.100) then implies that the pdf for T is

(4.102)

Figure 4.17 shows for and several values of Note that yields the expo-
nential failure law, which has a constant failure rate. For Eq. (4.101) gives a failure rate
function that increases with time. For Eq. (4.101) gives a failure rate function that de-
creases with time. Further properties of the Weibull random variable are developed in the
problems.

4.8.2 Reliability of Systems

Suppose that a system consists of several components or subsystems. We now show
how the reliability of a system can be computed in terms of the reliability of its subsys-
tems if the components are assumed to fail independently of each other.

b 6 1,
b 7 1,

b = 1b.a = 1fT1t2
fT1t2 = abtb-1e-at

b

 t 7 0.

R1t2 = e-at
b

.

ba

r1t2 = abtb-1,
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C2 CnC1

(a)

(b)

C2

Cn

C1

FIGURE 4.18
(a) System consisting of n components in series. (b) System consisting
of n components in parallel.

Consider first a system that consists of the series arrangement of n components
as shown in Fig. 4.18(a). This system is considered to be functioning only if all the com-
ponents are functioning. Let be the event “system functioning at time t,” and let 
be the event “jth component is functioning at time t,” then the probability that the sys-
tem is functioning at time t is

(4.103)

since the reliability function of the jth component. Since probabilities
are numbers that are less than or equal to one, we see that R (t) can be no more reliable
than the least reliable of the components, that is,

If we apply Eq. (4.99) to each of the in Eq. (4.103), we then find that the fail-
ure rate function of a series system is given by the sum of the component failure rate
functions:

Example 4.49

Suppose that a system consists of n components in series and that the component lifetimes are
exponential random variables with rates Find the system reliability.l1 , l2 , Á , ln .

= expE -1 t0 3r11t¿2 + r21t¿2 + Á + rn1t¿24 dt¿ F .
R1t2 = expE -1 t0r11t¿2 dt¿ F expE -1 t0r21t¿2 dt¿ F Á expE -1 t0rn1t¿2 dt¿ F

Rj1t2
R1t2 … minj Rj1t2.

P3Aj4 = Rj1t2,
= R11t2R21t2Á Rn1t2,
= P3A1 ¨ A2 ¨ Á ¨ An4 = P3A14P3A24Á P3An4

R1t2 = P3As4

AjAs
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From Eqs. (4.98) and (4.103), we have

Thus the system reliability is exponentially distributed with rate 

Now suppose that a system consists of n components in parallel, as shown in
Fig. 4.18(b). This system is considered to be functioning as long as at least one of the
components is functioning. The system will not be functioning if and only if all the
components have failed, that is,

Thus

and finally,

(4.104)

Example 4.50

Compare the reliability of a single-unit system against that of a system that operates two units in
parallel. Assume all units have exponentially distributed lifetimes with rate 1.

The reliability of the single-unit system is

The reliability of the two-unit system is

The parallel system is more reliable by a factor of

More complex configurations can be obtained by combining subsystems consisting
of series and parallel components.The reliability of such systems can then be computed in
terms of the subsystem reliabilities. See Example 2.35 for an example of such a calculation.

4.9 COMPUTER METHODS FOR GENERATING RANDOM VARIABLES

The computer simulation of any random phenomenon involves the generation of ran-
dom variables with prescribed distributions. For example, the simulation of a queueing
system involves generating the time between customer arrivals as well as the service
times of each customer. Once the cdf’s that model these random quantities have been
selected, an algorithm for generating random variables with these cdf’s must be found.
MATLAB and Octave have built-in functions for generating random variables for all

12 - e-t2 7 1.

= e-t12 - e-t2.
Rp1t2 = 1 - 11 - e-t211 - e-t2

Rs1t2 = e-t.

R1t2 = 1 - 11 - R11t2211 - R21t22Á 11 - Rn1t22.

1 - R1t2 = 11 - R11t2211 - R21t22Á 11 - Rn1t22,

P3Asc4 = P3A1
c4P3A2

c4Á P3Anc4.

l1 + l2 + Á + ln .

= e-1l1+ Á +ln2t.

R1t2 = e-l1te-l2tÁ e-lnt
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of the well known distributions. In this section we present the methods that are used
for generating random variables. All of these methods are based on the availability of
random numbers that are uniformly distributed between zero and one. Methods for
generating these numbers were discussed in Section 2.7.

All of the methods for generating random variables require the evaluation of ei-
ther the pdf, the cdf, or the inverse of the cdf of the random variable of interest.We can
write programs to perform these evaluations, or we can use the functions available in
programs such as MATLAB and Octave. The following example shows some typical
evaluations for the Gaussian random variable.

Example 4.51 Evaluation of pdf, cdf, and Inverse cdf

Let X be a Gaussian random variable with mean 1 and variance 2. Find the pdf at Find the
cdf at Find the value of x at which the 

The following commands show how these results are obtained using Octave.

> normal_pdf (7, 1, 2)

ans = 3.4813e-05

> normal_cdf (-2, 1, 2)
ans = 0.016947

> normal_inv (0.25, 1, 2)

ans = 0.046127

4.9.1 The Transformation Method

Suppose that U is uniformly distributed in the interval [0, 1]. Let be the cdf of
the random variable we are interested in generating. Define the random variable,

that is, first U is selected and then Z is found as indicated in Fig. 4.19.The
cdf of Z is

But if U is uniformly distributed in [0, 1] and then (see
Example 4.6). Thus

and has the desired cdf.

Transformation Method for Generating X:

1. Generate U uniformly distributed in [0, 1].
2. Let

Example 4.52 Exponential Random Variable

To generate an exponentially distributed random variable X with parameter we need to invert
the expression We obtain

X = -
1
l

ln11 - U2.
u = FX1x2 = 1 - e-lx.

l,

Z = FX-11U2.

Z = FX-11U2
P3Z … x4 = FX1x2,

P3U … h4 = h0 … h … 1,

P3Z … x4 = P3FX-11U2 … x4 = P3U … FX1x24.
Z = FX-11U2;

FX1x2

cdf = 0.25.x = -2.
x = 7.
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Note that we can use the simpler expression since is also uniform-
ly distributed in [0, 1].The first two lines of the Octave commands below show how to implement
the transformation method to generate 1000 exponential random variables with Figure
4.20 shows the histogram of values obtained. In addition, the figure shows the probability that
samples of the random variables fall in the corresponding histogram bins. Good correspondence
between the histograms and these probabilities are observed. In Chapter 8 we introduce meth-
ods for assessing the goodness-of-fit of data to a given distribution. Both MATLAB and Octave
use the transformation method in their function exponential_rnd.

> U=rand (1, 1000); %Generate 1000 uniform random variables.
> X=-log(U); %Compute 1000 exponential RVs.
> K=0.25:0.5:6;

> P(1)=1-exp(-0.5)

> for i=2:12, %The remaining lines show how to generate
> P(i)=P(i-1)*exp(-0.5) % the histogram bins.
> end;

> stem (K, P)

> hold on

> Hist (X, K, 1)

4.9.2 The Rejection Method

We first consider the simple version of this algorithm and explain why it works; then
we present it in its general form. Suppose that we are interested in generating a ran-
dom variable Z with pdf as shown in Fig. 4.21. In particular, we assume that: (1)
the pdf is nonzero only in the interval [0, a], and (2) the pdf takes on values in the
range [0, b]. The rejection method in this case works as follows:

fX1x2

l = 1.

1 - UX = - ln1U2/l,

0
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U

Z = FX
�1(U)

FX(x)

FIGURE 4.19
Transformation method for generating a random variable with cdf FX1x2.
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FIGURE 4.20
Histogram of 1000 exponential random variables using transformation method.

1. Generate uniform in the interval [0, a].
2. Generate Y uniform in the interval [0, b].
3. If then output else, reject and return to step 1.X1Z = X1 ;Y … fX1X12,

X1

0
0

Y

b

x
X1

x � dx
a

fX(x)

Reject

Accept

FIGURE 4.21
Rejection method for generating a random variable with pdf fX1x2.
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Note that this algorithm will perform a random number of steps before it produces the
output Z.

We now show that the output Z has the desired pdf. Steps 1 and 2 select a point at
random in a rectangle of width a and height b. The probability of selecting a point in
any region is simply the area of the region divided by the total area of the rectangle, ab.
Thus the probability of accepting is the probability of the region below divid-
ed by ab. But the area under any pdf is 1, so we conclude that the probability of success
(i.e., acceptance) is 1/ab. Consider now the following probability:

Therefore when accepted has the desired pdf. Thus Z has the desired pdf.

Example 4.53 Generating Beta Random Variables

Show that the beta random variables with can be generated using the rejection method.
The pdf of the beta random variable with is similar to that shown in Fig. 4.21.

This beta pdf is maximum at and the maximum value is:

Therefore we can generate this beta random variable using the rejection method with 

The algorithm as stated above can have two problems. First, if the rectangle does
not fit snugly around the number of that need to be generated before ac-
ceptance may be excessive. Second, the above method cannot be used if is un-
bounded or if its range is not finite. The general version of this algorithm overcomes
both problems. Suppose we want to generate Z with pdf Let W be a random
variable with pdf that is easy to generate and such that for some constant 

that is, the region under contains as shown in Fig. 4.22.

Rejection Method for Generating X:

1. Generate with pdf Define 
2. Generate Y uniform in 
3. If then output else reject and return to step 1.

See Problem 4.143 for a proof that Z has the desired pdf.

X1Z = X1 ;Y … fX1X12,
30, B1X124.

B1X12 = KfW1X12.fW1x2.X1

fX1x2KfW1x2
KfW1x2 Ú fX1x2 for all x,

K 7 1,fW1x2
fX1x2.

fX1x2
X1’sfX1x2,

b = 1.5.

11/222-111/222-1

B12, 22 =
1/4

≠122≠122/≠142 =
1/4

1!1!/3!
=

3
2

.

x = 1/2
a¿ = b¿ = 2

a¿ = b¿ = 2

X1

= fX1x2 dx.
=

shaded area/ab
1/ab

=
fX1x2 dx/ab

1/ab

=
P35x 6 X1 … x + dx6 ¨ 5X1 accepted64

P3X1 accepted4

P3x 6 X1 … x + dx ƒX1 is accepted4

fX1x2X1
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FIGURE 4.22
Rejection method for generating a random variable with gamma pdf and with
0 6 a 6 1.

Example 4.54 Gamma Random Variable

We now show how the rejection method can be used to generate X with gamma pdf and parameters
and A function that “covers” is easily obtained (see Fig. 4.22):

The pdf that corresponds to the function on the right-hand side is

The cdf of W is

W is easy to generate using the transformation method, with

FW
-11u2 = d c 1a + e2u

e
d1/a

u … e/1a + e2
- ln c1a + e2 11 - u2

ae
d u 7 e/1a + e2.

FW1x2 = d exaa + e
0 … x … 1

1 - ae
e-x

a + e
x 7 1.

fW1x2 = d aexa-1

a + e
0 … x … 1

ae
e-x

a + e
x Ú 1.

fW1x2

fX1x2 =
xa-1e-x

≠1a2 … KfW1x2 = d xa-1

≠1a2 0 … x … 1

e-x

≠1a2 x 7 1.

fX1x2KfW1x2l = 1.0 6 a 6 1
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We can therefore use the transformation method to generate this and then the rejec-
tion method to generate any gamma random variable X with parameters and

Finally we note that if we let then W will be gamma with parameters and
The generation of gamma random variables with is discussed in Problem 4.142.

Example 4.55 Implementing Rejection Method for Gamma Random Variables

Given below is an Octave function definition to implement the rejection method using the above
transformation.

%Generate random numbers from the gamma distribution for 
function X = gamma_rejection_method_altone(alpha)
while (true),

X = special_inverse(alpha); % Step 1: Generate X with pdf 
B = special_pdf (X, alpha); % Step 2: Generate Y uniform in 
Y = rand.* B;
if (Y <= fx_gamma_pdf (X, alpha)), % Step 3: Accept or reject

break;

end

end

%Helper function to generate random variables according to 
function X = special_inverse (alpha)

u = rand;

if (u <= e./(alpha+e)),

X = ((alpha+e).*u./e). ^ (1./alpha);

elseif (u > e./(alpha+e)),

X = -log((alpha+e).*(1-u)./(alpha.*e));
end

%Return B in order to generate uniform variables in 
function B = special_pdf (X, alpha)

if (X >=0 && X <= 1),

B = alpha.*e.*X.^(alpha-1)./(alpha + e);

elseif (X > 1),

B = alpha.*e.*(e. ^(-X)./(alpha + e));

end

% pdf of the gamma distribution.
%Could also use the built in gamma_pdf (X, A, B) function supplied with Octave

setting B = 1

function Y = fx_gamma_pdf (x, alpha)

y = (x.^ (alpha-1)).*(e.^ (-x))./(gamma(alpha));

Figure 4.23 shows the histogram of 1000 samples obtained using this function. The figure
also shows the probability that the samples fall in the bins of the histogram.

We have presented the most common methods that are used to generate ran-
dom variables.These methods are incorporated in the functions provided by programs
such as MATLAB and Octave, so in practice you do not need to write programs to

30,KfZ1X24.

KfZ1x2.

Á

30,KfX1X24.
fX1x2.

0 … a … 1.

a 7 1l.
aW = lX,l = 1.

0 6 a 6 1
fW1x2,
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FIGURE 4.23
1000 samples of gamma random variable using rejection method.

generate the most common random variables. You simply need to invoke the appro-
priate functions.

Example 4.56 Generating Gamma Random Variables

Use Octave to obtain eight Gamma random variables with and 
The Octave command and the corresponding answer are given below:

> gamma_rnd (0.25, 1, 1, 8)

ans =

Columns 1 through 6:

0.00021529   0.09331491   0.24606757   0.08665787

0.00013400   0.23384718

Columns 7 and 8:

1.72940941   1.29599702

4.9.3 Generation of Functions of a Random Variable

Once we have a simple method of generating a random variable X, we can easily gener-
ate any random variable that is defined by or even 
where are n outputs of the random variable generator.X1 , Á ,Xn

Z = h1X1 ,X2 , Á ,Xn2,Y = g1X2

l = 1.a = 0.25
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Example 4.57 m-Erlang Random Variable

Let be independent, exponentially distributed random variables with parameter 
In Chapter 7 we show that the random variable

has an m-Erlang pdf with parameter We can therefore generate an m-Erlang random variable
by first generating m exponentially distributed random variables using the transformation
method, and then taking the sum. Since the m-Erlang random variable is a special case of the
gamma random variable, for large m it may be preferable to use the rejection method described
in Problem 4.142.

4.9.4 Generating Mixtures of Random Variables

We have seen in previous sections that sometimes a random variable consists of a mix-
ture of several random variables. In other words, the generation of the random variable
can be viewed as first selecting a random variable type according to some pmf, and
then generating a random variable from the selected pdf type. This procedure can be
simulated easily.

Example 4.58 Hyperexponential Random Variable

A two-stage hyperexponential random variable has pdf

It is clear from the above expression that X consists of a mixture of two exponential random
variables with parameters a and b, respectively. X can be generated by first performing a
Bernoulli trial with probability of success p. If the outcome is a success, we then use the transfor-
mation method to generate an exponential random variable with parameter a. If the outcome is
a failure, we generate an exponential random variable with parameter b instead.

4.10 ENTROPY

Entropy is a measure of the uncertainty in a random experiment. In this section, we
first introduce the notion of the entropy of a random variable and develop several of
its fundamental properties. We then show that entropy quantifies uncertainty by the
amount of information required to specify the outcome of a random experiment. Fi-
nally, we discuss the method of maximum entropy, which has found wide use in charac-
terizing random variables when only some parameters, such as the mean or variance,
are known.

4.10.1 The Entropy of a Random Variable

Let X be a discrete random variable with and pmf 
We are interested in quantifying the uncertainty of the event Clearly, the 
uncertainty of is low if the probability of is close to one, and it is high if theAkAk

Ak = 5X = k6.pk = P3X = k4.SX = 51, 2, Á ,K6

*

fX1x2 = pae-ax + 11 - p2be-bx.

l.

Y = X1 + X2 + Á + Xm

l.X1 ,X2 , Á
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probability of is small. The following measure of uncertainty satisfies these two
properties:

(4.105)

Note from Fig. 4.24 that if and increases with
decreasing The entropy of a random variable X is defined as the expected
value of the uncertainty of its outcomes:

(4.106)

Note that in the above definition we have used I (X) as a function of a random variable.We
say that entropy is in units of “bits” when the logarithm is base 2. In the above expression
we are using the natural logarithm, so we say the units are in “nats.” Changing the base of
the logarithm is equivalent to multiplying entropy by a constant, since 

Example 4.59 Entropy of a Binary Random Variable

Suppose that and Figure 4.25 shows 
and the entropy of the binary random variable 

as functions of p. Note that h (p) is symmetric about and that
it achieves its maximum at Note also how the uncertainties of the events and

vary together in complementary fashion: When is very small (i.e., highly
uncertain), then is close to one (i.e., highly certain), and vice versa. Thus the highest
average uncertainty occurs when 

can be viewed as the average uncertainty that is resolved by observing X. This suggests
that if we are designing a binary experiment (for example, a yes/no question), then the average un-
certainty that is resolved will be maximized if the two outcomes are designed to be equiprobable.

HX

P3X = 04 = P3X = 14 = 1/2.
P3X = 14

P3X = 045X = 16
5X = 06p = 1/2.

p = 1/2ln1p2 - 11 - p2ln11 - p2
HX = h1p2 = -p-11 - p2ln11 - p2,

-p ln1p2,p = P3X = 04 = 1 - P3X = 14.SX = 50, 16

ln1x2 = ln 2 log2 x.

= -a
K

k=1
P3X = k4 ln P3X = k4.

HX = E3I1X24 = a
K

k=1
P3X = k4 ln 1

P3X = k4

P3X = k4. I1X = k2P3X = k4 = 1,I1X = k2 = 0

I1X = k2 = ln
1

P3X = k4 = - ln P3X = k4.
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0
0
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1
x

FIGURE 4.24
ln11/x2 Ú 1 - x
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FIGURE 4.25
Entropy of binary random variable.

Example 4.60 Reduction of Entropy Through Partial Information

The binary representation of the random variable X takes on values from the set 
with equal probabilities. Find the reduction in the entropy of X given the event

The entropy of X is

The event A implies that X is in the set so the entropy of X given A is

Thus the reduction in entropy is 

Let and be two pmf’s. The relative en-
tropy of q with respect to p is defined by

(4.107)

The relative entropy is nonnegative, and equal to zero if and only if for all k:

(4.108)

We will use this fact repeatedly in the remainder of this section.

H1p; q2 Ú 0 with equality iff pk = qk for k = 1, Á ,K.

pk = qk

H1p; q2 = a
K

k=1
pk ln

1
qk

- HX = a
K

k=1
pk ln

pk
qk

.

q = 1q1 , q2 , Á , qK2p = 1p1 , p2 , Á , pK2,

HX - HX ƒA = 3 - 2 = 1 bit.

HX ƒA = -
1
4

log2
1
4

- Á -
1
4

log2
1
4

= 2 bits.

5100, 101, 110, 1116,
HX = -

1
8

log2
1
8

-
1
8

log2
1
8

- Á -
1
8

log2
1
8

= 3 bits.

A = 5X begins with a 16.
010, Á , 1116

5000, 001,



Section 4.10 Entropy 205

To show that the relative entropy is nonnegative, we use the inequality
with equality iff as shown in Fig. 4.24. Equation (4.107) then

becomes

(4.109)

In order for equality to hold in the above expression, we must have for

Let X be any random variable with and pmf p. If we let
in Eq. (4.108), then

which implies that for any random variable X with

(4.110)

Thus the maximum entropy attainable by the random variable X is ln K, and this maxi-
mum is attained when all the outcomes are equiprobable.

Equation (4.110) shows that the entropy of random variables with finite is al-
ways finite. On the other hand, it also shows that as the size of is increased, the en-
tropy can increase without bound. The following example shows that some countably
infinite random variables have finite entropy.

Example 4.61 Entropy of a Geometric Random Variable

The entropy of the geometric random variable with is:

(4.111)

where h (p) is the entropy of a binary random variable. Note that bits when 

For continuous random variables we have that for all x.Therefore
by Eq. (4.105) the uncertainty for every event is infinite, and it follows from5X = x6P3X = x4 = 0

p = 1/2.HX = 2

=
-p ln p - 11 - p2 ln11 - p2

p
=
h1p2
p

,

= - ln p -
11 - p2 ln11 - p2

p

= - ln p - ln11 - p2a
q

k=0
kp11 - p2k

HX = -a
q

k=0
p11 - p2k ln1p11 - p2k2

SX = 50, 1, 2, Á 6

SX

SX

HX …  ln K with equality iff pk =
1
K

k = 1, Á ,K.

SX = 51, 2, Á ,K6,
H1p; q2 = lnK - HX = a

K

k=1
pk ln

pk
1/K

Ú 0,

qk = 1/K
SX = 51, 2, Á ,K6k = 1, Á ,K.

pk = qk

H1p; q2 = a
K

k=1
pk ln

pk
qk

Ú a
K

k=1
pk¢1 -

qk
pk
≤ = a

K

k=1
pk - a

K

k=1
qk = 0.

x = 1,ln11/x2 Ú 1 - x
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Eq. (4.106) that the entropy of continuous random variables is infinite. The next exam-
ple takes a look at how the notion of entropy may be applied to continuous random
variables.

Example 4.62 Entropy of a Quantized Continuous Random Variable

Let X be a continuous random variable that takes on values in the interval [a, b]. Suppose that
the interval [a, b] is divided into a large number K of subintervals of length Let Q (X) be the
midpoint of the subinterval that contains X. Find the entropy of Q.

Let be the midpoint of the kth subinterval, then 
and thus

(4.112)

The above equation shows that there is a tradeoff between the entropy of Q and the quantiza-
tion error As is decreased the error decreases, but the entropy increases with-
out bound, once again confirming the fact that the entropy of continuous random variables is
infinite.

In the final expression for in Eq. (4.112), as approaches zero, the first ex-
pression approaches infinity, but the second expression approaches an integral which
may be finite in some cases. The differential entropy is defined by this integral:

(4.113)

In the above expression, we reuse the term with the understanding that we deal
with differential entropy when dealing with continuous random variables.

Example 4.63 Differential Entropy of a Uniform Random Variable

The differential entropy for X uniform in [a, b] is

(4.114)HX = -E c lna 1
b - a

b d = ln1b - a2.

HX

HX = -L
q

-q
fX1x2 ln fX1x2 dx = -E3ln fX1X24.

¢HX

¢X - Q1X2.

= - ln1¢2 - a
K

k=1
fX1xk2 ln1fX1xk22¢.

M -a
K

k=1
fX1xk2¢ ln1fX1xk2¢2

HQ = a
K

k=1
P3Q = xk4 ln P3Q = xk4

= P3xk - ¢/2 6 X 6 xk + ¢/24 M fX1xk2¢,
P3Q = xk4 = P3X is in kth subinterval4xk

¢.
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Example 4.64 Differential Entropy of a Gaussian Random Variable

The differential entropy for X, a Gaussian random variable (see Eq. 4.47), is

(4.115)

The entropy function and the differential entropy function differ in several funda-
mental ways. In the next section we will see that the entropy of a random variable has a
very well defined operational interpretation as the average number of information bits re-
quired to specify the value of the random variable. Differential entropy does not possess
this operational interpretation. In addition, the entropy function does not change when
the random variable X is mapped into Y by an invertible transformation. Again, the dif-
ferential entropy does not possess this property. (See Problems 4.153 and 4.160.) Never-
theless, the differential entropy does possess some useful properties. The differential
entropy appears naturally in problems involving entropy reduction, as demonstrated in
Problem 4.159. In addition, the relative entropy of continuous random variables, which is
defined by

does not change under invertible transformations.

4.10.2 Entropy as a Measure of Information

Let X be a discrete random variable with and pmf 
Suppose that the experiment that produces X is performed by John, and that he at-
tempts to communicate the outcome to Mary by answering a series of yes/no questions.
We are interested in characterizing the minimum average number of questions required
to identify X.

Example 4.65

An urn contains 16 balls: 4 balls are labeled “1”, 4 are labeled “2”, 2 are labeled “3”, 2 are labeled
“4”, and the remaining balls are labeled “5”, “6”, “7”, and “8.” John picks a ball from the urn at
random, and he notes the number. Discuss what strategies Mary can use to find out the number

pk = P[X = k].SX = 51, 2, Á ,K6

H1fX ; fY2 = L
q

-q
fX1x2 ln fX1x2fY1x2 dx,

=
1
2

ln12pes22.

=
1
2

ln12ps22 +
1
2

= -EB ln
1

22ps2
-
1X - m22

2s2 RHX = -E3ln fX1X24
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FIGURE 4.26
Two strategies for finding out the value of X through a series of yes/no questions.

of the ball through a series of yes/no questions. Compare the average number of questions asked
to the entropy of X.

If we let X be the random variable denoting the number of the ball, then 
and the pmf is We will compare the two strategies
shown in Figs. 4.26(a) and (b).

The series of questions in Fig. 4.26(a) uses the fact that the probability of de-
creases with k. Thus it is reasonable to ask the question {“Was X equal to 1?”}, {“Was X equal to
2?”}, and so on, until the answer is yes. Let L be the number of questions asked until the answer
is yes, then the average number of questions asked is

The series of questions in Fig. 4.26(b) uses the observation made in Example 4.57 that
yes/no questions should be designed so that the two answers are equiprobable. The questions in

= 51/16.

E3L4 = 1 A14 B + 2 A14 B + 3 A18 B + 4 A18 B + 5 A 1
16 B + 6 A 1

16 B + 7 A 1
16 B + 7 A 1

16 B

5X = k6
p = 11/4, 1/4, 1/8, 1/8, 1/16, 1/16, 1/16, 1/162.

SX = 51, 2, Á , 86
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Fig. 4.26(b) meet this requirement. The average number of questions asked is

Thus the second series of questions has the better performance.
Finally, we find that the entropy of X is

which is equal to the performance of the second series of questions.

The problem of designing the series of questions to identify the random variable
X is exactly the same as the problem of encoding the output of an information source.
Each output of an information source is a random variable X, and the task of the en-
coder is to map each possible output into a unique string of binary digits. We can see
this correspondence by taking the trees in Fig. 4.26 and identifying each yes/no answer
with a 0/1. The sequence of 0’s and 1’s from the top node to each terminal node then
defines the binary string (“codeword”) for each outcome. It then follows that the prob-
lem of finding the best series of yes/no questions is the same as finding the binary tree
code that minimizes the average codeword length.

In the remainder of this section we develop the following fundamental results
from information theory. First, the average codeword length of any code cannot be less
than the entropy. Second, if the pmf of X consists of powers of 1/2, then there is a tree
code that achieves the entropy. And finally, by encoding groups of outcomes of X we
can achieve average codeword length arbitrarily close to the entropy. Thus the entropy
of X represents the minimum average number of bits required to establish the outcome
of X.

First, let’s show that the average codeword length of any tree code cannot be less
than the entropy. Note from Fig. 4.26 that the set of lengths of the codewords for
every complete binary tree must satisfy

(4.116)

To see this,extend the tree to the same depth as the longest codeword,as shown in Fig.4.27.
If we then “prune” the tree at a node of depth we remove a fraction of the nodes at
the bottom of the tree. Note that the converse result is also true: If a set of codeword
lengths satisfies Eq. (4.116), then we can construct a tree code with these lengths.

Consider next the difference between the entropy and E[L] for any binary
tree code:

(4.117)= a
K

k=1
P3X = k4 log2

P3X = k4
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,
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K

k=1
lkP3X = k4 + a

K

k=1
P3X = k4 log2 P3X = k4

2-lklk ,

a
K

k=1
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5lk6
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1
4

log2
1
4

-
1
4
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1
4

-
1
8

log2
1
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- Á -
1

16
log2

1
16

= 44/16,
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FIGURE 4.27
Extension of a binary tree code to a full tree.

where we have expressed the entropy in bits. Equation (4.17) is the relative entropy of
Eq. (4.107) with Thus by Eq. (4.108)

(4.118)

Thus the average number of questions for any tree code (and in particular the best tree
code) cannot be less than the entropy of X. Therefore we can use the entropy as a
baseline against which to test any code.

Equation (4.118) also implies that if the outcomes of X all have probabilities that
are integer powers of 1/2 (as in Example 4.63), then we can find a tree code that
achieves the entropy. If then we assign the outcome k a binary code-
word of length We can show that we can always find a tree code with these lengths
by using the fact that the probabilities add to one, and hence the codeword lengths sat-
isfy Eq. (4.116). Equation (4.118) then implies that 

It is clear that Eq. (4.117) will be nonzero if the are not integer powers of 1/2.
Thus in general the best tree code does not always have However, it is
possible to show that the approach of grouping outcomes into sets that are approxi-
mately equiprobable leads to tree codes with lengths that are close to the entropy. Fur-
thermore, by encoding vectors of outcomes of X, it is possible to obtain average
codeword lengths that are arbitrarily close to the entropy. Problem 4.165 discusses how
this is done.

We have now reached our objective of showing that the entropy of a random
variable X represents the minimum average number of bits required to identify its
value. Before proceeding, let’s reconsider continuous random variables. A continuous
random variable can assume values from an uncountably infinite set, so in general an
infinite number of bits is required to specify its value. Thus, the interpretation of en-
tropy as the average number of bits required to specify a random variable immediate-
ly implies that continuous random variables have infinite entropy.This implies that any
representation of a continuous random variable that uses a finite number of bits will
inherently involve some approximation error.

E3L4 = HX .
pk’s
E3L4 = H.

lk .
P3X = k4 = 2-lk,

HX

E3L4 Ú HX with equality iff P3X = k4 = 2-lk.

qk = 2-lk.
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4.10.3 The Method of Maximum Entropy

Let X be a random variable with and unknown pmf 
Suppose that we are asked to estimate the pmf of X given the expected

value of some function g(X) of X:

(4.119)

For example, if then and if 
then Clearly, this problem is underdetermined since knowledge of these
parameters is not sufficient to specify the pmf uniquely. The method of maximum en-
tropy approaches this problem by seeking the pmf that maximizes the entropy subject
to the constraint in Eq. (4.119).

Suppose we set up this maximization problem by using Lagrange multipliers:

(4.120)

where Note that if forms a pmf, then the above expression is the
negative value of the relative entropy of this pmf with respect to p. Equation (4.108)
then implies that the expression in Eq. (4.120) is always less than or equal to zero with
equality iff We now show that this does indeed lead to the
maximum entropy solution.

Suppose that the random variable X has pmf where C and are
chosen so that Eq. (4.119) is satisfied and so that is a pmf. X then has entropy

(4.121)

Now let’s compare the entropy in Eq. (4.121) to that of some other pmf that also
satisfies the constraint in Eq. (4.119). Consider the relative entropy of p with re-
spect to q:

(4.122)

Thus and p achieves the highest entropy.

Example 4.66

Let X be a random variable with and expected value Find the pmf
of X that maximizes the entropy.

E3X4 = m.SX = 50, 1, Á 6
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In this example so

where Clearly, X is a geometric random variable with mean and thus
It then follows that 

When dealing with continuous random variables, the method of maximum en-
tropy maximizes the differential entropy:

(4.123)

The parameter information is in the form

(4.124)

The relative entropy expression in Eq. (4.115) and the approach used for discrete ran-
dom variables can be used to show that the pdf that maximizes the differential
entropy will have the form

(4.125)

where C and must be chosen so that Eq. (4.125) integrates to one and so that Eq. (4.124)
is satisfied.

Example 4.67

Suppose that the continuous random variable X has known variance where
the mean m is not specified. Find the pdf that maximizes the entropy of X.

Equation (4.125) implies that the pdf has the form

We can meet the constraint in Eq. (4.124) by picking

We thus obtain a Gaussian pdf with variance Note that the mean m is arbitrary; that is, any
choice of m yields a pdf that maximizes the differential entropy.

The method of maximum entropy can be extended to the case where several pa-
rameters of the random variable X are known. It can also be extended to the case of
vectors and sequences of random variables.

s2.

l =
1

2s2 C =
1

22ps2
.

fX1x2 = Ce-l1x-m22.

s2 = E31X - m224,

l

fX1x2 = Ce-lg1x2,

fX1x2

c = E[g1X2] = L
q

-q
g1x2fX1x2 dx.

-L
q

-q
fX1x2 ln fX1x2 dx.

C = 1 - a = 1/1m + 12.a = m/1m + 12.
m = a/11 - a2a = e-l.

pk = Ce-lk = Cak,

g1X2 = X,
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SUMMARY

• The cumulative distribution function is the probability that X falls in the
interval The probability of any event consisting of the union of inter-
vals can be expressed in terms of the cdf.

• A random variable is continuous if its cdf can be written as the integral of a non-
negative function.A random variable is mixed if it is a mixture of a discrete and a
continuous random variable.

• The probability of events involving a continuous random variable X can be ex-
pressed as integrals of the probability density function 

• If X is a random variable, then is also a random variable.The notion of
equivalent events allows us to derive expressions for the cdf and pdf of Y in terms
of the cdf and pdf of X.

• The cdf and pdf of the random variable X are sufficient to compute all probabili-
ties involving X alone. The mean, variance, and moments of a random variable
summarize some of the information about the random variable X.These parame-
ters are useful in practice because they are easier to measure and estimate than
the cdf and pdf.

• Conditional cdf’s or pdf’s incorporate partial knowledge about the outcome of an
experiment in the calculation of probabilities of events.

• The Markov and Chebyshev inequalities allow us to bound probabilities involv-
ing X in terms of its first two moments only.

• Transforms provide an alternative but equivalent representation of the pmf and
pdf. In certain types of problems it is preferable to work with the transforms
rather than the pmf or pdf. The moments of a random variable can be obtained
from the corresponding transform.

• The reliability of a system is the probability that it is still functioning after t hours
of operation. The reliability of a system can be determined from the reliability of
its subsystems.

• There are a number of methods for generating random variables with prescribed
pmf’s or pdf’s in terms of a random variable that is uniformly distributed in the
unit interval. These methods include the transformation and the rejection meth-
ods as well as methods that simulate random experiments (e.g., functions of ran-
dom variables) and mixtures of random variables.

• The entropy of a random variable X is a measure of the uncertainty of X in terms
of the average amount of information required to identify its value.

• The maximum entropy method is a procedure for estimating the pmf or pdf of a
random variable when only partial information about X, in the form of expected
values of functions of X, is available.

Y = g1X2
fX1x2.

1-q , x4.
FX1x2
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PROBLEMS

Section 4.1: The Cumulative Distribution Function 

4.1. An information source produces binary pairs that we designate as with
the following pmf’s:

(i)
(ii)

(iii)
(a) Plot the cdf of these three random variables.
(b) Use the cdf to find the probability of the events:

4.2. A die is tossed. Let X be the number of full pairs of dots in the face showing up, and Y be the
number of full or partial pairs of dots in the face showing up. Find and plot the cdf of X and Y.

4.3. The loose minute hand of a clock is spun hard. The coordinates (x, y) of the point where
the tip of the hand comes to rest is noted. Z is defined as the sgn function of the product
of x and y, where sgn(t) is 1 if 0 if and if 
(a) Find and plot the cdf of the random variable X.
(b) Does the cdf change if the clock hand has a propensity to stop at 3, 6, 9, and 12 o’clock?

4.4. An urn contains 8 $1 bills and two $5 bills. Let X be the total amount that results when
two bills are drawn from the urn without replacement, and let Y be the total amount that
results when two bills are drawn from the urn with replacement.
(a) Plot and compare the cdf’s of the random variables.
(b) Use the cdf to compare the probabilities of the following events in the two prob-

lems:
4.5. Let Y be the difference between the number of heads and the number of tails in the 3

tosses of a fair coin.
(a) Plot the cdf of the random variable Y.
(b) Express in terms of the cdf of Y.

4.6. A dart is equally likely to land at any point inside a circular target of radius 2. Let R be
the distance of the landing point from the origin.
(a) Find the sample space S and the sample space of R,
(b) Show the mapping from S to
(c) The “bull’s eye” is the central disk in the target of radius 0.25. Find the event A in

corresponding to “dart hits the bull’s eye.” Find the equivalent event in S and P[A].
(d) Find and plot the cdf of R.

4.7. A point is selected at random inside a square defined by 
Assume the point is equally likely to fall anywhere in the square. Let the random variable
Z be given by the minimum of the two coordinates of the point where the dart lands.
(a) Find the sample space S and the sample space of Z, SZ .

51x, y2: 0 … x … b, 0 … y … b6.

SR

SR .
SR .

P3 ƒY ƒ 6 y4

5X = $26, 5X 6 $76, 5X Ú 66.

t 6 0.-1t = 0,t 7 0,

50.5 6 X … 26, 51 6 X 6 46.
5X … 16, 5X 6 2.56,

pk+1 = pk/2k for k = 2, 3, 4.

pk+1 = pk/2 for k = 2, 3, 4.
pk = p1/k for all k in SX .

SX = 51, 2, 3, 46
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(b) Show the mapping from S to
(c) Find the region in the square corresponding to the event 
(d) Find and plot the cdf of Z.
(e) Use the cdf to find:

4.8. Let be a point selected at random from the unit interval. Consider the random variable

(a) Sketch X as a function of 
(b) Find and plot the cdf of X.
(c) Find the probability of the events 

4.9. The loose hand of a clock is spun hard and the outcome is the angle in the range 
where the hand comes to rest. Consider the random variable 
(a) Sketch X as a function of 
(b) Find and plot the cdf of X.
(c) Find the probability of the events 

4.10. Repeat Problem 4.9 if 80% of the time the hand comes to rest anywhere in the circle, but
20% of the time the hand comes to rest at 3, 6, 9, or 12 o’clock.

4.11. The random variable X is uniformly distributed in the interval 
(a) Find and plot the cdf of X.
(b) Use the cdf to find the probabilities of the following events:

and
4.12. The cdf of the random variable X is given by:

(a) Plot the cdf and identify the type of random variable.
(b) Find

4.13. A random variable X has cdf:

(a) Plot the cdf and identify the type of random variable.
(b) Find

4.14. The random variable X has cdf shown in Fig. P4.1.
(a) What type of random variable is X?
(b) Find the following probabilities:

4.15. For and the Weibull random variable Y has cdf:

FX1x2 = b0  for x 6 0
1 - e-1x/l2b  for x Ú 0.

l 7 0,b 7 0
P3-0.5 … X 6 04, P3-0.5 … X … 0.54, P3 ƒX - 0.5 ƒ 6 0.54.

P3X 6 -14, P3X … -14, P3-1 6 X 6 -0.754,

P3X … 24, P3X = 04, P3X 6 04, P32 6 X 6 64, P3X 7 104.

FX1x2 = c 0  for x 6 0

1 -
1
4
e-2x  for x Ú 0.

P3X … 24, P3X 7 34.
P3X … -14, P3X = -14, P3X 6 0.54, P3- 0.5 6 X 6 0.54, P3X 7 -14,

FX1x2 = d 0 x 6 -1
0.5 -1 … x … 0
11 + x2/2 0 … x … 1
1 x Ú 1.

C = 5X 7 -0.56.5 ƒX - 0.5 ƒ 6 16,
5X … 06,

3-1, 24.

5X 7 16, 5-1/2 6 X 6 1/26, 5X … 1/126.
z.

X1z2 = 2 sin1z/42.
[0, 2p2z

5X 7 16, 55 6 X 6 76, 5X … 206.
z.

X = 11 - z2-1/2.
z

P3Z 7 04, P3Z 7 b4, P3Z … b/24, P3Z 7 b/44.
5Z … z6.

SZ .



(a) Plot the cdf of Y for and 2.
(b) Find the probability and 
(c) Plot vs. log x.

4.16. The random variable X has cdf:

(a) What values can c assume?
(b) Plot the cdf.
(c) Find

Section 4.2: The Probability Density Function 

4.17. A random variable X has pdf:

(a) Find c and plot the pdf.
(b) Plot the cdf of X.
(c) Find and 

4.18. A random variable X has pdf:

(a) Find c and plot the pdf.
(b) Plot the cdf of X.
(c) Find

4.19. (a) In Problem 4.6, find and plot the pdf of the random variable R, the distance from the
dart to the center of the target.

(b) Use the pdf to find the probability that the dart is outside the bull’s eye.
4.20. (a) Find and plot the pdf of the random variable Z in Problem 4.7.

(b) Use the pdf to find the probability that the minimum is greater than b/3.

P30 6 X 6 0.54, P3X = 14, P3.25 6 X 6 0.54.

fX1x2 = b cx11 - x22 0 … x … 1
0 elsewhere.

P3 ƒX - 0.5 ƒ 6 0.254.P3X = 04, P30 6 X 6 0.54,

fX1x2 = b c11 - x22 -1 … x … 1
0 elsewhere.

P3X 7 04.

FX1x2 = c 0 x 6 0
0.5 + c sin21px/22 0 … x … 1
1 x 7 1.

log P3X 7 x4
P3X 7 jl4.P3jl 6 X 6 1j + 12l4

b = 0.5, 1,
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4.21. (a) Find and plot the pdf in Problem 4.8.
(b) Use the pdf to find the probabilities of the events: and 

4.22. (a) Find and plot the pdf in Problem 4.12.
(b) Use the pdf to find 

4.23. (a) Find and plot the pdf in Problem 4.13.
(b) Use the pdf to find 

4.24. (a) Find and plot the pdf of the random variable in Problem 4.14.
(b) Use the pdf to calculate the probabilities in Problem 4.14b.

4.25. Find and plot the pdf of the Weibull random variable in Problem 4.15a.
4.26. Find the cdf of the Cauchy random variable which has pdf:

4.27. A voltage X is uniformly distributed in the set 
(a) Find the pdf and cdf of the random variable X.
(b) Find the pdf and cdf of the random variable 
(c) Find the pdf and cdf of the random variable 
(d) Find the pdf and cdf of the random variable 

4.28. Find the pdf and cdf of the Zipf random variable in Problem 3.70.
4.29. Let C be an event for which Show that satisfies the eight properties of

a cdf.
4.30. (a) In Problem 4.13, find where 

(b) Find where 
4.31. (a) In Problem 4.10, find where 

(b) Find
4.32. In Problem 4.13, find and where 
4.33. Let X be the exponential random variable.

(a) Find and plot How does differ from 
(b) Find and plot 
(c) Show that Explain why this is called the mem-

oryless property.
4.34. The Pareto random variable X has cdf:

(a) Find and plot the pdf of X.
(b) Repeat Problem 4.33 parts a and b for the Pareto random variable.
(c) What happens to as t becomes large? Interpret this result.

4.35. (a) Find and plot Compare to 
(b) Find and plot 

4.36. In Problem 4.6, find and fR1r ƒ R 7 12.FR1r ƒ R 7 12
fX1x ƒ a … X … b2.

FX1x2.FX1x ƒ a … X … b2FX1x ƒ a … X … b2.
P3X 7 t + x ƒX 7 t4

FX1x2 = c 0 x 6 xm

1 -
xm
a

xa
x Ú xm .

P3X 7 t + x ƒX 7 t4 = P3X 7 x4.
fX1x ƒX 7 t2.

FX1x2?FX1x ƒX 7 t2FX1x ƒX 7 t2.
B = 5X 7 0.256.FX1x ƒ B2fX1x ƒ B2

FX1x ƒ Bc2.
o’clock6.

B = 5hand does not stop at 3, 6, 9, or 12FX1x ƒ B2
C = 5X = 06.FX1x ƒ C2

C = 5X 7 06.FX1x ƒC2
FX1x ƒC2P3C4 7 0.

Z = cos21pX/82.
W = cos1pX/82.
Y = -2X2 + 3.

5-3, -2, Á , 3, 46.
fX1x2 =

a/p
x2 + a2 -q 6 x 6 q .

P3X = 04, P3X 7 84.
P3-1 … X 6 0.254.

5X 7 2a6.5X 7 a6
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x
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4.37. (a) In Problem 4.7, find and 
(b) Find and where 

4.38. A binary transmission system sends a “0” bit using a voltage signal and a “1” bit by
transmitting a The received signal is corrupted by noise N that has a Laplacian distri-
bution with parameter Assume that “0” bits and “1” bits are equiprobable.
(a) Find the pdf of the received signal where X is the transmitted signal,

given that a “0” was transmitted; that a “1” was transmitted.
(b) Suppose that the receiver decides a “0” was sent if and a “1” was sent if

What is the probability that the receiver makes an error given that a was
transmitted? a was transmitted?

(c) What is the overall probability of error?

Section 4.3: The Expected Value of X

4.39. Find the mean and variance of X in Problem 4.17.
4.40. Find the mean and variance of X in Problem 4.18.
4.41. Find the mean and variance of Y, the distance from the dart to the origin, in Problem 4.19.
4.42. Find the mean and variance of Z, the minimum of the coordinates in a square, in Problem 4.20.
4.43. Find the mean and variance of in Problem 4.21. Find E[X] using Eq. (4.28).
4.44. Find the mean and variance of X in Problems 4.12 and 4.22.
4.45. Find the mean and variance of X in Problems 4.13 and 4.23. Find E[X] using Eq. (4.28).
4.46. Find the mean and variance of the Gaussian random variable by direct integration of

Eqs. (4.27) and (4.34).
4.47. Prove Eqs. (4.28) and (4.29).
4.48. Find the variance of the exponential random variable.
4.49. (a) Show that the mean of the Weibull random variable in Problem 4.15 is 

where is the gamma function defined in Eq. (4.56).
(b) Find the second moment and the variance of the Weibull random variable.

4.50. Explain why the mean of the Cauchy random variable does not exist.
4.51. Show that E[X] does not exist for the Pareto random variable with and 
4.52. Verify Eqs. (4.36), (4.37), and (4.38).
4.53. Let where A has mean m and variance and and c are constants.

Find the mean and variance of Y. Compare the results to those obtained in Example 4.15.
4.54. A limiter is shown in Fig. P4.2.

vs2Y = A cos1vt2 + c

xm = 1.a = 1

≠1x2
≠11 + 1/b2

X = 11 - z2-1/2

-1
+1Y Ú 0.

Y 6 0,

Y = X + N,
a.

+1.
-1

B = 5x 7 b/26.fZ1z ƒ B2,FZ1z ƒ B2
fZ1z ƒ b/4 … Z … b/22.FZ1z ƒ b/4 … Z … b/22
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(a) Find an expression for the mean and variance of for an arbitrary contin-
uous random variable X.

(b) Evaluate the mean and variance if X is a Laplacian random variable with .
(c) Repeat part (b) if X is from Problem 4.17 with a = 1/2.
(d) Evaluate the mean and variance if where U is a uniform random variable in

the unit interval, .
4.55. A limiter with center-level clipping is shown in Fig. P4.3.

(a) Find an expression for the mean and variance of for an arbitrary contin-
uous random variable X.

(b) Evaluate the mean and variance if X is Laplacian with and .
(c) Repeat part (b) if X is from Problem 4.22, a = 1/2, b = 3/2.
(d) Evaluate the mean and variance if where U is a uniform random

variable in the unit interval and a = 3/4, b = 1/2.3-1, 14
X = b cos12pU2

b = 2l = a = 1

Y = g(X)

3-1, 14 and a = 1/2
X = U3

l = a = 1

Y = g(X)

a
x

y

b
�b

�b

�a

b

FIGURE P4.3

4.56. Let
(a) Find the mean and variance of Y in terms of the mean and variance of X.
(b) Evaluate the mean and variance of Y if X is Laplacian.
(c) Evaluate the mean and variance of Y if X is an arbitrary Gaussian random variable.
(d) Evaluate the mean and variance of Y if where U is a uniform ran-

dom variable in the unit interval.
4.57. Find the nth moment of U, the uniform random variable in the unit interval. Repeat for X

uniform in [a, b].
4.58. Consider the quantizer in Example 4.20.

(a) Find the conditional pdf of X given that X is in the interval (d, 2d).
(b) Find the conditional expected value and conditional variance of X given that X is in

the interval (d, 2d).

X = b cos12pU2

Y = 3X + 2.
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(c) Now suppose that when X falls in (d, 2d), it is mapped onto the point c where
Find an expression for the expected value of the mean square error:

(d) Find the value c that minimizes the above mean square error. Is c the midpoint of
the interval? Explain why or why not by sketching possible conditional pdf shapes.

(e) Find an expression for the overall mean square error using the approach in parts c and d.

Section 4.4: Important Continuous Random Variables  

4.59. Let X be a uniform random variable in the interval Find and plot 
4.60. In Example 4.20, let the input to the quantizer be a uniform random variable in the inter-

val Show that is uniformly distributed in 
4.61. Let X be an exponential random variable with parameter 

(a) For and k a nonnegative integer, find 
(b) Segment the positive real line into four equiprobable disjoint intervals.

4.62. The rth percentile, of a random variable X is defined by 
(a) Find the 90%, 95%, and 99% percentiles of the exponential random variable with

parameter
(b) Repeat part a for the Gaussian random variable with parameters and 

4.63. Let X be a Gaussian random variable with and 
(a) Find
(b) find a.
(c) find b.
(d) find c.

4.64. Show that the Q-function for the Gaussian random variable satisfies 
4.65. Use Octave to generate Tables 4.2 and 4.3.
4.66. Let X be a Gaussian random variable with mean m and variance 

(a) Find
(b) Find for 
(c) Find the value of k for which for 

4.67. A binary transmission system transmits a signal X ( to send a “0” bit; to send a “1”
bit).The received signal is where noise N has a zero-mean Gaussian distrib-
ution with variance Assume that “0” bits are three times as likely as “1” bits.
(a) Find the conditional pdf of Y given the input value: and

(b) The receiver decides a “0” was transmitted if the observed value of y satisfies

and it decides a “1” was transmitted otherwise. Use the results from part a to show
that this decision rule is equivalent to: If decide “0”; if decide “1”.

(c) What is the probability that the receiver makes an error given that a was trans-
mitted? a was transmitted? Assume 

(d) What is the overall probability of error?
s2 = 1/16.-1

+1
y Ú Ty 6 T

fY1y ƒX = -12P3X = -14 7 fY1y ƒX = +12P3X = +14

fY1y ƒX = -12.
fY1y ƒX = +12

s2.
Y = X + N

+1-1
j = 1, 2, 3, 4, 5, 6.Q1k2 = P3X 7 m + ks4 = 10-j

k = 1, 2, 3, 4, 5, 6.P3 ƒX - m ƒ 6 ks4,
P3X … m4.

s2.

Q1-x2 = 1 - Q1x2.
P313 6 X … c4 = 0.0123,
P3X 7 b4 = 0.11131,
P3X 6 a4 = 0.8869,

P3X 7 44, P3X Ú 74, P36.72 6 X 6 10.164, P32 6 X 6 74, P36 … X … 84.
s2 = 16.m = 5

s2.m = 0
l.

P3X … p1r24 = r/100.p1r2,
P3kd 6 X 6 1k + 12d4.d 7 0

l.
3-d/2, d/24.Z = X - Q1X23-4d, 4d4.

P3 ƒX ƒ 7 x4.3-2, 24.

E31X - c22 ƒ d 6 X 6 2d4.
d 6 c 6 2d.
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4.68. Two chips are being considered for use in a certain system. The lifetime of chip 1 is mod-
eled by a Gaussian random variable with mean 20,000 hours and standard deviation
5000 hours. (The probability of negative lifetime is negligible.) The lifetime of chip 2 is
also a Gaussian random variable but with mean 22,000 hours and standard deviation
1000 hours. Which chip is preferred if the target lifetime of the system is 20,000 hours?
24,000 hours?

4.69. Passengers arrive at a taxi stand at an airport at a rate of one passenger per minute. The
taxi driver will not leave until seven passengers arrive to fill his van. Suppose that pas-
senger interarrival times are exponential random variables, and let X be the time to fill a
van. Find the probability that more than 10 minutes elapse until the van is full.

4.70. (a) Show that the gamma random variable has mean:

(b) Show that the gamma random variable has second moment, and variance given by:

(c) Use parts a and b to obtain the mean and variance of an m-Erlang random variable.
(d) Use parts a and b to obtain the mean and variance of a chi-square random variable.

4.71. The time X to complete a transaction in a system is a gamma random variable with mean
4 and variance 8. Use Octave to plot as a function of x. Note: Octave uses

.
4.72. (a) Plot the pdf of an m-Erlang random variable for and 

(b) Plot the chi-square pdf for 
4.73. A repair person keeps four widgets in stock. What is the probability that the widgets in

stock will last 15 days if the repair person needs to replace widgets at an average rate of
one widget every three days, where the time between widget failures is an exponential
random variable?

4.74. (a) Find the cdf of the m-Erlang random variable by integration of the pdf. Hint: Use in-
tegration by parts.

(b) Show that the derivative of the cdf given by Eq. (4.58) gives the pdf of an m-Erlang
random variable.

4.75. Plot the pdf of a beta random variable with:

Section 4.5: Functions of a Random Variable 

4.76. Let X be a Gaussian random variable with mean 2 and variance 4.The reward in a system
is given by Find the pdf of Y.

4.77. The amplitude of a radio signal X is a Rayleigh random variable with pdf:

(a) Find the pdf of 
(b) Find the pdf of 

4.78. A wire has length X, an exponential random variable with mean The wire is cut to
make rings of diameter 1 cm. Find the probability for the number of complete rings pro-
duced by each length of wire.

5p cm.
Z = X2.
Z = 1X - r2+ .

fX1x2 =
x

a2 e
-x2/2a2

x 7 0, a 7 0.

Y = 1X2+ .

a = 2, b = 5.
a = b = 1/4, 1, 4, 8; a = 5, b = 1; a = 1, b = 3;

k = 1, 2, 3.
l = 1.m = 1, 2, 3

b = 1/2
P3X 7 x4

E3X24 = a1a + 12/l2 and VAR3X4 = a/l2.

E3X4 = a/l.
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4.79. A signal that has amplitudes with a Gaussian pdf with zero mean and unit variance is ap-
plied to the quantizer in Example 4.27.
(a) Pick d so that the probability that X falls outside the range of the quantizer is 1%.
(b) Find the probability of the output levels of the quantizer.

4.80. The signal X is amplified and shifted as follows: where X is the random
variable in Problem 4.12. Find the cdf and pdf of Y.

4.81. The net profit in a transaction is given by where X is the random variable in
Problem 4.13. Find the cdf and pdf of Y.

4.82. Find the cdf and pdf of the output of the limiter in Problem 4.54 parts b, c, and d.
4.83. Find the cdf and pdf of the output of the limiter with center-level clipping in Problem 4.55

parts b, c, and d.
4.84. Find the cdf and pdf of in Problem 4.56 parts b, c, and d.
4.85. The exam grades in a certain class have a Gaussian pdf with mean m and standard devia-

tion Find the constants a and b so that the random variable has a Gauss-
ian pdf with mean and standard deviation 

4.86. Let where n is a positive integer and U is a uniform random variable in the unit
interval. Find the cdf and pdf of X.

4.87. Repeat Problem 4.86 if U is uniform in the interval 
4.88. Let be the output of a full-wave rectifier with input voltage X.

(a) Find the cdf of Y by finding the equivalent event of Find the pdf of Y by
differentiation of the cdf.

(b) Find the pdf of Y by finding the equivalent event of Does the
answer agree with part a?

(c) What is the pdf of Y if the is an even function of x?
4.89. Find and plot the cdf of Y in Example 4.34.
4.90. A voltage X is a Gaussian random variable with mean 1 and variance 2. Find the pdf of

the power dissipated by an R-ohm resistor 
4.91. Let

(a) Find the cdf and pdf of Y in terms of the cdf and pdf of X.
(b) Find the pdf of Y when X is a Gaussian random variable. In this case Y is said to be

a lognormal random variable. Plot the pdf and cdf of Y when X is zero-mean with
variance 1/8; repeat with variance 8.

4.92. Let a radius be given by the random variable X in Problem 4.18.
(a) Find the pdf of the area covered by a disc with radius X.
(b) Find the pdf of the volume of a sphere with radius X.
(c) Find the pdf of the volume of a sphere in 

4.93. In the quantizer in Example 4.20, let Find the pdf of Z if X is a Lapla-
cian random variable with parameter 

4.94. Let where X is uniformly distributed in the interval 
(a) Show that Y is a Cauchy random variable.
(b) Find the pdf of Y = 1/X.

1-1, 12.Y = a tan pX,
a = d/2.
Z = X - q1X2.

Y = b 12p21n-12/2Xn/12 * 4 * Á * n2 for n even
212p21n-12/2Xn/11 * 3 * Á * n2 for n odd.

Rn:

Y = eX.
P = RX2.

fX1x2
5y 6 Y … y + dy6.
5Y … y6.

Y = ƒX ƒ
3-1, 14.

X = Un
s¿.m¿

y = aX + bs.

Y = 3X + 2

Y = 2 - 4X

Y = 2X + 3,
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4.95. Let X be a Weibull random variable in Problem 4.15. Let Find the cdf and
pdf of Y.

4.96. Find the pdf of where U is a uniform random variable in (0, 1).

Section 4.6: The Markov and Chebyshev Inequalities 

4.97. Compare the Markov inequality and the exact probability for the event as a func-
tion of c for:
(a) X is a uniform random variable in the interval [0, b].
(b) X is an exponential random variable with parameter 
(c) X is a Pareto random variable with 
(d) X is a Rayleigh random variable.

4.98. Compare the Markov inequality and the exact probability for the event as a func-
tion of c for:
(a) X is a uniform random variable in 
(b) X is a geometric random variable.
(c) X is a Zipf random variable with 
(d) X is a binomial random variable with 

4.99. Compare the Chebyshev inequality and the exact probability for the event 
as a function of c for:
(a) X is a uniform random variable in the interval 
(b) X is a Laplacian random variable with parameter 
(c) X is a zero-mean Gaussian random variable.
(d) X is a binomial random variable with 

4.100. Let X be the number of successes in n Bernoulli trials where the probability of success is
p. Let be the average number of successes per trial. Apply the Chebyshev in-
equality to the event What happens as 

4.101. Suppose that light bulbs have exponentially distributed lifetimes with unknown mean
E[X]. Suppose we measure the lifetime of n light bulbs, and we estimate the mean E[X]
by the arithmetic average Y of the measurements. Apply the Chebyshev inequality to the
event What happens as Hint: Use the m-Erlang random
variable.

Section 4.7: Transform Methods

4.102. (a) Find the characteristic function of the uniform random variable in 
(b) Find the mean and variance of X by applying the moment theorem.

4.103. (a) Find the characteristic function of the Laplacian random variable.
(b) Find the mean and variance of X by applying the moment theorem.

4.104. Let be the characteristic function of an exponential random variable. What ran-
dom variable does correspond to?£Xn 1v2

£X1v2

3-b, b4.

n: q?5 ƒY - E3X4 ƒ 7 a6.

n: q?5 ƒY - p ƒ 7 a6.
Y = X/n

n = 10, p = 0.5; n = 50, p = 0.5.

a.
3-b, b4.

5 ƒX - m ƒ 7 c6
n = 10, p = 0.5; n = 50, p = 0.5.

L = 10; L = 100.

51, 2, Á , L6.
5X 7 c6

a 7 1.
l.

5X 7 c6

X = - ln11 - U2,
Y = 1X/l2b.
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4.105. Find the mean and variance of the Gaussian random variable by applying the moment
theorem to the characteristic function given in Table 4.1.

4.106. Find the characteristic function of where X is a Gaussian random variable.
Hint: Use Eq. (4.79).

4.107. Show that the characteristic function for the Cauchy random variable is 
4.108. Find the Chernoff bound for the exponential random variable with Compare the

bound to the exact value for 
4.109. (a) Find the probability generating function of the geometric random variable.

(b) Find the mean and variance of the geometric random variable from its pgf.
4.110. (a) Find the pgf for the binomial random variable X with parameters n and p.

(b) Find the mean and variance of X from the pgf.
4.111. Let be the pgf for a binomial random variable with parameters n and p, and let

be the pgf for a binomial random variable with parameters m and p. Consider the
function Is this a valid pgf? If so, to what random variable does it corre-
spond?

4.112. Let be the pgf for a Poisson random variable with parameter and let be
the pgf for a Poisson random variable with parameters Consider the function

Is this a valid pgf? If so, to what random variable does it correspond?
4.113. Let N be a Poisson random variable with parameter Compare the Chernoff bound

and the exact value for 
4.114. (a) Find the pgf for the discrete uniform random variable U.

(b) Find the mean and variance from the pgf.
(c) Consider Does this function correspond to a pgf? If so, find the mean of the

corresponding random variable.
4.115. (a) Find for the negative binomial random variable from the pgf in Table 3.1.

(b) Find the mean of X.
4.116. Derive Eq. (4.89).
4.117. Obtain the nth moment of a gamma random variable from the Laplace transform of

its pdf.
4.118. Let X be the mixture of two exponential random variables (see Example 4.58). Find the

Laplace transform of the pdf of X.
4.119. The Laplace transform of the pdf of a random variable X is given by:

Find the pdf of X. Hint: Use a partial fraction expansion of 
4.120. Find a relationship between the Laplace transform of a gamma random variable pdf with

parameters and and the Laplace transform of a gamma random variable with para-
meters and What does this imply if X is an m-Erlang random variable?

4.121. (a) Find the Chernoff bound for for the gamma random variable.
(b) Compare the bound to the exact value of for an Erlang

random variable.
m = 3, l = 1P3X Ú 94

P3X 7 t4
l.a - 1
la

X*1s2.
X*1s2 =

a

s + a
b

s + b
.

P3X = r4
GU1z22.
GU1z2

P3X Ú 54.
a = 1.

GN1z2 GM1z2.
b.

GM1z2a,GN1z2
GX1z2 GY1z2.

GY1z2
GX1z2

P3X 7 54.
l = 1.
e-ƒv ƒ.

Y = aX + b



226 Chapter 4 One Random Variable

Section 4.8: Basic Reliability Calculations 

4.122. The lifetime T of a device has pdf

(a) Find the reliability and MTTF of the device.
(b) Find the failure rate function.
(c) How many hours of operation can be considered to achieve 99% reliability?

4.123. The lifetime T of a device has pdf

(a) Find the reliability and MTTF of the device.
(b) Find the failure rate function.
(c) How many hours of operation can be considered to achieve 99% reliability?

4.124. The lifetime T of a device is a Rayleigh random variable.
(a) Find the reliability of the device.
(b) Find the failure rate function. Does r(t) increase with time?
(c) Find the reliability of two devices that are in series.
(d) Find the reliability of two devices that are in parallel.

4.125. The lifetime T of a device is a Weibull random variable.
(a) Plot the failure rates for and ; for and .
(b) Plot the reliability functions in part a.
(c) Plot the reliability of two devices that are in series.
(d) Plot the reliability of two devices that are in parallel.

4.126. A system starts with m devices, 1 active and on standby. Each device has an expo-
nential lifetime.When a device fails it is immediately replaced with another device (if one
is still available).
(a) Find the reliability of the system.
(b) Find the failure rate function.

4.127. Find the failure rate function of the memory chips discussed in Example 2.28. Plot
In(r(t)) versus 

4.128. A device comes from two sources. Devices from source 1 have mean m and exponentially
distributed lifetimes. Devices from source 2 have mean m and Pareto-distributed lifetimes
with Assume a fraction p is from source 1 and a fraction from source 2.
(a) Find the reliability of an arbitrarily selected device.
(b) Find the failure rate function.

1 - pa 7 1.

at.

m - 1

b = 2a = 1b = 0.5a = 1

fT1t2 = b1/T0 a … t … a + T0

0 elsewhere.

fT1t2 = c 1/10T0 0 6 t 6 T0

0.9le-l1t-T02 t Ú T0

0 t 6 T0 .
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4.129. A device has the failure rate function:

Find the reliability function and the pdf of the device.
4.130. A system has three identical components and the system is functioning if two or more

components are functioning.
(a) Find the reliability and MTTF of the system if the component lifetimes are expo-

nential random variables with mean 1.
(b) Find the reliability of the system if one of the components has mean 2.

4.131. Repeat Problem 4.130 if the component lifetimes are Weibull distributed with 
4.132. A system consists of two processors and three peripheral units. The system is functioning

as long as one processor and two peripherals are functioning.
(a) Find the system reliability and MTTF if the processor lifetimes are exponential ran-

dom variables with mean 5 and the peripheral lifetimes are Rayleigh random vari-
ables with mean 10.

(b) Find the system reliability and MTTF if the processor lifetimes are exponential ran-
dom variables with mean 10 and the peripheral lifetimes are exponential random
variables with mean 5.

4.133. An operation is carried out by a subsystem consisting of three units that operate in a se-
ries configuration.
(a) The units have exponentially distributed lifetimes with mean 1. How many subsys-

tems should be operated in parallel to achieve a reliability of 99% in T hours of
operation?

(b) Repeat part a with Rayleigh-distributed lifetimes.
(c) Repeat part a with Weibull-distributed lifetimes with 

Section 4.9: Computer Methods for Generating Random Variables 

4.134. Octave provides function calls to evaluate the pdf and cdf of important continuous ran-
dom variables. For example, the functions \normal_cdf(x, m, var) and normal_pdf(x, m,
var) compute the cdf and pdf, respectively, at x for a Gaussian random variable with
mean m and variance var.
(a) Plot the conditional pdfs in Example 4.11 if and the noise is zero-mean and

unit variance.
(b) Compare the cdf of the Gaussian random variable with the Chernoff bound ob-

tained in Example 4.44.
4.135. Plot the pdf and cdf of the gamma random variable for the following cases.

(a) and
(b) and a = 1/2, 1, 3/2, 5/2.l = 1/2

a = 1, 2, 4.l = 1

v = ;2

b = 3.

b = 3.

r1t2 = c 1 + 911 - t2 0 … t 6 1
1 1 … t 6 10
1 + 101t - 102 t Ú 10.
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4.136. The random variable X has the triangular pdf shown in Fig. P4.4.
(a) Find the transformation needed to generate X.
(b) Use Octave to generate 100 samples of X. Compare the empirical pdf of the samples

with the desired pdf.

4.137. For each of the following random variables: Find the transformation needed to generate
the random variable X; use Octave to generate 1000 samples of X; Plot the sequence of
outcomes; compare the empirical pdf of the samples with the desired pdf.
(a) Laplacian random variable with 
(b) Pareto random variable with 
(c) Weibull random variable with and 

4.138. A random variable Y of mixed type has pdf

where X is a Laplacian random variable and p is a number between zero and one. Find
the transformation required to generate Y.

4.139. Specify the transformation method needed to generate the geometric random variable
with parameter Find the average number of comparisons needed in the search
to determine each outcome.

4.140. Specify the transformation method needed to generate the Poisson random variable with
small parameter Compute the average number of comparisons needed in the search.

4.141. The following rejection method can be used to generate Gaussian random variables:
1. Generate a uniform random variable in the unit interval.
2. Let
3. Generate a uniform random variable in the unit interval. If 

accept Otherwise, reject and go to step 1.
4. Generate a random sign with equal probability. Output X equal to 

with the resulting sign.
(a) Show that if is accepted, then its pdf corresponds to the pdf of the absolute value

of a Gaussian random variable with mean 0 and variance 1.
(b) Show that X is a Gaussian random variable with mean 0 and variance 1.

4.142. Cheng (1977) has shown that the function bounds the pdf of a gamma random
variable with where

Find the cdf of and the corresponding transformation needed to generate Z.fZ1x2
fZ1x2 =

lalxl-1

1al + xl22 and K = 12a - 121/2.

a 7 1,
KfZ1x2

X1

X11+  or -2
X1X1 .exp5-1X1 - 122/26,

U2 …U2 ,
X1 = - ln1U12.

U1 ,

a.

p = 1/2.

fY1x2 = pd1x2 + 11 - p2fY1x2,

l = 1.b = 0.5, 2, 3
a = 1.5, 2, 2.5.
a = 1.

0 a�a

c

fX(x)

x

FIGURE P4.4
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4.143. (a) Show that in the modified rejection method, the probability of accepting is 1/K.
Hint: Use conditional probability.

(b) Show that Z has the desired pdf.
4.144. Two methods for generating binomial random variables are: (1) Generate n Bernoulli

random variables and add the outcomes; (2) Divide the unit interval according to bino-
mial probabilities. Compare the methods under the following conditions:
(a)
(b)
(c) Use Octave to implement the two methods by generating 1000 binomially distrib-

uted samples.
4.145. Let the number of event occurrences in a time interval be a Poisson random variable. In

Section 3.4, it was found that the time between events for a Poisson random variable is an
exponentially distributed random variable.
(a) Explain how one can generate Poisson random variables from a sequence of expo-

nentially distributed random variables.
(b) How does this method compare with the one presented in Problem 4.140?
(c) Use Octave to implement the two methods when and 

4.146. Write a program to generate the gamma pdf with using the rejection method dis-
cussed in Problem 4.142. Use this method to generate m-Erlang random variables with

and and compare the method to the straightforward generation of m ex-
ponential random variables as discussed in Example 4.57.

*Section 4.10: Entropy 

4.147. Let X be the outcome of the toss of a fair die.
(a) Find the entropy of X.
(b) Suppose you are told that X is even. What is the reduction in entropy?

4.148. A biased coin is tossed three times.
(a) Find the entropy of the outcome if the sequence of heads and tails is noted.
(b) Find the entropy of the outcome if the number of heads is noted.
(c) Explain the difference between the entropies in parts a and b.

4.149. Let X be the number of tails until the first heads in a sequence of tosses of a biased coin.
(a) Find the entropy of X given that 
(b) Find the entropy of X given that 

4.150. One of two coins is selected at random: Coin A has and coin B has

(a) Suppose the coin is tossed once. Find the entropy of the outcome.
(b) Suppose the coin is tossed twice and the sequence of heads and tails is observed.

Find the entropy of the outcome.
4.151. Suppose that the randomly selected coin in Problem 4.150 is tossed until the first occur-

rence of heads. Suppose that heads occurs in the kth toss. Find the entropy regarding the
identity of the coin.

4.152. A communication channel accepts input I from the set The channel
output is mod 7, where N is equally likely to be or 
(a) Find the entropy of I if all inputs are equiprobable.
(b) Find the entropy of I given that X = 4.

-1.+1X = I + N
50, 1, 2, 3, 4, 5, 66.

P[heads] = 9/10.
P[heads] = 1/10

X … k.
X Ú k.

l = 1m = 2, 10

a 7 1
a = 100.a = 3, a = 25,

p = 0.1, n = 5, 25, 50.
p = 1/2, n = 5, 25, 50;

X1
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4.153. Let X be a discrete random variable with entropy 
(a) Find the entropy of 
(b) Find the entropy of any invertible transformation of X.

4.154. Let (X, Y) be the pair of outcomes from two independent tosses of a die.

(a) Find the entropy of X.

(b) Find the entropy of the pair (X, Y).

(c) Find the entropy in n independent tosses of a die. Explain why entropy is additive in
this case.

4.155. Let X be the outcome of the toss of a die, and let Y be a randomly selected integer less
than or equal to X.

(a) Find the entropy of Y.

(b) Find the entropy of the pair (X, Y) and denote it by H(X, Y).

(c) Find the entropy of Y given and denote it by Find

(d) Show that Explain the meaning of this equation.

4.156. Let X take on values from Suppose that and let be the
entropy of X given that X is not equal to K. Show that 

4.157. Let X be a uniform random variable in Example 4.62. Find and plot the entropy of Q as a
function of the variance of the error Hint: Express the variance of the error
in terms of d and substitute into the expression for the entropy of Q.

4.158. A communication channel accepts as input either 000 or 111. The channel transmits each
binary input correctly with probability and erroneously with probability p. Find
the entropy of the input given that the output is 000; given that the output is 010.

4.159. Let X be a uniform random variable in the interval Suppose we are told that the
X is positive. Use the approach in Example 4.62 to find the reduction in entropy. Show
that this is equal to the difference of the differential entropy of X and the differential en-
tropy of X given

4.160. Let X be uniform in [a, b], and let Compare the differential entropies of X and
Y. How does this result differ from the result in Problem 4.153?

4.161. Find the pmf for the random variable X for which the sequence of questions in Fig. 4.26(a)
is optimum.

4.162. Let the random variable X have and pmf (3/8, 3/8, 1/8, 1/16, 1/32,
1/32). Find the entropy of X. What is the best code you can find for X?

4.163. Seven cards are drawn from a deck of 52 distinct cards. How many bits are required to
represent all possible outcomes?

4.164. Find the optimum encoding for the geometric random variable with 

4.165. An urn experiment has 10 equiprobable distinct outcomes. Find the performance of the
best tree code for encoding (a) a single outcome of the experiment; (b) a sequence of n
outcomes of the experiment.

4.166. A binary information source produces n outputs. Suppose we are told that there are k 1’s
in these n outputs.

(a) What is the best code to indicate which pattern of k 1’s and 0’s occurred?

(b) How many bits are required to specify the value of k using a code with a fixed num-
ber of bits?

n - k

p = 1/2.

SX = 51, 2, 3, 4, 5, 66

Y = 2X.

5X 7 06.

3-a, a4.
1 - p

X - Q1X2.
ln11 - p2 + 11 - p2HY .

HX = -p ln p - 11 - p2
HYP3X = K4 = p,51, 2, Á ,K6.

H1X, Y2 = HX + E3H1Y ƒX24.
E3g1X24 = E3H1Y ƒX24.

g1k2 = H1Y ƒX = k2.X = k

Y = 2X.
HX .
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4.167. The random variable X takes on values from the set Find the maximum en-
tropy pmf for X given that 

4.168. The random variable X is nonnegative. Find the maximum entropy pdf for X given that

4.169. Find the maximum entropy pdf of X given that 
4.170. Suppose we are given two parameters of the random variable X, and

(a) Show that the maximum entropy pdf for X has the form

(b) Find the entropy of X.
4.171. Find the maximum entropy pdf of X given that and 

Problems Requiring Cumulative Knowledge

4.172. Three types of customers arrive at a service station. The time required to service type 1
customers is an exponential random variable with mean 2. Type 2 customers have a Pare-
to distribution with and Type 3 customers require a constant service time
of 2 seconds. Suppose that the proportion of type 1, 2, and 3 customers is 1/2, 1/8, and 3/8,
respectively. Find the probability that an arbitrary customer requires more than 15 sec-
onds of service time. Compare the above probability to the bound provided by the
Markov inequality.

4.173. The lifetime X of a light bulb is a random variable with

Suppose three new light bulbs are installed at time At time all three light
bulbs are still working. Find the probability that at least one light bulb is still working at
time

4.174. The random variable X is uniformly distributed in the interval [0, a]. Suppose a is un-
known, so we estimate a by the maximum value observed in n independent repetitions of
the experiment; that is, we estimate a by
(a) Find
(b) Find the mean and variance of Y, and explain why Y is a good estimate for a when N

is large.
4.175. The sample X of a signal is a Gaussian random variable with and Suppose

that X is quantized by a nonuniform quantizer consisting of four intervals:
and

(a) Find the value of a so that X is equally likely to fall in each of the four intervals.
(b) Find the representation point for X in (0, a] that minimizes the mean-

squared error, that is,

Hint: Differentiate the above expression with respect to Find the representation
points for the other intervals.

(c) Evaluate the mean-squared error of the quantizer E31X - q1X224.
xi .

3
 

a

0 

1x - x122 fX1x2 dx is minimized.

xi = q1X2
1a, q2.1-q , -a4, 1-a, 04, 10, a4,

s2 = 1.m = 0

P3Y … y4.
Y = max5X1 ,X2 , Á ,Xn6.

t = 9.

t = 1t = 0.

P3X 7 t4 = 2/12 + t2 for t 7 0.

xm = 1.a = 3

VAR3X4 = s2.E3X4 = m

fX1x2 = Ce-l1g11x2-l2g21x2.

E3g21X24 = c2 .
E3g11X24 = c1

E3X24 = c.
E3X4 = 10.

E3X4 = 2.
51, 2, 3, 46.
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4.176. The output Y of a binary communication system is a unit-variance Gaussian random with
mean zero when the input is “0” and mean one when the input is “one”.Assume the input
is 1 with probability p.
(a) Find and 
(b) The receiver uses the following decision rule:

If decide input
was 1; otherwise, decide input was 0.
Show that this decision rule leads to the following threshold rule:
If decide input was 1; otherwise, decide input was 0.

(c) What is the probability of error for the above decision rule?
Y 7 T,

P3input is 1 ƒ y 6 Y 6 y + h4 7 P3input is 0 ƒ y 6 Y 6 y + h4,
P3input is 0 ƒ y 6 Y 6 y + h4.P3input is 1 ƒ y 6 Y 6 y + h4



Many random experiments involve several random variables. In some experiments a
number of different quantities are measured. For example, the voltage signals at sever-
al points in a circuit at some specific time may be of interest. Other experiments in-
volve the repeated measurement of a certain quantity such as the repeated
measurement (“sampling”) of the amplitude of an audio or video signal that varies
with time. In Chapter 4 we developed techniques for calculating the probabilities of
events involving a single random variable in isolation. In this chapter, we extend the
concepts already introduced to two random variables:

• We use the joint pmf, cdf, and pdf to calculate the probabilities of events that in-
volve the joint behavior of two random variables;

• We use expected value to define joint moments that summarize the behavior of
two random variables;

• We determine when two random variables are independent, and we quantify
their degree of “correlation” when they are not independent;

• We obtain conditional probabilities involving a pair of random variables.

In a sense we have already covered all the fundamental concepts of probability
and random variables, and we are “simply” elaborating on the case of two or more ran-
dom variables. Nevertheless, there are significant analytical techniques that need to be
learned, e.g., double summations of pmf’s and double integration of pdf’s, so we first
discuss the case of two random variables in detail because we can draw on our geomet-
ric intuition. Chapter 6 considers the general case of vector random variables.Through-
out these two chapters you should be mindful of the forest (fundamental concepts) and
the trees (specific techniques)!

5.1 TWO RANDOM VARIABLES

The notion of a random variable as a mapping is easily generalized to the case where
two quantities are of interest. Consider a random experiment with sample space S and
event class We are interested in a function that assigns a pair of real numbersF.

233
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(a)

(b)

y

x

A

B

S

z X(z)

y

x

S
R2

z X(z)

to each outcome in S. Basically we are dealing with a vector
function that maps S into the real plane, as shown in Fig. 5.1(a). We are ultimately in-
terested in events involving the pair (X, Y).

Example 5.1

Let a random experiment consist of selecting a student’s name from an urn. Let denote the
outcome of this experiment, and define the following two functions:

assigns a pair of numbers to each in S.
We are interested in events involving the pair (H, W). For example, the event

represents students with height less that 183 cm (6 feet) and weight less
than 82 kg (180 lb).

Example 5.2

A Web page provides the user with a choice either to watch a brief ad or to move directly to the
requested page. Let be the patterns of user arrivals in T seconds, e.g., number of arrivals, and
listing of arrival times and types. Let be the number of times the Web page is directly re-
quested and let be the number of times that the ad is chosen. assigns a pair
of nonnegative integers to each in S. Suppose that a type 1 request brings 0.001¢ in revenue
and a type 2 request brings in 1¢. Find the event “revenue in T seconds is less than $100.”

The total revenue in T seconds is 0.001 and so the event of interest is
B = 50.001N1 + 1N2 6 10,0006.

N1 + 1N2 ,

z

1N11z2,N21z22N21z2
N11z2

z

B = 5H … 183,W … 826
z1H1z2,W1z22

W1z2 = weight of student z in kilograms 

H1z2 = height of student z in centimeters 

z

R2,
zX1z2 = 1X1z2, Y1z22

FIGURE 5.1
(a) A function assigns a pair of real numbers to each outcome
in S. (b) Equivalent events for two random variables.
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y

x
(10, 0)

(0, 10)

y

B

A

x

(5, 5)

(0, 10)

(10, 0)

y

xC

FIGURE 5.2
Examples of two-dimensional events.

Example 5.3

Let the outcome in a random experiment be the length of a randomly selected message. Sup-
pose that messages are broken into packets of maximum length M bytes. Let Q be the number of
full packets in a message and let R be the number of bytes left over. assigns a pair
of numbers to each in S. Q takes on values in the range and R takes on values in the
range An event of interest may be “the last packet is less than
half full.”

Example 5.4

Let the outcome of a random experiment result in a pair that results from two in-
dependent spins of a wheel. Each spin of the wheel results in a number in the interval 
Define the pair of numbers (X, Y) in the plane as follows:

The vector function assigns a pair of numbers in the plane to each in S. The
square root term corresponds to a radius and to an angle.

We will see that (X, Y) models the noise voltages encountered in digital communication
systems. An event of interest here may be “total noise power is less
than ”

The events involving a pair of random variables (X, Y) are specified by conditions
that we are interested in and can be represented by regions in the plane. Figure 5.2
shows three examples of events:

Event A divides the plane into two regions according to a straight line. Note that the
event in Example 5.2 is of this type. Event C identifies a disk centered at the origin and

 C = 5X2 + Y2 … 1006.
B = 5min1X, Y2 … 56
A = 5X + Y … 106

r2.
B = 5X2 + Y2 6 r26,
z2

z1X1z2, Y1z22
X1z2 = ¢2 ln

2p
z1
≤1/2

 cos z2 Y1z2 = ¢2 ln
2p
z1
≤1/2

 sin z2 .

10, 2p].
z = 1z1 , z22

B = 5R 6 M/26,0, 1, Á ,M - 1.
0, 1, 2, Á ,z

1Q1z2, R1z22
z
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it corresponds to the event in Example 5.4. Event B is found by noting that
that is, the minimum of X and Y is less

than or equal to 5 if either X and/or Y is less than or equal to 5.
To determine the probability that the pair is in some region B in the

plane, we proceed as in Chapter 3 to find the equivalent event for B in the underlying
sample space S:

(5.1a)

The relationship between and B is shown in Fig. 5.1(b). If A is in then
it has a probability assigned to it, and we obtain:

(5.1b)

The approach is identical to what we followed in the case of a single random variable.
The only difference is that we are considering the joint behavior of X and Y that is in-
duced by the underlying random experiment.

A scattergram can be used to deduce the joint behavior of two random variables.
A scattergram plot simply places a dot at every observation pair (x, y) that results from
performing the experiment that generates (X, Y). Figure 5.3 shows the scattergram for
200 observations of four different pairs of random variables.The pairs in Fig. 5.3(a) ap-
pear to be uniformly distributed in the unit square. The pairs in Fig. 5.3(b) are clearly
confined to a disc of unit radius and appear to be more concentrated near the origin.
The pairs in Fig. 5.3(c) are concentrated near the origin, and appear to have circular
symmetry, but are not bounded to an enclosed region. The pairs in Fig. 5.3(d) again are
concentrated near the origin and appear to have a clear linear relationship of some
sort, that is, larger values of x tend to have linearly proportional increasing values of y.
We later introduce various functions and moments to characterize the behavior of
pairs of random variables illustrated in these examples.

The joint probability mass function, joint cumulative distribution function, and
joint probability density function provide approaches to specifying the probability law
that governs the behavior of the pair (X, Y). Our general approach is as follows. We
first focus on events that correspond to rectangles in the plane:

(5.2)

where is a one-dimensional event (i.e., subset of the real line). We say that these
events are of product form. The event B occurs when both and 
occur jointly. Figure 5.4 shows some two-dimensional product-form events. We use Eq.
(5.1b) to find the probability of product-form events:

(5.3)

By defining A appropriately we then obtain the joint pmf, joint cdf, and joint pdf of
(X, Y).

5.2 PAIRS OF DISCRETE RANDOM VARIABLES

Let the vector random variable assume values from some countable set
The joint probability mass function of X

specifies the probabilities of the event 5X = x6 ¨ 5Y = y6:
SX,Y = 51xj , yk2, j = 1, 2, Á , k = 1, 2, Á 6.

X = 1X, Y2

P3B4 = P35X in A16 ¨ 5Y in A264 ! P3X in A1 , Y in An4.

5Y in A265X in A16
Ak

B = 5X in A16 ¨ 5Y in A26

P3X in B4 = P3A4 = P35z: 1X1z2, Y1z22 in B64.
F,A = X-11B2

A = X-11B2 = 5z: 1X1z2, Y1z22 in B6.

X = 1X, Y2
5min1X, Y2 … 56 = 5X … 56 ´ 5Y … 56,
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FIGURE 5.4
Some two-dimensional product-form events.

FIGURE 5.3
A scattergram for 200 observations of four different pairs of random variables.
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(5.4a)

The values of the pmf on the set provide the essential information:

(5.4b)

There are several ways of showing the pmf graphically: (1) For small sample
spaces we can present the pmf in the form of a table as shown in Fig. 5.5(a). (2) We can
present the pmf using arrows of height placed at the points in
the plane, as shown in Fig. 5.5(b), but this can be difficult to draw. (3) We can place dots
at the points and label these with the corresponding pmf value as shown in
Fig. 5.5(c).

The probability of any event B is the sum of the pmf over the outcomes in B:

(5.5)

Frequently it is helpful to sketch the region that contains the points in B as shown, for
example, in Fig. 5.6. When the event B is the entire sample space we have:

(5.6)

Example 5.5

A packet switch has two input ports and two output ports.At a given time slot a packet arrives at
each input port with probability and is equally likely to be destined to output port 1 or 2. Let
X and Y be the number of packets destined for output ports 1 and 2, respectively. Find the pmf
of X and Y, and show the pmf graphically.

The outcome for an input port j can take the following values: “n”, no packet arrival 
(with probability );“a1”, packet arrival destined for output port 1 (with probability );“a2”,
packet arrival destined for output port 2 (with probability ). The underlying sample space S
consists of the pair of input outcomes The mapping for (X, Y) is shown in the table
below:

z = 1I1 , I22.
1/4

1/41/2
Ij

1/2,

a
q

j=1
a
q

k=1
pX,Y1xj , yk2 = 1.

SX,Y ,

P3X in B4 = a1xj,yk2ain BpX,Y1xj , yk2.

51xj , yk26
51xj , yk26pX,Y1xj , yk2

! P3X = xj , Y = yk4 1xj , yk2 H SX,Y .

pX,Y1xj , yk2 = P35X = xj6 ¨ 5Y = yk64
SX,Y

! P3X = x, Y = y4 for 1x, y2 H R2.

pX,Y1x, y2 = P35X = x6 ¨ 5Y = y64

The pmf of (X, Y) is then:

pX,Y10, 12 = P3z H 51n, a22, 1a2, n264 = 2*
1
8

=
1
4

,

pX,Y10, 02 = P3z = 1n, n24 =
1
2

1
2

=
1
4

,

z (n, n) (n, a1) (n, a2) (a1, n) (a1, a1) (a1, a2) (a2, n) (a2, a1) (a2, a2)

X, Y (0, 0) (1, 0) (0, 1) (1, 0) (2, 0) (1, 1) (0, 1) (1, 1) (0, 2)
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FIGURE 5.5
Graphical representations of pmf’s: (a) in table format; (b) use of arrows to show height;
(c) labeled dots corresponding to pmf value.
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1
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4
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1/42 1/42 1/42

1/42

1/422/42 1/42

1/42 1/42 2/42 1/421/42 1/42

1/42 1/42 1/421/42 2/42

1/42 2/42 1/42 1/421/42 1/42

2/42 1/42 1/42 1/421/42 1/42

1/42 1/42 2/421/42 1/421/42

1 2 3 4 5 6
x

y

FIGURE 5.6
Showing the pmf via a sketch containing the points in B.

Figure 5.5(a) shows the pmf in tabular form where the number of rows and columns ac-
commodate the range of X and Y respectively. Each entry in the table gives the pmf value for the
corresponding x and y. Figure 5.5(b) shows the pmf using arrows in the plane.An arrow of height

is placed at each of the points in 
Figure 5.5(c) shows the pmf using labeled dots in the plane. A dot with label is placed
at each of the points in 

Example 5.6

A random experiment consists of tossing two “loaded” dice and noting the pair of numbers
(X, Y) facing up. The joint pmf for and is given by the two-
dimensional table shown in Fig. 5.6. The ( j, k) entry in the table contains the value 
Find the 

Figure 5.6 shows the region that corresponds to the set The probability
of this event is given by:

5min1x, y2 = 36.
P3min1X, Y2 = 34.

pX,Y1j, k2.
k = 1, Á , 6j = 1, Á , 6pX,Y1j, k2

SX,Y .
pX,Y1j, k2

SX,Y = 510, 02, 10, 12, 11, 02, 11, 12, 10, 22, 12, 026.pX,Y1j, k2

pX,Y12, 02 = P3z = 1a1, a124 =
1

16
.

pX,Y10, 22 = P3z = 1a2, a224 =
1

16
,

pX,Y11, 12 = P3z H 51a1, a22, 1a2, a1264 =
1
8

,

pX,Y11, 02 = P3z H 51n, a12, 1a1, n264 =
1
4

,
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5.2.1 Marginal Probability Mass Function

The joint pmf of X provides the information about the joint behavior of X and Y. We
are also interested in the probabilities of events involving each of the random variables
in isolation. These can be found in terms of the marginal probability mass functions:

(5.7a)

and similarly,

(5.7b)

The marginal pmf’s satisfy all the properties of one-dimensional pmf’s, and they
supply the information required to compute the probability of events involving the
corresponding random variable.

The probability can be interpreted as the long-term relative frequency
of the joint event in a sequence of repetitions of the random
experiment. Equation (5.7a) corresponds to the fact that the relative frequency of the
event is found by adding the relative frequencies of all outcome pairs in which

appears. In general, it is impossible to deduce the relative frequencies of pairs of values
X and Y from the relative frequencies of X and Y in isolation.The same is true for pmf’s:
In general, knowledge of the marginal pmf’s is insufficient to specify the joint pmf.

Example 5.7

Find the marginal pmf for the output ports (X, Y) in Example 5.2.
Figure 5.5(a) shows that the marginal pmf is found by adding entries along a row or column

in the table. For example, by adding along the column we have:

Similarly, by adding along the row:

Figure 5.5(b) shows the marginal pmf using arrows on the real line.

pY102 = P3Y = 04 = pX,Y10, 02 + pX,Y11, 02 + pX,Y12, 02 =
1
4

+
1
4

+
1

16
=

9
16

.

y = 0

pX112 = P3X = 14 = pX,Y11, 02 + pX,Y11, 12 =
1
4

+
1
8

=
3
8

.

x = 1

Xj

5X = Xj6
5X = Xj6 ¨ 5Y = Yk6
pX,Y1xj , yk2

= a
q

j=1
pX,Y1xj , yk2.

pY1yk2 = P3Y = yk4

= a
q

k=1
pX,Y1xj , yk2,

= P35X = xj and Y = y16 ´ 5X = xj and Y = y26 ´ Á4
= P3X = xj , Y = anything4

pX1xj2 = P3X = xj4

= 6a 1
42
b +

2
42

=
8

42
.

+ pX,Y13, 32 + pX,Y13, 42 + pX,Y13, 52 + pX,Y13, 62
P3min1X, Y2 = 34 = pX,Y16, 32 + pX,Y15, 32 + pX,Y14, 32
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Example 5.8

Find the marginal pmf’s in the loaded dice experiment in Example 5.2.
The probability that is found by summing over the first row:

Similarly, we find that for The probability that is found by
summing over the kth column. We then find that for Thus each
die, in isolation, appears to be fair in the sense that each face is equiprobable. If we knew only
these marginal pmf’s we would have no idea that the dice are loaded.

Example 5.9

In Example 5.3, let the number of bytes N in a message have a geometric distribution with para-
meter and range Find the joint pmf and the marginal pmf’s of Q and R.

If a message has N bytes, then the number of full packets is the quotient Q in the division
of N by M, and the number of remaining bytes is the remainder R. The probability of the pair

is given by

The marginal pmf of Q is

The marginal pmf of Q is geometric with parameter The marginal pmf of R is:

R has a truncated geometric pmf. As an exercise, you should verify that all the above marginal
pmf’s add to 1.

5.3 THE JOINT CDF OF XAND Y

In Chapter 3 we saw that semi-infinite intervals of the form are a basic build-
ing block from which other one-dimensional events can be built. By defining the cdf

as the probability of we were then able to express the probabilities of
other events in terms of the cdf. In this section we repeat the above development for
two-dimensional random variables.

1-q , x4,FX1x2
1-q , x4

= a
q

q=0
11 - p2pqM+ r =

11 - p2
1 - pM

pr r = 0, 1, Á ,M - 1.

P3R = r4 = P3N in5r,M + r, 2M + r, Á 64
pM.

= 11 - p2pqM 1 - pM

1 - p
= 11 - pM21pM2q q = 0, 1, 2, Á

= a
1M-12
k=0
11 - p2pqM+k

P3Q = q4 = P3N in5qM, qM + 1, Á , qM + 1M - 1264

P3Q = q, R = r4 = P3N = qM + r4 = 11 - p2pqM+ r.

51q, r26

SN = 50, 1, 2, Á 6.1 - p

k = 1, 2, Á , 6.P3Y = k4 = 1/6
Y = kj = 2, Á , 6.P3X = j4 = 1/6

P3X = 14 =
2

42
+

1
42

+ Á +
1

42
=

1
6

.

X = 1



Section 5.3 The Joint cdf of x and y 243

x

y

(x1, y1)

FX, Y (x1y1) � P[X � x1, Y � y1]

A basic building block for events involving two-dimensional random variables is
the semi-infinite rectangle defined by as shown in Fig. 5.7.
We also use the more compact notation to refer to this region. The
joint cumulative distribution function of X and Y is defined as the probability of the
event

(5.8)

In terms of relative frequency, represents the long-term proportion
of time in which the outcome of the random experiment yields a point X that falls in
the rectangular region shown in Fig. 5.7. In terms of probability “mass,”
represents the amount of mass contained in the rectangular region.

The joint cdf satisfies the following properties.

(i) The joint cdf is a nondecreasing function of x and y:

(5.9a)

(ii) (5.9b)

(iii) We obtain the marginal cumulative distribution functions by removing the
constraint on one of the variables. The marginal cdf’s are the probabilities of
the regions shown in Fig. 5.8:

(5.9c)

(iv) The joint cdf is continuous from the “north” and from the “east,” that is,

(5.9d)

(v) The probability of the rectangle is given by:

(5.9e)FX,Y1x2 , y22 - FX,Y1x2 , y12 - FX,Y1x1 , y22 + FX,Y1x1 , y12.
P3x1 6 X … x2 , y1 6 Y … y24 =

5x1 6 x … x2 , y1 6 y … y26
lim
x:a+FX,Y1x, y2 = FX,Y1a, y2 and lim

y:b+FX,Y1x, y2 = FX,Y1x, b2.

FX1x12 = FX,Y1x1 , q2 and FY1y12 = FX,Y1q , y12.

FX,Y1x1 , -q2 = 0, FX,Y1-q , y12 = 0, FX,Y1q , q2 = 1.

FX,Y1x1 , y12 … FX,Y1x2 , y22 if x1 … x2 and y1 … y2 ,

FX,Y1x1 , y12
FX,Y1x1 , y12

FX,Y1x1 , y12 = P3X … x1 , Y … y14.
5X … x16 ¨ 5Y … y16:

5x … x1 , y … y16
51x, y2: x … x1 and y … y16,

FIGURE 5.7
The joint cumulative distribution function is defined as
the probability of the semi-infinite rectangle defined by
the point 1x1 , y12.
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x

y

x1

FY(y1) � P[X � �, Y � y1]FX(x1) � P[X � x1, Y � �]

x

y

y1

FIGURE 5.8
The marginal cdf’s are the probabilities of these half-planes.
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y2
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x2

(x1, y2)

(x1, y1)

(x2, y2)

(x2, y1)

(b)

B

A

B

Property (i) follows by noting that the semi-infinite rectangle defined by is
contained in that defined by and applying Corollary 7. Properties (ii) to (iv)
are obtained by limiting arguments. For example, the sequence 
is decreasing and approaches the empty set so

For property (iii) we take the sequence which increases to
so

For property (v) note in Fig. 5.9(a) that 

In Fig. 5.9(b), note that 
Property (v) follows by solving for P[A] and substituting the expression for P[B].

+ FX,Y1x1 , y22.FX,Y1x2 , y22 = P3A4 + P3B4- FX,Y1x1 , y12.
= FX,Y1x2 , y12Y … y16 - 5X … x1 , Y … y16, so P3B4 = P3x1 6 X … x2 , Y … y14

= 5X … x2 ,B = 5x1 6 x … x2 , y … y16
lim
n:q
FX,Y1x1 , n2 = P3X … x14 = FX1x12.

5x … x16,
5x … x1 and y … n6

FX,Y1x1 , -q2 = lim
n:q
FX,Y1x1 , -n2 = P3�4 = 0.

�,
5x … x1 and y … -n61x2 , y22

1x1 , y12

FIGURE 5.9
The joint cdf can be used to determine the probability of various events.
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Example 5.10

Plot the joint cdf of X and Y from Example 5.6. Find the marginal cdf of X.
To find the cdf of X, we identify the regions in the plane according to which points in 

are included in the rectangular region defined by (x, y). For example,

• The regions outside the first quadrant do not include any of the points, so 
• The region contains the point (0, 0), so 

Figure 5.10 shows the cdf after all possible regions are examined.
We need to consider several cases to find For we have For

we have For we have 
Finally, for we have Therefore FX(x) is a

staircase function and X is a discrete random variable with and

Example 5.11

The joint cdf for the pair of random variables is given by

(5.10)

Plot the joint cdf and find the marginal cdf of X.
Figure 5.11 shows a plot of the joint cdf of X and Y. is continuous for all points

in the plane. for all and which implies that X and Y each assume
values less than or equal to one.

y Ú 1,x Ú 1FX,Y1x, y2 = 1
FX,Y1x, y2

FX,Y1x, y2 = e 0 x 6 0 or y 6 0
xy 0 … x … 1, 0 … y … 1
x 0 … x … 1, y 7 1
y 0 … y … 1, x 7 1
1 x Ú 1, y Ú 1.

X = 1X, Y2

pX122 = 1/16.
pX102 = 9/16, pX112 = 6/16,

FX1x2 = FX,Y1x, q2 = 1.x Ú 1,1x, q2 = 15/16.
FX1x2 = FX,Y1 … x 6 2,FX1x2 = FX,Y1x, q2 = 9/16.0 … x 6 1,
FX1x2 = 0.x 6 0,FX1x2.

FX,Y1x, y2 = 1/4.50 … x 6 1, 0 … y 6 16
FX,Y1x, y2 = 0.

SX,Y

FIGURE 5.10
Joint cdf for packet switch example.
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The marginal cdf of X is:

X is uniformly distributed in the unit interval.

Example 5.12

The joint cdf for the vector of random variable is given by

Find the marginal cdf’s.
The marginal cdf’s are obtained by letting one of the variables approach infinity:

X and Y individually have exponential distributions with parameters and respectively.b,a

FY1y2 = lim
x:q
FX,Y1x, y2 = 1 - e-by y Ú 0.

FX1x2 = lim
y:q
FX,Y1x, y2 = 1 - e -ax x Ú 0

FX,Y1x, y2 = b 11 - e-ax211 - e-by2 x Ú 0, y Ú 0
0 elsewhere.

X = 1X, Y2

FX1x2 = FX,Y1x, q2 = c 0 x 6 0
x  0 … x … 1
1 x Ú 1.

FIGURE 5.11
Joint cdf for two uniform random variables.
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Example 5.13

Find the probability of the events where 
and and in Example 5.12.

The probability of A is given directly by the cdf:

The probability of B requires more work. By DeMorgan’s rule:

Corollary 5 in Section 2.2 gives the probability of the union of two events:

Finally we obtain the probability of B:

You should sketch the region B on the plane and identify the events involved in the calculation
of the probability of 

The probability of event D is found by applying property (vi) of the joint cdf:

5.3.1 Random Variables That Differ in Type

In some problems it is necessary to work with joint random variables that differ in
type, that is, one is discrete and the other is continuous. Usually it is rather clumsy to
work with the joint cdf, and so it is preferable to work with either or

These probabilities are sufficient to compute the joint cdf
should we have to.

Example 5.14 Communication Channel with Discrete Input and Continuous Output

The input X to a communication channel is volt or volt with equal probability.The output
Y of the channel is the input plus a noise voltage N that is uniformly distributed in the interval
from volts to volts. Find 

This problem lends itself to the use of conditional probability:

P3X = +1, Y … y4 = P3Y … y ƒX = +14P3X = +14,

P3X = +1, Y … 04.+2-2

-1+1

P3X = k, y1 6 Y … y24.
P[X = k, Y … y]

-11 - e-a211 - e-5b2 + 11 - e-a211 - e-2b2.
= 11 - e-2a211 - e-5b2 - 11 - e-2a211 - e-2b2
= FX,Y12, 52 - FX,Y12, 22 - FX,Y11, 52 + FX,Y11, 22

P31 6 X … 2, 2 6 Y … 54

Bc.

P3B4 = 1 - P3Bc4 = e-axe-by.

= 1 - e-axe-by.

= 11 - e-ax2 + 11 - e-by2 - 11 - e-ax211 - e-by2
P3Bc4 = P3X … x4 + P3Y … y4 - P3X … x, Y … y4

Bc = 15X 7 x6 ¨ 5Y 7 y62c = 5X … x6 ´ 5Y … y6.

P3A4 = P3X … 1, Y … 14 = FX,Y11, 12 = 11 - e-a211 - e-b2.

D = 51 6 X … 2, 2 6 Y … 56y 7 0,
x 7 0A = 5X … 1, Y … 16, B = 5X 7 x, Y 7 y6,
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where When the input the output Y is uniformly distributed in the
interval therefore

Thus

5.4 THE JOINT PDF OF TWO CONTINUOUS RANDOM VARIABLES

The joint cdf allows us to compute the probability of events that correspond to “rectangu-
lar” shapes in the plane. To compute the probability of events corresponding to regions
other than rectangles, we note that any reasonable shape (i.e., disk, polygon, or half-plane)
can be approximated by the union of disjoint infinitesimal rectangles, For example,
Fig. 5.12 shows how the events and are
approximated by rectangles of infinitesimal width. The probability of such events can
therefore be approximated by the sum of the probabilities of infinitesimal rectangles, and
if the cdf is sufficiently smooth, the probability of each rectangle can be expressed in
terms of a density function:

As and approach zero, the above equation becomes an integral of a probability
density function over the region B.

We say that the random variables X and Y are jointly continuous if the probabil-
ities of events involving (X, Y) can be expressed as an integral of a probability density
function. In other words, there is a nonnegative function called the jointfX,Y1x, y2,

¢y¢x

P3B4 L a
j
a
k
P3Bj,k4 = b1xj, yk2HBfX,Y1xj , yk2 ¢x¢y.

+ X2 … 16B = 5X2A = 5X + Y … 16
Bj,k .

P3X = +1, Y … 04 = P3Y … 0 ƒX = +14P3X = +14 = 11/2211/42 = 1/8.

P3Y … y ƒX = +14 =
y + 1

4
 for -1 … y … 3.

3-1, 34;
X = 1,P3X = +14 = 1/2.

y

x

y

x

Bj,k

Bj,k

FIGURE 5.12
Some two-dimensional non-product form events.
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y

x

f (x, y)

dA

probability density function, that is defined on the real plane such that for every event
B, a subset of the plane,

(5.11)

as shown in Fig. 5.13. Note the similarity to Eq. (5.5) for discrete random variables.
When B is the entire plane, the integral must equal one:

(5.12)

Equations (5.11) and (5.12) again suggest that the probability “mass” of an event is
found by integrating the density of probability mass over the region corresponding to
the event.

The joint cdf can be obtained in terms of the joint pdf of jointly continuous ran-
dom variables by integrating over the semi-infinite rectangle defined by (x, y):

(5.13)

It then follows that if X and Y are jointly continuous random variables, then the pdf
can be obtained from the cdf by differentiation:

(5.14)fX,Y1x, y2 =
02FX,Y1x, y2

0x 0y
.

FX,Y1x, y2 = L
x

-qL
y

-q
fX,Y1x¿, y¿2 dx¿ dy¿.

1 = L
q

-qL
q

-q
fX,Y1x¿, y¿2 dx¿ dy¿.

P3X in B4 = LBLfX,Y1x¿, y¿2 dx¿ dy¿,

FIGURE 5.13
The probability of A is the integral of over the region
defined by A.

fX,Y1x, y2
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Note that if X and Y are not jointly continuous, then it is possible that the above partial
derivative does not exist. In particular, if the is discontinuous or if its partial de-
rivatives are discontinuous, then the joint pdf as defined by Eq. (5.14) will not exist.

The probability of a rectangular region is obtained by letting 
in Eq. (5.11):

(5.15)

It then follows that the probability of an infinitesimal rectangle is the product of the
pdf and the area of the rectangle:

(5.16)

Equation (5.16) can be interpreted as stating that the joint pdf specifies the probability
of the product-form events

The marginal pdf’s and are obtained by taking the derivative of the
corresponding marginal cdf’s, and Thus

(5.17a)

Similarly,

(5.17b)

Thus the marginal pdf’s are obtained by integrating out the variables that are not of
interest.

Note that is the probability of the
infinitesimal strip shown in Fig. 5.14(a). This reminds us of the interpretation of
the marginal pmf’s as the probabilities of columns and rows in the case of discrete
random variables. It is not surprising then that Eqs. (5.17a) and (5.17b) for the
marginal pdf’s and Eqs. (5.7a) and (5.7b) for the marginal pmf’s are identical
except for the fact that one contains an integral and the other a summation. As in
the case of pmf’s, we note that, in general, the joint pdf cannot be obtained from
the marginal pdf’s.

fX1x2 dx M P3x 6 X … x + dx, Y 6 q4

fY1y2 = L
q

-q
fX,Y1x¿, y2 dx¿.

= L
q

-q
fX,Y1x,y¿2 dy¿.

fX1x2 =
d

dxL
x

-q
b Lq

-q
fX,Y1x¿, y¿2 dy¿ r dx¿FY1y2 = FX,Y1q , y2.FX1x2 = FX,Y1x,q2

fY1y2fX1x2
5x 6 X … x + dx6 ¨ 5y 6 Y … y + dy6.

M fX,Y1x, y2 dx dy.

P3x 6 X … x + dx, y 6 Y … y + dy4 = L
x+dx

x L
y+dy

y
fX,Y1x¿, y¿2 dx¿ dy¿

P3a1 6 X … b1 , a2 6 Y … b24 = L
b1

a1 L
b2

a2

fX,Y1x¿, y¿2 dx¿ dy¿.

b1 and a2 6 y … b26
B = 51x, y2: a1 6 x …

FX,Y1x, y2
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Example 5.15 Jointly Uniform Random Variables

A randomly selected point (X, Y) in the unit square has the uniform joint pdf given by

The scattergram in Fig. 5.3(a) corresponds to this pair of random variables. Find the joint cdf of
X and Y.

The cdf is found by evaluating Eq. (5.13).You must be careful with the limits of the integral:
The limits should define the region consisting of the intersection of the semi-infinite rectangle
defined by (x, y) and the region where the pdf is nonzero.There are five cases in this problem, cor-
responding to the five regions shown in Fig. 5.15.

1. If or the pdf is zero and Eq. (5.14) implies

2. If (x, y) is inside the unit interval,

3. If and 

4. Similarly, if and 

FX,Y1x, y2 = y.

0 … y … 1,x 7 1

FX,Y1x, y2 = L
x

0 L
1

0
1 dx¿ dy¿ = x.

y 7 1,0 … x … 1

FX,Y1x, y2 = L
x

0 L
y

0
1 dx¿ dy¿ = xy.

FX,Y1x, y2 = 0.

y 6 0,x 6 0

fX,Y1x, y2 = b1 0 … x … 1 and 0 … y … 1
0 elsewhere.

y

x
x x 
 dx

y 
 dy

y

x

y

fX(x)dx � P[x � X � x 
 dx, Y � �] fY(y)dy � P[X � �, y � Y � y 
 dy]

(a) (b)

FIGURE 5.14
Interpretation of marginal pdf’s.
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5. Finally, if and 

We see that this is the joint cdf of Example 5.11.

Example 5.16

Find the normalization constant c and the marginal pdf’s for the following joint pdf:

The pdf is nonzero in the shaded region shown in Fig. 5.16(a).The constant c is found from
the normalization condition specified by Eq. (5.12):

Therefore The marginal pdf’s are found by evaluating Eqs. (5.17a) and (5.17b):

and

You should fill in the steps in the evaluation of the integrals as well as verify that the marginal
pdf’s integrate to 1.

fY1y2 = L
q

0
fX,Y1x, y2 dx = L

q

y
2e-xe-y dx = 2e-2y 0 … y 6 q .

fX1x2 = L
q

0
fX,Y1x, y2 dy = L

x

0
2e-xe-y dy = 2e-x11 - e-x2 0 … x 6 q

c = 2.

1 = L
q

0 L
x

0
ce-xe-y dy dx = L

q

0
ce-x11 - e-x2 dx =

c

2
.

fX,Y1x, y2 = b ce-xe-y 0 … y … x 6 q
0 elsewhere.

FX,Y1x, y2 = L
1

0 L
1

0
1 dx¿ dy¿ = 1.

y 7 1,x 7 1

y

x

1

I

0 1

III

II IV

V

FIGURE 5.15
Regions that need to be considered separately in computing cdf
in Example 5.15.
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Example 5.17

Find in Example 5.16.
Figure 5.16(b) shows the intersection of the event and the region where the

pdf is nonzero. We obtain the probability of the event by “adding” (actually integrating) infini-
tesimal rectangles of width dy as indicated in the figure:

Example 5.18 Jointly Gaussian Random Variables

The joint pdf of X and Y, shown in Fig. 5.17, is

(5.18)

We say that X and Y are jointly Gaussian.1 Find the marginal pdf’s.
The marginal pdf of X is found by integrating over y:

fX1x2 =
e-x

2/211-r22
2p21 - r2L

q

-q
e-1y2-2rxy2/211-r22 dy.

fX,Y1x, y2

fX,Y1x, y2 =
1

2p21 - r2
e-1x2-2rxy+y22/211-r22 -q 6 x, y 6 q .

= 1 - 2e-1.

P3X + Y … 14 = L
.5

0 L
1-y

y
2e-xe-y dx dy = L

.5

0
2e-y3e-y - e-11-y24 dy

5X + Y … 16
P3X + Y … 14

y

x � y

x

(a)

y

x � y x 
 y � 1

x

(b)

1
2

1
2

FIGURE 5.16
The random variables X and Y in Examples 5.16 and 5.17 have a pdf that is nonzero only in the shaded
region shown in part (a).

1This is an important special case of jointly Gaussian random variables.The general case is discussed in Section 5.9.
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We complete the square of the argument of the exponent by adding and subtracting that is,
Therefore

where we have noted that the last integral equals one since its integrand is a Gaussian pdf with
mean and variance The marginal pdf of X is therefore a one-dimensional Gaussian
pdf with mean 0 and variance 1. From the symmetry of in x and y, we conclude that the
marginal pdf of Y is also a one-dimensional Gaussian pdf with zero mean and unit variance.

5.5 INDEPENDENCE OF TWO RANDOM VARIABLES

X and Y are independent random variables if any event defined in terms of X is in-
dependent of any event defined in terms of Y; that is,

(5.19)

In this section we present a simple set of conditions for determining when X and Y are
independent.

Suppose that X and Y are a pair of discrete random variables, and suppose we
are interested in the probability of the event where involves only
X and involves only Y. In particular, if X and Y are independent, then and

are independent events. If we let and then theA2 = 5Y = yk6,A1 = 5X = xj6A2

A1A2

A1A = A1 ¨ A2 ,

P3X in A1 , Y in A24 = P3X in A14P3Y in A24.
A2

A1

fX,Y1x, y2
1 - r2.rx

=
e-x

2/2

22p
,

=
e-x

2/2

22pL
q

-q

e-1y-rx22/211-r22
22p11 - r22 dy

fX1x2 =
e-x

2/211-r22
2p21 - r2L

q

-q
e-31y-rx22-r2x24/211-r22 dy

y2 - 2rxy + r2x2 - r2x2 = 1y - rx22 - r2x2.
r2x2,

fX,Y(x,y)

0.4

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

3

2

1

0

-3

-2

-1

FIGURE 5.17
Joint pdf of two jointly Gaussian random variables.
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independence of X and Y implies that

(5.20)

Therefore, if X and Y are independent discrete random variables, then the joint pmf is
equal to the product of the marginal pmf’s.

Now suppose that we don’t know if X and Y are independent, but we do know that
the pmf satisfies Eq. (5.20). Let be a product-form event as above, then

(5.21)

which implies that and are independent events. Therefore, if the joint pmf of X
and Y equals the product of the marginal pmf’s, then X and Y are independent. We have
just proved that the statement “X and Y are independent” is equivalent to the state-
ment “the joint pmf is equal to the product of the marginal pmf’s.” In mathematical
language, we say, the “discrete random variables X and Y are independent if and only if
the joint pmf is equal to the product of the marginal pmf’s for all ”

Example 5.19

Is the pmf in Example 5.6 consistent with an experiment that consists of the independent tosses
of two fair dice?

The probability of each face in a toss of a fair die is 1/6. If two fair dice are tossed and if the
tosses are independent, then the probability of any pair of faces, say j and k, is:

Thus all possible pairs of outcomes should be equiprobable. This is not the case for the joint pmf
given in Example 5.6. Therefore the tosses in Example 5.6 are not independent.

Example 5.20

Are Q and R in Example 5.9 independent? From Example 5.9 we have

= 11 - p2pMq+ r
P3Q = q4P3R = r4 = 11 - pM21pM2q 11 - p2

1 - pM
pr

P3X = j, Y = k4 = P3X = j4P3Y = k4 =
1

36
.

xj , yk .

A2A1

= P3A14P3A24,
= a
xj in A1

pX1xj2 a
yk in A2

pY1yk2

= a
xj in A1

a
yk in A2

pX1xj2pY1yk2

P3A4 = a
xj in A1

a
yk in A2

pX,Y1xj , yk2
A = A1 ¨ A2

= pX1xj2pY1yk2 for all xj and yk .

= P3X = xj4P3Y = yk4
pX,Y1xj , yk2 = P3X = xj , Y = yk4
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Therefore Q and R are independent.

In general, it can be shown that the random variables X and Y are independent if
and only if their joint cdf is equal to the product of its marginal cdf’s:

(5.22)

Similarly, if X and Y are jointly continuous, then X and Y are independent if and
only if their joint pdf is equal to the product of the marginal pdf’s:

(5.23)

Equation (5.23) is obtained from Eq. (5.22) by differentiation. Conversely, Eq. (5.22) is
obtained from Eq. (5.23) by integration.

Example 5.21

Are the random variables X and Y in Example 5.16 independent?
Note that and are nonzero for all and all Hence is

nonzero in the entire positive quadrant. However is nonzero only in the region 
inside the positive quadrant. Hence Eq. (5.23) does not hold for all x, y and the random variables
are not independent. You should note that in this example the joint pdf appears to factor, but
nevertheless it is not the product of the marginal pdf’s.

Example 5.22

Are the random variables X and Y in Example 5.18 independent? The product of the marginal
pdf’s of X and Y in Example 5.18 is

By comparing to Eq. (5.18) we see that the product of the marginals is equal to the joint pdf if
and only if Therefore the jointly Gaussian random variables X and Y are independent if
and only if We see in a later section that is the correlation coefficient between X and Y.

Example 5.23

Are the random variables X and Y independent in Example 5.12? If we multiply the marginal
cdf’s found in Example 5.12 we find

Therefore Eq. (5.22) is satisfied so X and Y are independent.

If X and Y are independent random variables, then the random variables defined
by any pair of functions g(X) and h(Y) are also independent.To show this, consider the

FX1x2FY1y2 = 11 - e-ax211 - e-by2 = FX,Y1x, y2 for all x and y.

rr = 0.
r = 0.

fX1x2fY1y2 =
1

2p
e-1x2+y22/2 -q 6 x, y 6 q .

y 6 xfX,Y1x, y2
fX1x2fY1y2y 7 0.x 7 0fY1y2fX1x2

fX,Y1x, y2 = fX1x2fY1y2 for all x and y.

FX,Y1x, y2 = FX1x2FY1y2 for all x and y.

r = 0, Á ,M - 1.

= P3Q = q, R = r4 for all q = 0, 1, Á
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one-dimensional events A and B. Let be the set of all values of x such that if x is in
then g(x) is in A, and let be the set of all values of y such that if y is in then

h(y) is in B. (In Chapter 3 we called and the equivalent events of A and B.) Then

(5.24)

The first and third equalities follow from the fact that A and and B and are
equivalent events. The second equality follows from the independence of X and Y.
Thus g(X) and h(Y) are independent random variables.

5.6 JOINT MOMENTS AND EXPECTED VALUES OF A FUNCTION OF TWO RANDOM
VARIABLES

The expected value of X identifies the center of mass of the distribution of X. The
variance, which is defined as the expected value of provides a measure of
the spread of the distribution. In the case of two random variables we are interested
in how X and Y vary together. In particular, we are interested in whether the varia-
tion of X and Y are correlated. For example, if X increases does Y tend to increase or
to decrease? The joint moments of X and Y, which are defined as expected values of
functions of X and Y, provide this information.

5.6.1 Expected Value of a Function of Two Random Variables

The problem of finding the expected value of a function of two or more random vari-
ables is similar to that of finding the expected value of a function of a single random
variable. It can be shown that the expected value of can be found using
the following expressions:

(5.25)

Example 5.24 Sum of Random Variables

Let Find E[Z].

(5.26)= L
q

-q
x¿fX1x¿2 dx¿ + L

q

-q
y¿fY1y¿2 dy¿ = E3X4 + E3Y4.

= L
q

-qL
q

-q
x¿fX,Y1x¿, y¿2 dy¿ dx¿ + L

q

-qL
q

-q
y¿ fX,Y1x¿, y¿2 dx¿ dy¿

= L
q

-qL
q

-q
1x¿ + y¿2fX,Y1x¿, y¿2 dx¿ dy¿

E3Z4 = E3X + Y4
Z = X + Y.

E3Z4 = d Lq

-qL
q

-q
g1x, y2fX,Y1x, y2 dx dy X, Y jointly continuous

a
i
a
n
g1xi , yn2pX,Y1xi , yn2 X, Y discrete.

Z = g1X, Y2

1X - m22,

B¿A¿

= P3g1X2 in A4P3h1Y2 in B4.
= P3X in A¿4P3Y in B¿4

P3g1X2 in A, h1Y2 in B4 = P3X in A¿, Y in B¿4
B¿A¿

B¿B¿A¿
A¿
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Thus the expected value of the sum of two random variables is equal to the sum of the individual
expected values. Note that X and Y need not be independent.

The result in Example 5.24 and a simple induction argument show that the ex-
pected value of a sum of n random variables is equal to the sum of the expected values:

(5.27)

Note that the random variables do not have to be independent.

Example 5.25 Product of Functions of Independent Random Variables

Suppose that X and Y are independent random variables, and let Find

5.6.2 Joint Moments, Correlation, and Covariance 

The joint moments of two random variables X and Y summarize information about
their joint behavior. The jkth joint moment of X and Y is defined by

(5.28)

If we obtain the moments of Y, and if we obtain the moments of X. In
electrical engineering, it is customary to call the moment, E[XY], the
correlation of X and Y. If then we say that X and Y are orthogonal.

The jkth central moment of X and Y is defined as the joint moment of the cen-
tered random variables, and 

Note that gives VAR(X) and gives VAR(Y).
The covariance of X and Y is defined as the central moment:

(5.29)

The following form for COV(X, Y) is sometimes more convenient to work with:

COV1X, Y2 = E3XY - XE3Y4 - YE3X4 + E3X4E3Y44

COV1X, Y2 = E31X - E3X421Y - E3Y424.
j = k = 1

j = 0 k = 2j = 2 k = 0

E31X - E3X42j1Y - E3Y42k4.
Y - E3Y4:X - E3X4

E3XY4 = 0,
j = 1 k = 1

k = 0,j = 0,

E3XjYk4 = d Lq

-qL
q

-q
xjykfX,Y1x, y2 dx dy X, Y jointly continuous

a
i
a
n
xi
jyn
kpX,Y1xi , yn2 X, Y discrete.

= E3g11X24E3g21Y24.
= b Lq

-q
g11x¿2fX1x¿2 dx¿ r b Lq

-q
g21y¿2fY1y¿2 dy¿ r

E3g11X2g21Y24 = L
q

-qL
q

-q
g11x¿2g21y¿2fX1x¿2fY1y¿2 dx¿ dy¿

E3g1X, Y24 = E3g11X2g21Y24.
g1X, Y2 = g11X2g21Y2.

E3X1 + X2 + Á + Xn4 = E3X14 + Á + E3Xn4.
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(5.30)

Note that if either of the random variables has mean zero.

Example 5.26 Covariance of Independent Random Variables

Let X and Y be independent random variables. Find their covariance.

where the second equality follows from the fact that X and Y are independent, and the third
equality follows from Therefore pairs of independent
random variables have covariance zero.

Let’s see how the covariance measures the correlation between X and Y.The covari-
ance measures the deviation from and If a positive value of

tends to be accompanied by a positive values of and negative
tend to be accompanied by negative then 

will tend to be a positive value, and its expected value, COV(X, Y), will be positive.This is
the case for the scattergram in Fig. 5.3(d) where the observed points tend to cluster along a
line of positive slope. On the other hand, if and tend to have oppo-
site signs, then COV(X, Y) will be negative.A scattergram for this case would have obser-
vation points cluster along a line of negative slope. Finally if and 
sometimes have the same sign and sometimes have opposite signs, then COV(X, Y) will be
close to zero.The three scattergrams in Figs. 5.3(a), (b), and (c) fall into this category.

Multiplying either X or Y by a large number will increase the covariance, so we
need to normalize the covariance to measure the correlation in an absolute scale. The
correlation coefficient of X and Y is defined by

(5.31)

where and are the standard deviations of X and
Y, respectively.

The correlation coefficient is a number that is at most 1 in magnitude:

(5.32)

To show Eq. (5.32), we begin with an inequality that results from the fact that the
expected value of the square of a random variable is nonnegative:

 0 … Eb ¢X - E3X4
sX

;
Y - E3Y4
sY

≤2 r
-1 … rX,Y … 1.

sY = 2VAR1Y2sX = 2VAR1X2

rX,Y =
COV1X, Y2
sXsY

=
E3XY4 - E3X4E3Y4

sXsY
,

1Y - mY21X - mX2
1Y - mY21X - mX2

1X - mX21Y - mY21Y - mY2;1X - mX2
1Y - mY2,1X - mX2

mY = E3Y4.mX = E3X4

E3X - E3X44 = E3X4 - E3X4 = 0.

= 0,

= E3X - E3X44E3Y - E3Y44
COV1X, Y2 = E31X - E3X421Y - E3Y424

COV1X, Y2 = E3XY4
= E3XY4 - E3X4E3Y4.
= E3XY4 - 2E3X4E3Y4 + E3X4E3Y4
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The last equation implies Eq. (5.32).
The extreme values of are achieved when X and Y are related linearly,

if and if In Section 6.5 we show that
can be viewed as a statistical measure of the extent to which Y can be predicted by

a linear function of X.
X and Y are said to be uncorrelated if If X and Y are independent, then

so Thus if X and Y are independent, then X and Y are un-
correlated. In Example 5.22, we saw that if X and Y are jointly Gaussian and
then X and Y are independent random variables. Example 5.27 shows that this is not al-
ways true for non-Gaussian random variables: It is possible for X and Y to be uncorre-
lated but not independent.

Example 5.27 Uncorrelated but Dependent Random Variables

Let be uniformly distributed in the interval Let

The point (X, Y) then corresponds to the point on the unit circle specified by the angle as shown
in Fig. 5.18. In Example 4.36, we saw that the marginal pdf’s of X and Y are arcsine pdf’s, which are
nonzero in the interval The product of the marginals is nonzero in the square defined by

and so if X and Y were independent the point (X, Y) would assume all
values in this square.This is not the case, so X and Y are dependent.

We now show that X and Y are uncorrelated:

Since Eq. (5.30) then implies that X and Y are uncorrelated.

Example 5.28

Let X and Y be the random variables discussed in Example 5.16. Find E[XY], COV(X, Y), and

Equations (5.30) and (5.31) require that we find the mean, variance, and correlation of
X and Y. From the marginal pdf’s of X and Y obtained in Example 5.16, we find that

and and that and The correlation of
X and Y is

= L
q

0
2xe-x11 - e-x - xe-x2 dx = 1.

E3XY4 = L
q

0 L
x

0
xy2e-xe-y dy dx

VAR3Y4 = 1/4.E3Y4 = 1/2VAR3X4 = 5/4,E3X4 = 3/2

rX,Y .

E3X4 = E3Y4 = 0,

=
1

4pL
2p

0
 sin 2f df = 0.

E3XY4 = E3sin ® cos ®4 =
1

2pL
2p

0
 sin f cos f df

-1 … y … 1,-1 … x … 1
1-1, 12.

®,

X = cos ® and Y = sin ®.

10, 2p2.®

rX,Y = 0,
rX,Y = 0.COV1X, Y2 = 0,

rX,Y = 0.

rX,Y

a 6 0.rX,Y = -1a 7 0Y = aX + b; rX,Y = 1
rX,Y

= 211 ; rX,Y2.
= 1 ; 2rX,Y + 1
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Thus the correlation coefficient is given by

5.7 CONDITIONAL PROBABILITY AND CONDITIONAL EXPECTATION

Many random variables of practical interest are not independent:The output Y of a com-
munication channel must depend on the input X in order to convey information; consec-
utive samples of a waveform that varies slowly are likely to be close in value and hence
are not independent. In this section we are interested in computing the probability of
events concerning the random variable Y given that we know We are also inter-
ested in the expected value of Y given We show that the notions of conditional
probability and conditional expectation are extremely useful tools in solving problems,
even in situations where we are only concerned with one of the random variables.

5.7.1 Conditional Probability

The definition of conditional probability in Section 2.4 allows us to compute the prob-
ability that Y is in A given that we know that 

(5.33)P3Y in A ƒX = x4 =
P3Y in A,X = x4
P3X = x4  for P3X = x4 7 0.

X = x:

X = x.
X = x.

rX,Y =
1 -

3
2

1
2

A
5
4A

1
4

=
1

25
.

1

�1

�1 1

y

x

(cos θ, sin θ)

θ

FIGURE 5.18
(X, Y) is a point selected at random on the unit circle. X and Y
are uncorrelated but not independent.
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Case 1: X Is a Discrete Random Variable

For X and Y discrete random variables, the conditional pmf of Y given is defined by:

(5.34)

for x such that We define for x such that 
Note that is a function of y over the real line, and that only for
y in a discrete set 

The conditional pmf satisfies all the properties of a pmf, that is, it assigns non-
negative values to every y and these values add to 1. Note from Eq. (5.34) that

is simply the cross section of along the column in Fig. 5.6,
but normalized by the probability 

The probability of an event A given is found by adding the pmf values of
the outcomes in A:

(5.35)

If X and Y are independent, then using Eq (5.20) 

(5.36)

In other words, knowledge that does not affect the probability of events A
involving Y.

Equation (5.34) implies that the joint pmf can be expressed as the
product of a conditional pmf and a marginal pmf:

(5.37)

This expression is very useful when we can view the pair (X, Y) as being generated sequen-
tially, e.g., first X, and then Y given We find the probability that Y is in A as follows:

(5.38)

Equation (5.38) is simply a restatement of the theorem on total probability discussed
in Chapter 2. In other words, to compute P[Y in A] we can first compute

and then “average” over Xk .P3Y in A ƒX = xk4

= a
all xk

P3Y in A ƒX = xk4pX1xk2.
= a

all xk

pX1xk2 a
yj in A

pY1yj ƒ xk2
= a

all xk
a
yj in A

pY1yj ƒ xk2pX1xk2
P3Y in A4 = a

all xk
a
yj in A

pX,Y1xk , yj2
X = x.

pX,Y1xk , yj2 = pY1yj ƒ xk2pX1xk2 and pX,Y1xk , yj2 = pX1xk ƒ yj2pY1yj2.

pX,Y1x, y2
X = xk

pY1yj ƒ xk2 =
P3X = xk ,Y = yj4
P3X = xk4 = P3Y = yj4 = pY1yj2.

P3Y in A ƒX = xk4 = a
yj in A

pY1yj ƒ xk2.

X = xk
pX1xk2.

X = xkpX,Y1xk ,y2pY1y ƒ xk2

5y1 , y2 , Á 6. pY1y ƒ x2 7 0pY1y ƒ x2
P3X = x4 = 0.pY1y ƒ x2 = 0P3X = x4 7 0.

pY1y ƒ x2 = P3Y = y ƒX = x4 =
P3X = x, Y = y4
P3X = x4 =

pX,Y1x, y2
pX1x2

X � x
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Example 5.29 Loaded Dice

Find in the loaded dice experiment considered in Examples 5.6 and 5.8.
In Example 5.8 we found that Therefore:

Clearly this die is loaded.

Example 5.30 Number of Defects in a Region; Random Splitting of Poisson Counts

The total number of defects X on a chip is a Poisson random variable with mean Each defect
has a probability p of falling in a specific region R and the location of each defect is independent
of the locations of other defects. Find the pmf of the number of defects Y that fall in the region R.

We can imagine performing a Bernoulli trial each time a defect occurs with a “success”
occurring when the defect falls in the region R. If the total number of defects is then Y
is a binomial random variable with parameters k and p:

From Eq. (5.38) and noting that we have

Thus Y is a Poisson random variable with mean 

Suppose Y is a continuous random variable. Eq. (5.33) can be used to define the
conditional cdf of Y given

(5.39)

It is easy to show that satisfies all the properties of a cdf. The conditional pdf
of Y given if the derivative exists, is given by

(5.40)fY1y ƒ xk2 =
d

dy
FY1y ƒ xk2.

X � xk,
FY1y ƒ xk2

FY1y ƒ xk2 =
P3Y … y,X = xk4
P3X = xk4 , for P3X = xk4 7 0.

X � xk:

ap.

=
1ap2je-a
j!

e11-p2a =
1ap2j
j!
e-ap.

=
1ap2je-a
j! a

q

k= j

511 - p2a6k- j
1k - j2!

pY1j2 = a
q

k=0
pY1j ƒ k2pX1k2 = a

q

k= j

k!
j!1k - j2!pj11 - p2k- jak

k!
e-a

k Ú j,

pY1j ƒ k2 = c 0

ak
j
bpj11 - p2k- j

 
j 7 k

0 … j … k.

X = k,

a.

pY11 ƒ 52 = pY12 ƒ 52 = pY13 ƒ 52 = pY14 ƒ 52 = pY16 ƒ 52 = 1/7.

pY1y ƒ 52 =
pX,Y15, y2
pX152  and so pY15 ƒ 52 = 2/7 and

pX152 = 1/6.
pY1y ƒ 52
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If X and Y are independent, so
and The probability of event A given is obtained by

integrating the conditional pdf:

(5.41)

We obtain P[Y in A] using Eq. (5.38).

Example 5.31 Binary Communications System

The input X to a communication channel assumes the values or with probabilities 1/3 and
2/3. The output Y of the channel is given by where N is a zero-mean, unit variance
Gaussian random variable. Find the conditional pdf of Y given and given 
Find

The conditional cdf of Y given is:

where we noted that if then and Y depends only on N. Thus, if 
then Y is a Gaussian random variable with mean 1 and unit variance. Similarly, if then
Y is Gaussian with mean and unit variance.

The probabilities that given and is:

Applying Eq. (5.38), we obtain:

From Bayes’ theorem we find:

We conclude that if then is more likely than Therefore the receiver
should decide that the input is when it observes 

In the previous example, we made an interesting step that is worth elaborating on
because it comes up quite frequently: where

Let’s take a closer look:Y = X + N.
P3Y … y ƒX = +14 = P3N + 1 … y4,

Y 7 0.X = +1
X = -1.X = +1Y 7 0,

P3X = +1 ƒ Y 7 04 =
P3Y 7 0 ƒX = +14P3X = +14

P3Y 7 04 =
11 - Q1122/3
11 + Q1122/3 = 0.726.

P3Y 7 04 = P3Y 7 0 ƒX = +14 1
3

+ P3Y 7 0 ƒX = -14 2
3

= 0.386.

P3Y 7 0 ƒX = -14 = L
q

0
 

1

22p
e-1x+122/2 dx = L

q

1
 

1

22p
e-t

2/2 dt = Q112 = 0.159.

P3Y 7 0 ƒX = +14 = L
 q

0 

1

22p
e-1x-122/2 dx = L

q

-1 

1

22p
e-t

2/2 dt = 1 - Q112 = 0.841.

X = -1X = +1Y 7 0
-1

X = -1,
X = +1,Y = N + 1X = +1,

= P3N … y - 14 = L
y-1

-q  

1

22p
e-x

2/2 dx

FY1y ƒ +12 = P3Y … y ƒX = +14 = P3N + 1 … y4
X = +1

P3X = +1 ƒ Y 7 04.
X = -1.X = +1,

Y = X + N,
-1+1

P3Y in A ƒX = xk4 = Ly in A
fY1y ƒ xk2 dy.

X = xkfY1y ƒ x2 = fY1y2.FY1y2
FY1y ƒ x2 =P3Y … y,X = Xk4 = P3Y … y4P3X = Xk4



Section 5.7 Conditional Probability and Conditional Expectation 265

In the first line, the events and are quite different. The
first involves the two random variables X and N, whereas the second only involves N
and consequently is much simpler. We can then apply an expression such as Eq. (5.38)
to obtain The step we made in the example, however, is even more interest-
ing. Since X and N are independent random variables, we can take the expression one
step further:

The independence of X and N allows us to dispense with the conditioning on x alto-
gether!

Case 2: X Is a Continuous Random Variable

If X is a continuous random variable, then so Eq. (5.33) is undefined
for all x. If X and Y have a joint pdf that is continuous and nonzero over some region
of the plane, we define the conditional cdf of Y given by the following limiting
procedure:

(5.42)

The conditional cdf on the right side of Eq. (5.42) is:

(5.43)

As we let h approach zero, Eqs. (5.42) and (5.43) imply that

(5.44)

The conditional pdf of Y given is then:

(5.45)fY1y ƒ x2 =
d

dy
FY1y ƒ x2 =

fX,Y1x, y2
fX1x2 .

X � x

FY1y ƒ x2 = L
y

-q
fX,Y1x, y¿2 dy¿
fX1x2 .

= L
y

-qL
x+h

x
fX,Y1x¿, y¿2 dx¿ dy¿

L
x+h

x
fX1x¿2 dx¿

= L
y

-q
fX,Y1x, y¿2 dy¿h
fX1x2h .

FY1y ƒ x 6 X … x + h2 =
P3Y … y, x 6 X … x + h4
P3x 6 X … x + h4

FY1y ƒ x2 = lim
h:0
FY1y ƒ x 6 X … x + h2.

X � x

P3X = x4 = 0

P3Y … z ƒX = x4 = P3N … z - x ƒX = x4 = P3N … z - x4.

P3Y … z4.

5x + N … z65X + N … z6
= P3x + N … z ƒX = x4 = P3N … z - x ƒX = x4.

P3Y … z ƒX = x4 =
P35X + N … z6 ¨ 5X = x64

P3X = x4 =
P35x + N … z6 ¨ 5X = x64

P3X = x4
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It is easy to show that satisfies the properties of a pdf.We can interpret 
as the probability that Y is in the infinitesimal strip defined by given that X
is in the infinitesimal strip defined by as shown in Fig. 5.19.

The probability of event A given is obtained as follows:

(5.46)

There is a strong resemblance between Eq. (5.34) for the discrete case and Eq. (5.45)
for the continuous case. Indeed many of the same properties hold. For example, we
obtain the multiplication rule from Eq. (5.45):

(5.47)

If X and Y are independent, then and 
and

By combining Eqs. (5.46) and (5.47), we can show that:

(5.48)

You can think of Eq. (5.48) as the “continuous” version of the theorem on total probabili-
ty. The following examples show the usefulness of the above results in calculating the
probabilities of complicated events.

P3Y in A4 = L
q

-q 
P3Y in A ƒX = x4fX1x2 dx.

FX1x ƒ y2 = FX1x2.FY1y ƒ x2 = FY1y2,fX1x ƒ y2 = fX1x2,
fY1y ƒ x2 = fY1y2 ,fX,Y1x, y2 = fX1x2fY1y2

fX,Y1x, y2 = fY1y ƒ x2fX1x2 and fX,Y1x, y2 = fX1x ƒ y2fY1y2.

P3Y in A ƒX = x4 = Ly in A
fY1y ƒ x2 dy.

X = x
1x, x + dx2, 1y, y + dy2 fY

1y ƒ x2 dyfY1y ƒ x2

fy(y	x)dy �
fx(x)dx

y

y � dy
y

x x � dx x

fXY(x,y)dxdy

fX,Y(x,y)

FIGURE 5.19
Interpretation of conditional pdf.
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Example 5.32

Let X and Y be the random variables in Example 5.8. Find and 
Using the marginal pdf’s obtained in Example 5.8, we have

The conditional pdf of X is an exponential pdf shifted by y to the right. The conditional pdf of Y
is an exponential pdf that has been truncated to the interval [0, x].

Example 5.33 Number of Arrivals During a Customer’s Service Time

The number N of customers that arrive at a service station during a time t is a Poisson random
variable with parameter The time T required to service each customer is an exponential ran-
dom variable with parameter Find the pmf for the number N that arrive during the service
time T of a specific customer. Assume that the customer arrivals are independent of the
customer service time.

Equation (5.48) holds even if Y is a discrete random variable, thus

Let then

where we have used the fact that the last integral is a gamma function and is equal to k!. Thus N
is a geometric random variable with probability of “success” Each time a customer
arrives we can imagine that a new Bernoulli trial begins where “success” occurs if the customer’s
service time is completed before the next arrival.

Example 5.34

X is selected at random from the unit interval; Y is then selected at random from the inter-
val(0, X). Find the cdf of Y.

a/1a + b2.

=
abk

1a + b2k+1
= a a

1a + b2 b a
b

1a + b2 b
k

,

P3N = k4 =
abk

k!1a + b2k+1L
q

0
rke-r dr

r = 1a + b2t,
=
abk

k! L
q

0
tke-1a+b2t dt.

= L
q

0

1bt2k
k!
e-btae-at dt

P3N = k4 = L
q

0
P3N = k ƒ T = t4fT1t2 dt

a.
bt.

fY1y ƒ x2 =
2e-xe-y

2e-x11 - e-x2 =
e-y

1 - e-x
for 0 6 y 6 x.

fX1y ƒ x2 =
2e-xe-y

2e-2y = e-1x-y2 for x Ú y

fY1y ƒ x2.fX1x ƒ y2
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When Y is uniformly distributed in (0, x) so the conditional cdf given is

Equation (5.48) and the above conditional cdf yield:

The corresponding pdf is obtained by taking the derivative of the cdf:

Example 5.35 Maximum A Posteriori Receiver

For the communications system in Example 5.31, find the probability that the input was 
given that the output of the channel is 

This is a tricky version of Bayes’ rule. Condition on the event instead
of

The above expression is equal to when For is more likely, and
for is more likely. A receiver that selects the input X that is more likely given

is called a maximum a posteriori receiver.

5.7.2 Conditional Expectation

The conditional expectation of Y given is defined by

(5.49a)E3Y ƒ x4 = L
q

-q
yfY1y ƒ x2 dy.

X � x

Y = y
y 6 yT ,X = -1

y 7 yT ,X = +1yT = 0.3466.1/2

=
e-1y-122/2

e-1y-122/2 + 2e-1y+122/2 =
1

1 + 2e-2y .

=

1

22p
e-1y-122/211/32

1

22p
e-1y-122/211/32 +

1

22p
e-1y+122/212/32

=
fY1y ƒ +12¢11/32

fY1y ƒ +12¢11/32 + fY1y ƒ -12¢12/32

P3X = +1 ƒ y 6 Y 6 y + ¢4 =
P3y 6 Y 6 y + ¢ ƒX = +14P3X = +14

P3y 6 Y 6 y + ¢4

5Y = y6:
5y 6 Y … y + ¢6

Y = y.
X = +1

fY1y2 = - ln y 0 … y … 1.

= L
y

0
1 dx¿ + L

1

y

y

x¿
dx¿ = y - y ln y.

FY1y2 = P3Y … y4 = L
1

0
P3Y … y ƒX = x4fX1x2 dx =

P3Y … y ƒX = k4 = by/x 0 … y … x
1 x 6 y.

X = xX = x,
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In the special case where X and Y are both discrete random variables we have:

(5.49b)

Clearly, is simply the center of mass associated with the conditional pdf or pmf.
The conditional expectation can be viewed as defining a function of x:

It therefore makes sense to talk about the random variable 
We can imagine that a random experiment is performed and a value for 

X is obtained, say and then the value is produced.We are in-
terested in In particular, we now show that

(5.50)

where the right-hand side is

(5.51a)

(5.51b)

We prove Eq. (5.50) for the case where X and Y are jointly continuous random
variables, then

The above result also holds for the expected value of a function of Y:

In particular, the kth moment of Y is given by

Example 5.36 Average Number of Defects in a Region

Find the mean of Y in Example 5.30 using conditional expectation.

E3Y4 = a
q

k=0
E3Y ƒX = k4P3X = k4 = a

q

k=0
kpP3X = k4 = pE3X4 = pa.

E3Yk4 = E3E3Yk ƒX44.

E3h1Y24 = E3E3h1Y2 ƒX44.

= L
q

-q
yfY1y2 dy = E3Y4.

= L
q

-q
yL

q

-q
fX,Y1x, y2 dx dy

= L
q

-qL
q

-q
yfY1y ƒ x2 dy fX1x2 dx

E3E3Y ƒX44 = L
q

-q
E3Y ƒ x4fX1x2 dx

E3E3Y ƒX44 = a
xk

E3Y ƒ xk4pX1xk2 X discrete.

E3E3Y ƒX44 = L
q

-q
E3Y ƒ x4fX1x2 dx X continuous

E3Y4 = E3E3Y ƒX44,
E3g1X24 = E3E3Y ƒX44.

g1x02 = E3Y ƒ x04X = x0 ,
E3Y ƒX4.

g1X2 =g1x2 = E3Y ƒ x4.
E3Y ƒ x4

E3Y ƒ x4
E3Y ƒ xk4 = a

yj

yjpY1yj ƒ xk2.
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The second equality uses the fact that since Y is binomial with para-
meters k and p. Note that the second to the last equality holds for any pmf of X. The fact that X
is Poisson with mean is not used until the last equality.

Example 5.37 Binary Communications Channel

Find the mean of the output Y in the communications channel in Example 5.31.
Since Y is a Gaussian random variable with mean when and when

the conditional expected values of Y given X are:

Equation (5.38b) implies

The mean is negative because the inputs occur twice as often as 

Example 5.38 Average Number of Arrivals in a Service Time

Find the mean and variance of the number of customer arrivals N during the service time T of a
specific customer in Example (5.33).

N is a Poisson random variable with parameter when is given, so the first two
conditional moments are:

The first two moments of N are obtained from Eq. (5.50):

The variance of N is then

Note that if T is not random (i.e., and ) then the mean and
variance of N are those of a Poisson random variable with parameter When T is random,
the mean of N remains the same but the variance of N increases by the term that is,
the variability of T causes greater variability in N. Up to this point, we have intentionally avoid-
ed using the fact that T has an exponential distribution to emphasize that the above results hold

b2 VAR3T4,
bE3T4.

VAR3T4 = 0E3T4 = constant

= b2 VAR3T4 + bE3T4.
= b2E3T24 + bE3T4 - b21E3T422

VAR3N4 = E3N24 - 1E3N422

= bE3T4 + b2E3T24.
E3N24 = L

q

0
E3N2 ƒ T = t4fT1t2 dt = L

q

0
5bt + b2t26fT1t2 dt

E3N4 = L
q

0
E3N ƒ T = t4fT1t2 dt = L

q

0
btfT1t2 dt = bE3T4

E3N ƒ T = t4 = bt E3N2 ƒ T = t4 = 1bt2 + 1bt22.

T = tbt

X = +1.X = -1

E3Y4 = a
q

k=0
E3Y ƒX = k4P3X = k4 = +111/32 - 112/32 = -1/3.

E3Y ƒ +14 = 1 and E3Y ƒ -14 = -1.

X = -1,
-1X = +1,+1

a

E3Y ƒX = k4 = kp
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for any service time distribution If T is exponential with parameter then and
so

5.8 FUNCTIONS OF TWO RANDOM VARIABLES

Quite often we are interested in one or more functions of the random variables associat-
ed with some experiment. For example, if we make repeated measurements of the same
random quantity, we might be interested in the maximum and minimum value in the set,
as well as the sample mean and sample variance. In this section we present methods of
determining the probabilities of events involving functions of two random variables.

5.8.1 One Function of Two Random Variables

Let the random variable Z be defined as a function of two random variables:

(5.52)

The cdf of Z is found by first finding the equivalent event of that is, the set
such that then

(5.53)

The pdf of Z is then found by taking the derivative of 

Example 5.39 Sum of Two Random Variables

Let Find and in terms of the joint pdf of X and Y.
The cdf of Z is found by integrating the joint pdf of X and Y over the region of the plane

corresponding to the event as shown in Fig. 5.20.5Z … z6,
fZ1z2FZ1z2Z = X + Y.

Fz1z2.

Fz1z2 = P3X in Rz4 = O1x, y2HRz 
fX,Y1x¿, y¿2 dx¿ dy¿.

g1x2 … z6,Rz = 5x = 1x, y2 5Z … z6,
Z = g1X, Y2.

E3N4 =
b

a
and VAR3N4 =

b2

a2 +
b

a
.

VAR3T4 = 1/a2,
E3T4 = 1/aa,fT1t2.

y

x

y � �x 
 z

FIGURE 5.20
P3Z … z4 = P3X + Y … z4.
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The pdf of Z is

(5.54)

Thus the pdf for the sum of two random variables is given by a superposition integral.
If X and Y are independent random variables, then by Eq. (5.23) the pdf is given by the

convolution integral of the marginal pdf’s of X and Y:

(5.55)

In Chapter 7 we show how transform methods are used to evaluate convolution integrals such as
Eq. (5.55).

Example 5.40 Sum of Nonindependent Gaussian Random Variables

Find the pdf of the sum of two zero-mean, unit-variance Gaussian random vari-
ables with correlation coefficient 

The joint pdf for this pair of random variables was given in Example 5.18. The pdf of Z is
obtained by substituting the pdf for the joint Gaussian random variables into the superposition
integral found in Example 5.39:

After completing the square of the argument in the exponent we obtain

Thus the sum of these two nonindependent Gaussian random variables is also a zero-mean, unit-
variance Gaussian random variable.

Example 5.41 A System with Standby Redundancy

A system with standby redundancy has a single key component in operation and a duplicate of
that component in standby mode. When the first component fails, the second component is put
into operation. Find the pdf of the lifetime of the standby system if the components have inde-
pendent exponentially distributed lifetimes with the same mean.

Let and be the lifetimes of the two components, then the system lifetime is
and the pdf of T is given by Eq. (5.55). The terms in the integrand areT = T1 + T2 ,

T2T1

fZ1z2 =
e-z

2/2

22p
.

=
1

2p13/421/2L
q

-q
e-1x¿2-x¿z+z22/213/42 dx¿.

=
1

2p11 - r221/2L
q

-q
e-3x¿2-2rx¿1z-x¿2+1z-x¿224/211-r22 dx¿

fZ1z2 = L
q

-q
fX,Y1x¿, z - x¿2 dx¿

r = -1/2.
Z = X + Y

fZ1z2 = L
q

-q
fX1x¿2fY1z - x¿2 dx¿.

fZ1z2 =
d

dz
FZ1z2 = L

q

-q
fX,Y1x¿, z - x¿2 dx¿.

FZ1z2 = L
q

-qL
z-x¿

-q
fX,Y1x¿, y¿2 dy¿ dx¿.
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Note that the first equation sets the lower limit of integration to 0 and the second equation sets
the upper limit to z. Equation (5.55) becomes

Thus T is an Erlang random variable with parameter 

The conditional pdf can be used to find the pdf of a function of several random
variables. Let and suppose we are given that then 
is a function of one random variable. Therefore we can use the methods developed in
Section 4.5 for single random variables to find the pdf of Z given
The pdf of Z is then found from

Example 5.42

Let Find the pdf of Z if X and Y are independent and both exponentially distributed
with mean one.

Assume then is simply a scaled version of X. Therefore from Example
4.31

The pdf of Z is therefore

We now use the fact that X and Y are independent and exponentially distributed with mean one:

=
1

11 + z22 z 7 0.

= L
q

0
y¿e-y¿ze-y¿ dy¿

fZ1z2 = L
q

0
y¿fX1y¿z2fY1y¿2 dy¿ z 7 0

fZ1z2 = L
q

-q
ƒ y¿ ƒ fX1y¿z ƒ y¿2fY1y¿2 dy¿ = L

q

-q
ƒ y¿ ƒ fX,Y1y¿z, y¿2 dy¿.

fZ1z ƒ y2 = ƒ y ƒfX1yz ƒ y2.

Z = X/yY = y,

Z = X/Y.

fZ1z2 = L
q

-q
fZ1z ƒ y¿2fY1y¿2 dy¿.

Y = y: fZ1z ƒ Y = y2.
Z = g1X, y2Y = y,Z = g1X, Y2,

m = 2.

= l2e-lzL
z

0
dx = l2ze-lz.

fT1z2 = L
z

0
le-lxle-l1z-x2 dx

fT2
1z - x2 = ble-l1z-x2 z - x Ú 0

0 x 7 z.

fT1
1x2 = ble-lx x Ú 0

0 x 6 0
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5.8.2 Transformations of Two Random Variables

Let X and Y be random variables associated with some experiment, and let the random
variables and be defined by two functions of 

We now consider the problem of finding the joint cdf and pdf of and 
The joint cdf of and at the point is equal to the probability of

the region of x where for 

(5.56a)

If X, Y have a joint pdf, then

(5.56b)

Example 5.43

Let the random variables W and Z be defined by

Find the joint cdf of W and Z in terms of the joint cdf of X and Y.
Equation (5.56a) implies that

The region corresponding to this event is shown in Fig. 5.21. From the figure it is clear that if
the above probability is the probability of the semi-infinite rectangle defined by thez 7 w,

FW, Z1w z2 = P35min1X, Y2 … w6 ¨ 5max1X, Y2 … z64.

W = min1X, Y2 and Z = max1X, Y2.

Fz1, z2
1z1 , z22 = O

x¿: gk1x¿2…zk

fX,Y1x¿, y¿2 dx¿ dy¿.

Fz1, z2
1z1 , z22 = P3g11X2 … z1 , g21X2 … z24.

k = 1, 2:gk1x2 … zk
z = 1z1 , z22Z2Z1

Z2 .Z1

Z1 = g11X2 and Z2 = g21X2.
X = 1X, Y2:Z2Z1

(z, z)

(w, w)
A

FIGURE 5.21

5max1X, Y2 … z = 5X … z6 ¨ 5Y … z6.
5min1X, Y2 … w = 5X … w6 ´ 5Y … w6 and 
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point (z, z) minus the square region denoted by A. Thus if 

If then

Example 5.44 Radius and Angle of Independent Gaussian Random Variables

Let X and Y be zero-mean, unit-variance independent Gaussian random variables. Find the joint
cdf and pdf of R and the radius and angle of the point (X, Y):

The joint cdf of R and is:

where

The region is the pie-shaped region in Fig. 5.22. We change variables from Cartesian to
polar coordinates to obtain:

(5.57)=
u0

2p
A1 - e-r0

2/2 B , 0 6 u0 6 2p 0 6 r0 6 q .

FR,® 1r0 , u02 = P3R … r0 , ® … u04 = L
r0

0 L
 u0

0 

e-r
2/2

2p
r dr du

Rr0,u0

R1r0, u02 = 51x, y2:2x2 + y2 … r0 , 0 6 tan-11Y/X2 … u06.

FR, ®1r0 , u02 = P3R … r0 , ® … u04 = O1x, y2HR1r0, u02

e-1x2+y22/2
2p

dx dy

®

R = 1X2 + Y221/2  ® = tan-1 1Y/X2.
®,

FW,Z1w, z2 = FX,Y1z, z2.
z 6 w

= FX,Y1w, z2 + FX,Y1z, w2 - FX,Y1w, w2.
- 5FX,Y1z, z2 - FX,Y1w, z2 - FX,Y1z, w2 + FX,Y1w, w26

= FX,Y1z, z2
FW, Z1w, z2 = FX,Y1z, z2 - P3A4

z 7 w,

y

x

r0

θ0

FIGURE 5.22
Region of integration in Example 5.44.Rr0, u0
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R and are independent random variables, where R has a Rayleigh distribution and is
uniformly distributed in The joint pdf is obtained by taking partial derivatives with
respect to r and

This transformation maps every point in the plane from Cartesian coordinates to polar
coordinates.We can also go backwards from polar to Cartesian coordinates. First we generate in-
dependent Rayleigh R and uniform random variables.We then transform R and into Carte-
sian coordinates to obtain an independent pair of zero-mean, unit-variance Gaussians. Neat!

5.8.3 pdf of Linear Transformations

The joint pdf of Z can be found directly in terms of the joint pdf of X by finding the
equivalent events of infinitesimal rectangles. We consider the linear transformation of
two random variables:

Denote the above matrix by A. We will assume that A has an inverse, that is, it has de-
terminant so each point (v, w) has a unique corresponding point (x, y)
obtained from

(5.58)

Consider the infinitesimal rectangle shown in Fig. 5.23. The points in this rectangle are
mapped into the parallelogram shown in the figure.The infinitesimal rectangle and the
parallelogram are equivalent events, so their probabilities must be equal. Thus

where dP is the area of the parallelogram. The joint pdf of V and W is thus given by

(5.59)

where x and y are related to by Eq. (5.58). Equation (5.59) states that the joint
pdf of V and W at is the pdf of X and Y at the corresponding point (x, y), but
rescaled by the “stretch factor” dP/dx dy. It can be shown that 
so the “stretch factor” is

` dP
dx dy

` = ƒae - bc ƒ 1dx dy2
1dx dy2 = ƒae - bc ƒ = ƒA ƒ ,

dx dy,dP = 1 ƒae - bc ƒ 2
1v, w2

1v, w2

fV,W1v, w2 =
fX,Y1x, y2
` dP
dx dy

`
,

fX,Y1x, y2dx dy M fV,W1v, w2 dP

Bx
y
R = A-1B v

w
R .

ƒae - bc ƒ Z 0,

V = aX + bY
W = cX + eY

or BV
W
R = Ba b

c e
R BX
Y
R .

®®

=
1

2p
Are-r2/2 B , 0 6 u 6 2p 0 6 r 6 q .

fR,®1r, u2 =
02

0r0u
u

2p
11 - e-r

2/22
u:

10, 2p2.
®®
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where is the determinant of A.
The above result can be written compactly using matrix notation. Let the vector

Z be

where A is an invertible matrix. The joint pdf of Z is then

(5.60)

Example 5.45 Linear Transformation of Jointly Gaussian Random Variables

Let X and Y be the jointly Gaussian random variables introduced in Example 5.18. Let V and W
be obtained from (X, Y) by

Find the joint pdf of V and W.
The determinant of the matrix is and the inverse mapping is given by

so and Therefore the pdf of V and W is

fV,W1v, w2 = fX,Y¢v - w
22

,
v + w
22

≤ ,

Y = 1V + W2/22.X = 1V - W2/22

BX
Y
R =

1

22
B1 -1

1 1
R BV
W
R ,

ƒA ƒ = 1,

BV
W
R =

1

22
B 1 1
-1 1

R BX
Y
R = ABX

Y
R .

fz1z2 =
fx1A-1z2.

ƒA ƒ

n * n

Z = AX,

ƒA ƒ

y w

vx

(x, y 
 dy)

(x, y)

(x 
 dx, y 
 dy)

(v 
 adx 
 bdy, w 
 cdx 
 edy)

(v
 bdy, w 
 edy)

(v
 adx, w 
 cdx)

v � ax 
 by
w � cx 
 ey

(v, w)(x 
 dx, y)

FIGURE 5.23
Image of an infinitesimal rectangle under a linear transformation.
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where

By substituting for x and y, the argument of the exponent becomes

Thus

It can be seen that the transformed variables V and W are independent, zero-mean Gauss-
ian random variables with variance and respectively. Figure 5.24 shows contours of
equal value of the joint pdf of (X, Y). It can be seen that the pdf has elliptical symmetry about
the origin with principal axes at 45° with respect to the axes of the plane. In Section 5.9 we show
that the above linear transformation corresponds to a rotation of the coordinate system so that
the axes of the plane are aligned with the axes of the ellipse.

5.9 PAIRS OF JOINTLY GAUSSIAN RANDOM VARIABLES

The jointly Gaussian random variables appear in numerous applications in electrical
engineering.They are frequently used to model signals in signal processing applications,
and they are the most important model used in communication systems that involve
dealing with signals in the presence of noise. They also play a central role in many sta-
tistical methods.

The random variables X and Y are said to be jointly Gaussian if their joint pdf
has the form

(5.61a)
for and 

The pdf is centered at the point and it has a bell shape that depends on
the values of and as shown in Fig. 5.25. As shown in the figure, the pdf is
constant for values x and y for which the argument of the exponent is constant:

(5.61b)B ¢x - m1

s1
≤2

- 2rX,Y¢x - m1

s1
≤ ¢y - m2

s2
≤ + ¢y - m2

s2
≤2R = constant.

rX,Ys1 , s2 ,
1m1 ,m22,

-q 6 y 6 q .-q 6 x 6 q

fX, Y1x, y2 =

expb -1

211 - rX,Y
2 2 B¢x -m1

s1
≤2

- 2rX,Y¢x -m1

s1
≤ ¢y-m2

s2
≤ + ¢y-m2

s2
≤2R r

2ps1s221 - rX,Y
2

1 - r,1 + r

fV,W1v, w2 =
1

2p11 - r221/2 e
-53v2/211+r24+ 3w2/211-r246.

=
v2

211 + r2 +
w2

211 - r2 .

1v - w22/2 - 2r1v - w21v + w2/2 + 1v + w22/2
211 - r22

fX,Y1x, y2 =
1

2p21 - r2
e-1x2-2rxy+y22/211-r22.
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Figure 5.26 shows the orientation of these elliptical contours for various values of 
and When that is, when X and Y are independent, the equal-pdf contour
is an ellipse with principal axes aligned with the x- and y-axes.When the major
axis of the ellipse is oriented along the angle [Edwards and Penney, pp. 570–571]

(5.62)

Note that the angle is 45° when the variances are equal.

u = 1
2 arctan-1 tan¢ 2rX,Ys1s2

s1
2 - s2

2 ≤ .

rX,Y Z 0,
rX,Y = 0,rX,Y .

s1 , s2 ,

y
v

w

x

FIGURE 5.24
Contours of equal value of joint Gaussian pdf
discussed in Example 5.45.

(a) (b)

FIGURE 5.25
Jointly Gaussian pdf (a) = 0 (b) = – 0.9.rr
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The marginal pdf of X is found by integrating over all y. The integra-
tion is carried out by completing the square in the exponent as was done in Example
5.18. The result is that the marginal pdf of X is

(5.63)

that is, X is a Gaussian random variable with mean and variance Similarly, the
marginal pdf for Y is found to be Gaussian with pdf mean and variance 

The conditional pdf’s and give us information about the inter-
relation between X and Y. The conditional pdf of X given is

(5.64)=

expb -1

211 - rX,Y
2 2s1

2 Bx - rX,Y
s1

s2
1y - m22 - m1R2 r

22ps1
211 - rX,Y

2 2 .

fX1x ƒ y2 =
fX,Y1x, y2
fY1y2

Y = y
fY1y ƒ x2fX1x ƒ y2 s2

2 .m2

s1
2 .m1

fX1x2 =
e-1x-m122/2s1

2

22ps1

,

fX,Y1x, y2
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x
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1
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2
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σ1 � σ2
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σ1 � σ2
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π
2

π
4

� θ �

π
4
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π
4

y

(a)

(c)

(b)

(m 1,
m 2)

FIGURE 5.26
Orientation of contours of equal value of joint Gaussian pdf for rX,Y 7 0.
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Equation (5.64) shows that the conditional pdf of X given is also Gaussian but with
conditional mean and conditional variance 
Note that when the conditional pdf of X given equals the marginal pdf
of X.This is consistent with the fact that X and Y are independent when On the
other hand, as the variance of X about the conditional mean approaches zero,
so the conditional pdf approaches a delta function at the conditional mean. Thus when

the conditional variance is zero and X is equal to the conditional mean with
probability one.We note that similarly is Gaussian with conditional mean 

and conditional variance 
We now show that the in Eq. (5.61a) is indeed the correlation coefficient

between X and Y. The covariance between X and Y is defined by

Now the conditional expectation of given is

where we have used the fact that the conditional mean of X given is
Therefore

and

The above equation is consistent with the definition of the correlation coefficient,
Thus the in Eq. (5.61a) is indeed the correlation coeffi-

cient between X and Y.

Example 5.46

The amount of yearly rainfall in city 1 and in city 2 is modeled by a pair of jointly Gaussian random vari-
ables,X and Y,with pdf given by Eq.(5.61a).Find the most likely value of X given that we know 

The most likely value of X given is the value of x for which is maximum.The
conditional pdf of X given is given by Eq. (5.64), which is maximum at the conditional mean

Note that this “maximum likelihood” estimate is a linear function of the observation y.

E3X ƒ y4 = m1 + rX,Y
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s2
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Y = y
fX1x ƒ y2Y = y
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s2
1Y - m222
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Y = y

= 1y - m22¢rX,Y
s1

s2
1y - m22≤ ,

= 1y - m221E3X ƒ Y = y4 - m12
E31X - m121Y - m22 ƒ Y = y4 = 1y - m22E3X - m1 ƒ Y = y4

Y = y1X - m121Y - m22
= E3E31X - m121Y - m22 ƒ Y44.

COV1X, Y2 = E31X - m121Y - m224

rX,Y

s2
211-rX,Y

2 2.1s2/s121x - m12
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211 - rX,Y
2 2.m1 + rX,Y1s1/s221y - m22
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Example 5.47 Estimation of Signal in Noise

Let where X (the “signal”) and N (the “noise’) are independent zero-mean Gaussian
random variables with different variances. Find the correlation coefficient between the observed
signal Y and the desired signal X. Find the value of x that maximizes 

The mean and variance of Y and the covariance of X and Y are:

Therefore, the correlation coefficient is:

Note that 
To find the joint pdf of X and Y consider the following linear transformation:

From Eq. (5.52) we have:

The conditional pdf of the signal X given the observation Y is then:

This pdf has its maximum value, when the argument of the exponent is zero, that is,
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θ

y

v

w

x

FIGURE 5.27
A rotation of the coordinate system transforms a pair of
dependent Gaussian random variables into a pair of independent
Gaussian random variables.

The signal-to-noise ratio (SNR) is defined as the ratio of the variance of X and the variance of N.
At high SNRs this estimator gives and at very low signal-to-noise ratios, it gives 

Example 5.48 Rotation of Jointly Gaussian Random Variables

The ellipse corresponding to an arbitrary two-dimensional Gaussian vector forms an angle

relative to the x-axis. Suppose we define a new coordinate system whose axes are aligned with those
of the ellipse as shown in Fig. 5.27.This is accomplished by using the following rotation matrix:

To show that the new random variables are independent it suffices to show that they have
covariance zero:

=
cos 2u31s2

2 - s1
22 tan 2u + 2 COV1X, Y24

2
.

=
1s2

2 - s1
22sin 2u + 2 COV1X, Y2cos 2u

2

-COV1X, Y2sin2 u + s2
2 sin u cos u

= -s1
2 sin u cos u + COV1X, Y2cos2 u

* 5-1X - m12sin u + 1Y - m22 cos u64
= E351X - m12cos u + 1Y - m22sin u6

COV1V,W2 = E31V - E3V421W - E3W424

BV
W
R = B  cos u sin u

-sin u cos u
R BX
Y
R .

u =
1
2

 arctan¢ 2rs1s2

s1
2 - s2

2 ≤

x L 0.x L y,
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If we let the angle of rotation be such that

then the covariance of V and W is zero as required.

5.10 GENERATING INDEPENDENT GAUSSIAN RANDOM VARIABLES

We now present a method for generating unit-variance, uncorrelated (and hence inde-
pendent) jointly Gaussian random variables. Suppose that X and Y are two indepen-
dent zero-mean, unit-variance jointly Gaussian random variables with pdf:

In Example 5.44 we saw that the transformation

leads to the pair of independent random variables

where R is a Rayleigh random variable and is a uniform random variable.The above
transformation is invertible. Therefore we can also start with independent Rayleigh
and uniform random variables and produce zero-mean, unit-variance independent
Gaussian random variables through the transformation:

(5.65)

Consider where R is a Rayleigh random variable. From Example 5.41
we then have that: W has pdf

has an exponential distribution with 
Therefore we can generate by generating an exponential random variable

with parameter 1/2, and we can generate by generating a random variable that is
uniformly distributed in the interval If we substitute these random variables
into Eq. (5.65), we then obtain a pair of independent zero-mean, unit-variance Gauss-
ian random variables. The above discussion thus leads to the following algorithm:

1. Generate and two independent random variables uniformly distributed in
the unit interval.

2. Let

3. Let
sin 2pU2 .
X = R cos ® = 1-2 log U121/2 cos 2pU2 and Y = R sin ® = 1-2 log U121/2

R2 = -2 log U1 and ® = 2pU2 .

U2 ,U1

10, 2p2.®
R2
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1
2
e-w/2.

W = R2

X = R cos ® and Y = R sin ®.
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2p
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2/2 = fR1r2f®1u2,

R = 2X2 + Y2 and ® = tan-1 Y/X

fX,Y1x, y2 =
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e-1x2+y22/2.

*

tan 2u =
2 COV1X, Y2
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2 - s2
2 ,

u
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FIGURE 5.28
Histogram of 1000 observations of a Gaussian random variable.

Then X and Y are independent, zero-mean, unit-variance Gaussian random vari-
ables. By repeating the above procedure we can generate any number of such ran-
dom variables.

Example 5.49

Use Octave or MATLAB to generate 1000 independent zero-mean, unit-variance Gaussian ran-
dom variables. Compare a histogram of the observed values with the pdf of a zero-mean unit-
variance random variable.

The Octave commands below show the steps for generating the Gaussian random vari-
ables. A set of histogram range values K from to 4 is created and used to build a normalized
histogram Z. The points in Z are then plotted and compared to the value predicted to fall in
each interval by the Gaussian pdf. These plots are shown in Fig. 5.28, which shows excellent
agreement.

> U1=rand(1000,1); % Create a 1000-element vector U1 (step 1).

> U2=rand(1000,1); % Create a 1000-element vector U2 (step 1).

> R2=-2*log(U1); % Find (step 2).

> TH=2*pi*U2; % Find (step 2).

> X=sqrt(R2).*sin(TH); % Generate X (step 3).

u

R2

-4
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> Y=sqrt(R2).*cos(TH); % Generate Y (step 3).

> K=-4:.2:4; % Create histogram range values K.

> Z=hist(X,K)/1000 % Create normalized histogram Z based on K.

> bar(K,Z) % Plot Z.

> hold on

> stem(K,.2*normal_pdf(K,0,1)) % Compare to values predicted by pdf.

We also plotted the X values vs. the Y values for 5000 pairs of generated random variables
in a scattergram as shown in Fig. 5.29. Good agreement with the circular symmetry of the jointly
Gaussian pdf of zero-mean, unit-variance pairs is observed.

In the next chapter we will show how to generate a vector of jointly Gaussian random
variables with an arbitrary covariance matrix.

SUMMARY

• The joint statistical behavior of a pair of random variables X and Y is specified
by the joint cumulative distribution function, the joint probability mass func-
tion, or the joint probability density function. The probability of any event in-
volving the joint behavior of these random variables can be computed from
these functions.

4
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–4
–4 –3 –2 –1 0 2 3 41

FIGURE 5.29
Scattergram of 5000 pairs of jointly Gaussian random variables.
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• The statistical behavior of individual random variables from X is specified by the
marginal cdf, marginal pdf, or marginal pmf that can be obtained from the joint
cdf, joint pdf, or joint pmf of X.

• Two random variables are independent if the probability of a product-form event
is equal to the product of the probabilities of the component events. Equivalent
conditions for the independence of a set of random variables are that the joint
cdf, joint pdf, or joint pmf factors into the product of the corresponding marginal
functions.

• The covariance and the correlation coefficient of two random variables are mea-
sures of the linear dependence between the random variables.

• If X and Y are independent, then X and Y are uncorrelated, but not vice versa. If
X and Y are jointly Gaussian and uncorrelated, then they are independent.

• The statistical behavior of X, given the exact values of X or Y, is specified by the
conditional cdf, conditional pmf, or conditional pdf. Many problems lend them-
selves to a solution that involves conditioning on the value of one of the random
variables. In these problems, the expected value of random variables can be ob-
tained by conditional expectation.

• The joint pdf of a pair of jointly Gaussian random variables is determined by the
means, variances, and covariance. All marginal pdf’s and conditional pdf’s are
also Gaussian pdf’s.

• Independent Gaussian random variables can be generated by a transformation of
uniform random variables.

CHECKLIST OF IMPORTANT TERMS

Central moments of X and Y
Conditional cdf
Conditional expectation
Conditional pdf
Conditional pmf
Correlation of X and Y
Covariance X and Y
Independent random variables
Joint cdf
Joint moments of X and Y
Joint pdf

Joint pmf
Jointly continuous random variables
Jointly Gaussian random variables
Linear transformation
Marginal cdf
Marginal pdf
Marginal pmf
Orthogonal random variables
Product-form event
Uncorrelated random variables

ANNOTATED REFERENCES

Papoulis [1] is the standard reference for electrical engineers for the material on ran-
dom variables. References [2] and [3] present many interesting examples involving
multiple random variables. The book by Jayant and Noll [4] gives numerous applica-
tions of probability concepts to the digital coding of waveforms.

1. A. Papoulis and S. Pillai, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, New York, 2002.
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Wiley, New York, 1979.

4. N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice Hall, Englewood
Cliffs, N.J., 1984.

5. N. Johnson et al., Continuous Multivariate Distributions, Wiley, New York, 2000.
6. H. Stark and J. W. Woods, Probability, Random Processes, and Estimation Theory

for Engineers, Prentice Hall, Englewood Cliffs, N.J., 1986.
7. H. Anton, Elementary Linear Algebra, 9th ed., Wiley, New York, 2005.
8. C. H. Edwards, Jr., and D. E. Penney, Calculus and Analytic Geometry, 4th ed.,

Prentice Hall, Englewood Cliffs, N.J., 1994.

PROBLEMS

Section 5.1: Two Random Variables

5.1. Let X be the maximum and let Y be the minimum of the number of heads obtained when
Carlos and Michael each flip a fair coin twice.
(a) Describe the underlying space S of this random experiment and show the mapping

from S to the range of the pair (X, Y).
(b) Find the probabilities for all values of (X, Y).
(c) Find
(d) Repeat parts b and c if Carlos uses a biased coin with 

5.2. Let X be the difference and let Y be the sum of the number of heads obtained when Car-
los and Michael each flip a fair coin twice.
(a) Describe the underlying space S of this random experiment and show the mapping

from S to the range of the pair (X, Y).
(b) Find the probabilities for all values of (X, Y).
(c) Find

5.3. The input X to a communication channel is “ ”or “1”, with respective probabilities 
and The output of the channel Y is equal to: the corresponding input X with proba-
bility with probability p; 0 with probability 
(a) Describe the underlying space S of this random experiment and show the mapping

from S to the range of the pair (X, Y).
(b) Find the probabilities for all values of (X, Y).
(c) Find

5.4. (a) Specify the range of the pair in Example 5.2.
(b) Specify and sketch the event “more revenue comes from type 1 requests than type 2

requests.”
5.5. (a) Specify the range of the pair (Q, R) in Example 5.3.

(b) Specify and sketch the event “last packet is more than half full.”
5.6. Let the pair of random variables H and W be the height and weight in Example 5.1.

The body mass index is a measure of body fat and is defined by where
W is in kilograms and H is in meters. Determine and sketch on the plane the
following events:

and D = 5“underweight,” BMI 6 18.56.18.5 … BMI 6 256;C = 5“normal,”
A = 5“obese,” BMI Ú 306; B = 5“overweight,” 25 …  BMI 6 306;

BMI = W/H2

1N1 ,N22
P3X Z Y4, P3Y = 04.

SXY ,

pe .-X1 - p - pe ;
3/4.

1/4-1
P3X + Y = 14, P3X + Y = 24.

SXY ,

P3heads4 = 3/4.
P3X = Y4.

SXY ,
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(i) (ii) (iii)

X/Y -1 0 1 X/Y -1 0 1 X/Y -1 0 1
-1 1/6 1/6 0 -1 1/9 1/9 1/9 -1 1/3 0 0

0 0 0 1/3 0 1/9 1/9 1/9 0 0 1/3 0
1 1/6 1/6 0 1 1/9 1/9 1/9 1 0 0 1/3

5.7. Let (X, Y) be the two-dimensional noise signal in Example 5.4. Specify and sketch the
events:
(a) “Maximum noise magnitude is greater than 5.”
(b) “The noise power is greater than 4.”
(c) “The noise power is greater than 4 and less than 9.”

5.8. For the pair of random variables (X, Y) sketch the region of the plane corresponding to
the following events. Identify which events are of product form.
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

Section 5.2: Pairs of Discrete Random Variables

5.9. (a) Find and sketch in Problem 5.1 when using a fair coin.
(b) Find and 
(c) Repeat parts a and b if Carlos uses a biased coin with 

5.10. (a) Find and sketch in Problem 5.2 when using a fair coin.
(b) Find and 
(c) Repeat parts a and b if Carlos uses a biased coin with 

5.11. (a) Find the marginal pmf’s for the pairs of random variables with the indicated joint
pmf.

P3heads4 = 3/4.
pY1y2.pX1x2
pX,Y1x, y2

P3heads4 = 3/4.
pY1y2.pX1x2
pX,Y1x, y2

5max1 ƒX ƒ , Y2 6 36.
5XY 6 06.
5X3 7 Y6.
5X/Y 6 26.
5 ƒX/Y ƒ 7 26.
5 ƒX - Y ƒ Ú 16.
5min1X, Y2 7 06 ´ 5max5X, Y2 6 06.
5eX 7 Ye36.
5X + Y 7 36.

X2 + Y2

X2 + Y2

(b) Find the probability of the events and 
for the above joint pmf’s.

5.12. A modem transmits a two-dimensional signal (X, Y) given by:

where is a discrete uniform random variable in the set 
(a) Show the mapping from S to the range of the pair (X, Y).
(b) Find the joint pmf of X and Y.
(c) Find the marginal pmf of X and of Y.
(d) Find the probability of the following events:

C = 5X Ú r>22, Y Ú r>226, D = 5X 6 -r>226.
A = 5X = 06, B = 5Y … r>226,

SXY ,
50, 1, 2, Á , 76.®

X = r cos12p®/82 and Y = r sin 12p®/82

5X = -Y6
C =A = 5X 7 06, B = 5X Ú Y6,
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5.13. Let be the number of Web page requests arriving at a server in a 100-ms period and let
be the number of Web page requests arriving at a server in the next 100-ms period.

Assume that in a 1-ms interval either zero or one page request takes place with respec-
tive probabilities and and that the requests in different 1-ms in-
tervals are independent of each other.
(a) Describe the underlying space S of this random experiment and show the mapping

from S to the range of the pair (X, Y).
(b) Find the joint pmf of X and Y.
(c) Find the marginal pmf for X and for Y.
(d) Find the probability of the events 

(e) Find the probability of the event 
5.14. Let be the number of Web page requests arriving at a server in the period (0, 100) ms

and let be the total combined number of Web page requests arriving at a server in the
period (0, 200) ms. Assume arrivals occur as in Problem 5.13.
(a) Describe the underlying space S of this random experiment and show the mapping

from S to the range of the pair (X, Y).
(b) Find the joint pmf of and 
(c) Find the marginal pmf for and 
(d) Find the probability of the events 

5.15. At even time instants, a robot moves either cm or cm in the x-direction according
to the outcome of a coin flip; at odd time instants, a robot moves similarly according to
another coin flip in the y-direction. Assuming that the robot begins at the origin, let X
and Y be the coordinates of the location of the robot after 2n time instants.
(a) Describe the underlying space S of this random experiment and show the mapping

from S to the range of the pair (X, Y).
(b) Find the marginal pmf of the coordinates X and Y.
(c) Find the probability that the robot is within distance of the origin after 2n time

instants.

Section 5.3: The Joint cdf of x and y

5.16. (a) Sketch the joint cdf for the pair (X, Y) in Problem 5.1 and verify that the properties of
the joint cdf are satisfied. You may find it helpful to first divide the plane into regions
where the cdf is constant.

(b) Find the marginal cdf of X and of Y.
5.17. A point is selected at random inside a triangle defined by 

Assume the point is equally likely to fall anywhere in the triangle.
(a) Find the joint cdf of X and Y.
(b) Find the marginal cdf of X and of Y.
(c) Find the probabilities of the following events in terms of the joint cdf:

5.18. A dart is equally likely to land at any point inside a circular target of unit radius.
Let R and be the radius and angle of the point 
(a) Find the joint cdf of R and
(b) Find the marginal cdf of R and ®.

®.
1X1 ,X22.®

1X1 ,X22
A = 5X … 1/2, Y … 3/46; B = 51/4 6 X … 3/4 , 1/4 6 Y … 3/46.

51x, y2 : 0 … y … x … 16.1X , Y2

22

SXY ,

-¢+¢
N2 7 36, D = 5 ƒN2 - 2N1 ƒ 6 26.

A = 5N1 6 N26, B = 5N2 = 06, C = 5N1 7 5,
N2 .N1

N2 .N1

SXY ,

N2

N1

D = 5X + Y = 106.
Y 7 36.

= 5X 7 5,A = 5X Ú Y6, B = 5X = Y = 06, C

SXY ,

p = 0.05,1 - p = 0.95

N2

N1
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(c) Use the joint cdf to find the probability that the point is in the first quadrant of the
real plane and that the radius is greater than 0.5.

5.19. Find an expression for the probability of the events in Problem 5.8 parts c, h, and i in
terms of the joint cdf of X and Y.

5.20. The pair (X, Y) has joint cdf given by:

(a) Sketch the joint cdf.
(b) Find the marginal cdf of X and of Y.
(c) Find the probability of the following events:

5.21. Is the following a valid cdf? Why?

5.22. Let and be valid one-dimensional cdf’s. Show that 
satisfies the properties of a two-dimensional cdf.

5.23. The number of users logged onto a system N and the time T until the next user logs off
have joint probability given by:

(a) Sketch the above joint probability.
(b) Find the marginal pmf of N.
(c) Find the marginal cdf of X.
(d) Find

5.24. A factory has n machines of a certain type. Let p be the probability that a machine is
working on any given day, and let N be the total number of machines working on a cer-
tain day. The time T required to manufacture an item is an exponentially distributed ran-
dom variable with rate if k machines are working. Find and Find 
as and explain the result.

Section 5.4: The Joint pdf of Two Continuous Random Variables

5.25. The amplitudes of two signals X and Y have joint pdf:

(a) Find the joint cdf.
(b) Find
(c) Find the marginal pdfs.

5.26. Let X and Y have joint pdf:

(a) Find k.
(b) Find the joint cdf of (X, Y).
(c) Find the marginal pdf of X and of Y.
(d) Find P3X 6 Y4, P3Y 6 X24, P3X + Y 7 0.54.

fX,Y1x, y2 = k1x + y2 for 0 … x … 1, 0 … y … 1.

P3X1/2 7 Y4.

fX,Y1x, y2 = e-x/2ye-y
2

for x 7 0, y 7 0.

t: q
P3T … t4P3T … t4.ka

P3N … 3,X 7 3/l4.

P3N = n,X … t4 = 11 - r2rn-111 - e-nlt2 for n = 1, 2, Á  t 7 0.

FX,Y1x, y2 = FX1x2FY1y2FY1y2FX1x2
FX,Y1x, y2 = b 11 - 1/x2y22 for x 7 1, y 7 1

0 elsewhere.

5X 6 3, Y … 56, 5X 7 4, Y 7 36.

FX,Y1x, y2 = b 11 - 1/x2211 - 1/y22 for x 7 1, y 7 1
0 elsewhere.
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5.27. Let X and Y have joint pdf:

(a) Find k.
(b) Find the joint cdf of (X, Y).
(c) Find the marginal pdf of X and of Y.
(d) Find

5.28. The random vector (X, Y) is uniformly distributed (i.e., ) in the regions shown
in Fig. P5.1 and zero elsewhere.

f1x, y2 = k
P3Y 6 X1/24, P3X 6 Y4.

fX,Y1x, y2 = kx11 - x2y for 0 6 x 6 1, 0 6 y 6 1.

y

x

1

1

(i) y

x

1

1

(ii) y

x

1

1

(iii)

FIGURE P5.1

(a) Find the value of k in each case.
(b) Find the marginal pdf for X and for Y in each case.
(c) Find

5.29. (a) Find the joint cdf for the vector random variable introduced in Example 5.16.
(b) Use the result of part a to find the marginal cdf of X and of Y.

5.30. Let X and Y have the joint pdf:

Find the marginal pdf of X and of Y.
5.31. Let X and Y be the pair of random variables in Problem 5.17.

(a) Find the joint pdf of X and Y.
(b) Find the marginal pdf of X and of Y.
(c) Find

5.32. Let R and be the pair of random variables in Problem 5.18.
(a) Find the joint pdf of R and
(b) Find the marginal pdf of R and of 

5.33. Let (X, Y) be the jointly Gaussian random variables discussed in Example 5.18. Find
when Hint: Use polar coordinates to compute the integral.

5.34. The general form of the joint pdf for two jointly Gaussian random variables is given by
Eq. (5.61a). Show that X and Y have marginal pdfs that correspond to Gaussian random
variables with means and and variances and respectively.s2

2s1
2m2m1

r = 0.P3X2 + Y2 7 r24
®.

®.
®
P3Y 6 X24.

fX,Y1x, y2 = ye-y11+x2 for x 7 0, y 7 0.

P3X 7 0, Y 7 04.
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5.35. The input X to a communication channel is +1 or –1 with probability p and 1 – p, respec-
tively. The received signal Y is the sum of X and noise N which has a Gaussian distribu-
tion with zero mean and variance 

(a) Find the joint probability 

(b) Find the marginal pmf of X and the marginal pdf of Y.

(c) Suppose we are given that Which is more likely, or 

5.36. A modem sends a two-dimensional signal X from the set 
The channel adds a noise signal so the received signal is

Assume that have the jointly Gaussian
pdf in Example 5.18 with Let the distance between X and Y be

(a) Suppose that Find and sketch region for the event Y is closer to (1, 1)
than to the other possible values of X Evaluate the probability of this event.

(b) Suppose that Find and sketch region for the event Y is closer to
than to the other possible values of X Evaluate the probability of this

event.

(c) Suppose that Find and sketch region for the event 
Evaluate the probability of this event. Explain why this probability is an upper
bound on the probability that Y is closer to a signal other than 

Section 5.5: Independence of Two Random Variables

5.37. Let X be the number of full pairs and let Y be the remainder of the number of dots ob-
served in a toss of a fair die. Are X and Y independent random variables?

5.38. Let X and Y be the coordinates of the robot in Problem 5.15 after 2n time instants. Deter-
mine whether X and Y are independent random variables.

5.39. Let X and Y be the coordinates of the two-dimensional modem signal (X, Y) in
Problem 5.12.

(a) Determine if X and Y are independent random variables.

(b) Repeat part a if even values of are twice as likely as odd values.

5.40. Determine which of the joint pmfs in Problem 5.11 correspond to independent pairs of
random variables.

5.41. Michael takes the 7:30 bus every morning. The arrival time of the bus at the stop is uni-
formly distributed in the interval [7:27, 7:37]. Michael’s arrival time at the stop is also uni-
formly distributed in the interval [7:25, 7:40]. Assume that Michael’s and the bus’s arrival
times are independent random variables.
(a) What is the probability that Michael arrives more than 5 minutes before the bus?
(b) What is the probability that Michael misses the bus?

5.42. Are R and independent in Problem 5.18?
5.43. Are X and Y independent in Problem 5.20?
5.44. Are the signal amplitudes X and Y independent in Problem 5.25?
5.45. Are X and Y independent in Problem 5.26?
5.46. Are X and Y independent in Problem 5.27?

®

®

X = 11, 12.
5d1X, Y2 7 16.X = 11, 12.

6.11, -12
5X = 11, 12.

6.
5X = 11, 12.

d1X, Y2 = 51X1 - Y122 + 1X2 - Y22261/2.
r = 0.

1N1 ,N22Y = X + N = 1X1 + N1 ,X2 + N22.
1N1 ,N22,1-1, -126.

511, 12, 11, -12, 1-1, 12,
X = -1?X = 1Y 7 0.

P3X = j, Y … y4.
s2 = 0.25.
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5.47. Let X and Y be independent random variables. Find an expression for the probability of
the following events in terms of and 

(a)

(b)

(c)

5.48. Let X and Y be independent random variables that are uniformly distributed in 
Find the probability of the following events:

(a)

(b)

(c)

(d)

5.49. Let X and Y be random variables that take on values from the set 

(a) Find a joint pmf for which X and Y are independent.

(b) Are and independent random variables for the pmf in part a?

(c) Find a joint pmf for which X and Y are not independent, but for which and 
are independent.

5.50. Let X and Y be the jointly Gaussian random variables introduced in Problem 5.34.

(a) Show that X and Y are independent random variables if and only if 

(b) Suppose find 

5.51. Two fair dice are tossed repeatedly until a pair occurs. Let K be the number of tosses re-
quired and let X be the number showing up in the pair. Find the joint pmf of K and X and
determine whether K and X are independent.

5.52. The number of devices L produced in a day is geometric distributed with probability of
success p. Let N be the number of working devices and let M be the number of defective
devices produced in a day.

(a) Are N and M independent random variables?

(b) Find the joint pmf of N and M.

(c) Find the marginal pmfs of N and M. (See hint in Problem 5.87b.)

(d) Are L and M independent random variables?

5.53. Let be the number of Web page requests arriving at a server in a 100-ms period and let
be the number of Web page requests arriving at a server in the next 100-ms period.

Use the result of Problem 5.13 parts a and b to develop a model where and are
independent Poisson random variables.

5.54. (a) Show that Eq. (5.22) implies Eq. (5.21).

(b) Show that Eq. (5.21) implies Eq. (5.22).

5.55. Verify that Eqs. (5.22) and (5.23) can be obtained from each other.

Section 5.6: Joint Moments and Expected Values of a Function of Two Random
Variables

5.56. (a) Find
(b) Find the variance of 
(c) Under what condition is the variance of the sum equal to the sum of the individual

variances?

X + Y.
E31X + Y224.

N2N1

N2

N1

P3XY 6 04.r = 0,

r = 0.

Y2X2

Y2X2

5-1, 0, 16.
P3max1X, Y2 6 1/34.
P3XY 6 1/24.
P34X 6 1, Y 6 04.
P3X2 6 1/2, ƒY ƒ 6 1/24.

3-1, 14.
5 ƒX ƒ 6 a6 ¨ 5c … Y … d6.
5a 6 X … b6 ¨ 5c … Y 6 d6.
5a 6 X … b6 ¨ 5Y 7 d6.

FY1y2.FX1x2
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5.57. Find if X and Y are independent exponential random variables with para-
meters and respectively.

5.58. Find where X and Y are independent random variables, X is a zero-mean,
unit-variance Gaussian random variable, and Y is a uniform random variable in the
interval [0, 3].

5.59. For the discrete random variables X and Y in Problem 5.1, find the correlation and covariance,
and indicate whether the random variables are independent, orthogonal, or uncorrelated.

5.60. For the discrete random variables X and Y in Problem 5.2, find the correlation and
covariance, and indicate whether the random variables are independent, orthogonal,
or uncorrelated.

5.61. For the three pairs of discrete random variables in Problem 5.11, find the correlation and
covariance of X and Y, and indicate whether the random variables are independent, or-
thogonal, or uncorrelated.

5.62. Let and be the number of Web page requests in Problem 5.13. Find the correlation
and covariance of and and indicate whether the random variables are indepen-
dent, orthogonal, or uncorrelated.

5.63. Repeat Problem 5.62 for and the number of Web page requests in Problem 5.14.
5.64. Let N and T be the number of users logged on and the time till the next logoff in

Problem 5.23. Find the correlation and covariance of N and T, and indicate whether
the random variables are independent, orthogonal, or uncorrelated.

5.65. Find the correlation and covariance of X and Y in Problem 5.26. Determine whether X
and Y are independent, orthogonal, or uncorrelated.

5.66. Repeat Problem 5.65 for X and Y in Problem 5.27.
5.67. For the three pairs of continuous random variables X and Y in Problem 5.28, find the cor-

relation and covariance, and indicate whether the random variables are independent, or-
thogonal, or uncorrelated.

5.68. Find the correlation coefficient between X and Does the answer depend
on the sign of a?

5.69. Propose a method for estimating the covariance of two random variables.
5.70. (a) Complete the calculations for the correlation coefficient in Example 5.28.

(b) Repeat the calculations if X and Y have the pdf:

5.71. The output of a channel where the input X and the noise N are indepen-
dent, zero-mean random variables.
(a) Find the correlation coefficient between the input X and the output Y.
(b) Suppose we estimate the input X by a linear function Find the value of a

that minimizes the mean squared error 
(c) Express the resulting mean-square error in terms of 

5.72. In Example 5.27 let uncorrelated?
5.73. (a) Show that 

(b) Show that for all x, implies that X and Y are uncorrelated.
5.74. Use the fact that for all t to prove the Cauchy-Schwarz inequality:

Hint: Consider the discriminant of the quadratic equation in t that results from the above
inequality.

1E3XY422 … E3X24E3Y24.
E31tX + Y224 Ú 0
E3Y ƒX = x4 = E3Y4,
COV1X, E3Y ƒX42 = COV1X, Y2.
X = cos ®/4 and Y = sin ®/4. Are X and Y

sX/sN .
E31X - aY224.

g1Y2 = aY.

Y = X + N,

fX,Y1x, y2 = e-1x+ ƒy ƒ2 for x 7 0, -x 6 y 6 x.

Y = aX + b.

N2 ,N1

N2 ,N1

N2N1

E3X2eY4
l2 = 2,l1 = 1

E3 ƒX - Y ƒ 4
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Section 5.7: Conditional Probability and Conditional Expectation

5.75. (a) Find and in Problem 5.1 assuming fair coins are used.
(b) Find and in Problem 5.1 assuming Carlos uses a coin with

(c) What is the effect on of Carlos using a biased coin?
(d) Find and in part a; then find E[X] and E[Y].
(e) Find and in part b; then find E[X] and E[Y].

5.76. (a) Find for the communication channel in Problem 5.3.
(b) For each value of y, find the value of x that maximizes State any assump-

tions about p and
(c) Find the probability of error if a receiver uses the decision rule from part b.

5.77. (a) In Problem 5.11(i), which conditional pmf given X provides the most information
about or Explain why.

(b) Compare the conditional pmfs in Problems 5.11(ii) and (iii) and explain which of
these two cases is “more random.”

(c) Find and in Problems 5.11(i), (ii), (iii); then find E[X]
and E[Y].

(d) Find and in Problems 5.11(i), (ii), (iii); then find
VAR[X] and VAR[Y].

5.78. (a) Find the conditional pmf of given in Problem 5.14.
(b) Find for Hint: Use Stirling’s fromula.
(c) Find then find 

5.79. In Example 5.30, let Y be the number of defects inside the region R and let Z be the num-
ber of defects outside the region.
(a) Find the pmf of Z given Y.
(b) Find the joint pmf of Y and Z.
(c) Are Y and Z independent random variables? Is the result intuitive?

5.80. (a) Find in Problem 5.26.
(b) Find
(c) Find using part b.
(d) Find

5.81. (a) Find in Problem 5.28(i).
(b) Find
(c) Repeat parts a and b of Problem  5.28(ii).
(d) Repeat parts a and b of Problem  5.28(iii).

5.82. (a) Find in Example 5.27.
(b) Find
(c) Find
(d) Find
(e) Find

5.83. Find and for the jointly Gaussian pdf in Problem 5.34.
5.84. (a) Find in Problem 5.23.

(b) Find
(c) Find the value of n that maximizes P3N = n ƒ t 6 X 6 t + dt4.

E3Xt ƒ N = n4.
fX1t ƒ N = n2

fX1x ƒ y2fY1y ƒ x2
E3XY4.
E3XY ƒX = x4.
E3Y4.
E3Y ƒX = x4.
fY1y ƒ x2

E3Y ƒX = x4 and E 3Y4.
fY1y ƒ x2
E3Y ƒX = x4.
P3Y 7 X4
P3Y 7 X ƒ x4.
fY1y ƒ x2

E3N14.E3N1 ƒ N2 = k4,
k = 5, 10, 20.P3N1 = k ƒ N2 = 2k4

N2N1

E3X2 ƒ Y = y4E3Y2 ƒX = x4
E3X ƒ Y = y4E3Y ƒX = x4

pY1y ƒ +12?Y: pY1y ƒ -12, pY1y ƒ 02,

pe .
pX1x ƒ y2.

pX1x ƒ y2
E3X ƒ Y = y4E3Y ƒX = x4
E3X ƒ Y = y4E3Y ƒX = x4

pX1x ƒ y2
p = 3/4.

pX1x ƒ y2pY1y ƒ x2
pX1x ƒ y2pY1y ƒ x2
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5.85. (a) Find and in Problem 5.12.
(b) Find
(c) Find and 

5.86. A customer enters a store and is equally likely to be served by one of three clerks. The
time taken by clerk 1 is a constant random variable with mean two minutes; the time for
clerk 2 is exponentially distributed with mean two minutes; and the time for clerk 3 is
Pareto distributed with mean two minutes and 
(a) Find the pdf of T, the time taken to service a customer.
(b) Find E[T] and VAR[T].

5.87. A message requires N time units to be transmitted, where N is a geometric random
variable with pmf A single new message arrives dur-
ing a time unit with probability p, and no messages arrive with probability 
Let K be the number of new messages that arrive during the transmission of a
single message.
(a) Find E[K] and VAR[K] using conditional expectation.

(b) Find the pmf of K. Hint:

(c) Find the conditional pmf of N given
(d) Find the value of n that maximizes 

5.88. The number of defects in a VLSI chip is a Poisson random variable with rate r. However,
r is itself a gamma random variable with parameters and 
(a) Use conditional expectation to find E[N] and VAR[N].
(b) Find the pmf for N, the number of defects.

5.89. (a) In Problem 5.35, find the conditional pmf of the input X of the communication chan-
nel given that the output is in the interval 

(b) Find the value of X that is more probable given 
(c) Find an expression for the probability of error if we use the result of part b to decide

what the input to the channel was.

Section 5.8: Functions of Two Random Variables 

5.90. Two toys are started at the same time each with a different battery. The first battery has a
lifetime that is exponentially distributed with mean 100 minutes; the second battery has a
Rayleigh-distributed lifetime with mean 100 minutes.
(a) Find the cdf to the time T until the battery in a toy first runs out.
(b) Suppose that both toys are still operating after 100 minutes. Find the cdf of the time

that subsequently elapses until the battery in a toy first runs out.
(c) In part b, find the cdf of the total time that elapses until a battery first fails.

5.91. (a) Find the cdf of the time that elapses until both batteries run out in Problem 5.90a.
(b) Find the cdf of the remaining time until both batteries run out in Problem 5.90b.

5.92. Let K and N be independent random variables with nonnegative integer values.
(a) Find an expression for the pmf of 
(b) Find the pmf of M if K and N are binomial random variables with parameters (k, p)

and (n, p).
(c) Find the pmf of M if K and N are Poisson random variables with parameters and

respectively.a2 ,
a1

M = K + N.

T2

y 6 Y … y + dy.
y 6 Y … y + dy.

l.a

P3N = n ƒX = k4.
K = k.

11 - b2-1k+12 = a
q

n=k
¢n
k
≤bn-k.

1 - p.
pi = 11 - a2ai-1, i = 1, 2, Á .

a = 2.5.

E3XY4.E3XY ƒX = x4
E3Y ƒX = x4.

pX1x ƒ y2pY1y ƒ x2



298 Chapter 5 Pairs of Random Variables

5.93. The number X of goals the Bulldogs score against the Flames has a geometric distribu-
tion with mean 2; the number of goals Y that the Flames score against the Bulldogs is also
geometrically distributed but with mean 4.
(a) Find the pmf of the Assume X and Y are independent.
(b) What is the probability that the Bulldogs beat the Flames? Tie the Flames?
(c) Find E[Z].

5.94. Passengers arrive at an airport taxi stand every minute according to a Bernoulli random
variable. A taxi will not leave until it has two passengers.
(a) Find the pmf until the time T when the taxi has two passengers.
(b) Find the pmf for the time that the first customer waits.

5.95. Let X and Y be independent random variables that are uniformly distributed in the in-
terval [0, 1]. Find the pdf of 

5.96. Let and be independent and uniformly distributed in 
(a) Find the cdf and pdf of 
(b) Find the cdf of 

5.97. Let X and Y be independent random variables with gamma distributions and parameters
and , respectively. Show that is gamma-distributed with para-

meters Hint: See Eq. (4.59).
5.98. Signals X and Y are independent. X is exponentially distributed with mean 1 and Y is

exponentially distributed with mean 
(a) Find the cdf of 
(b) Use the result of part a to find E[Z].

5.99. The random variables X and Y have the joint pdf

Find the pdf of 
5.100. Let X and Y be independent Rayleigh random variables with parameters 

Find the pdf of 
5.101. Let X and Y be independent Gaussian random variables that are zero mean and unit

variance. Show that is a Cauchy random variable.
5.102. Find the joint cdf of and if X and Y are independent

and X is uniformly distributed in [0, 1] and Y is uniformly distributed in [0, 1].
5.103. Find the joint cdf of and if X and Y are independent

exponential random variables with the same mean.
5.104. Find the joint cdf of and if X and Y are the indepen-

dent Pareto random variables with the same distribution.
5.105. Let and 

(a) Find an expression for the joint pdf of W and Z.
(b) Find if X and Y are independent exponential random variables with

parameter
(c) Find if X and Y are independent Pareto random variables with the same

distribution.
5.106. The pair (X, Y) is uniformly distributed in a ring centered about the origin and inner and

outer radii Let R and be the radius and angle corresponding to (X, Y). Find the
joint pdf of R and ®.

®r1 6 r2 .

fW,Z1z, w2
l = 1.

fW,Z1z, w2
Z = X - Y.W = X + Y

Z = max1X, Y2W = min1X, Y2
Z = max1X, Y2W = min1X, Y2
Z = max1X, Y2W = min1X, Y2

Z = X/Y

Z = X/Y.
a = b = 1.

Z = X + Y.

fX,Y1x, y2 = e-1x+y2 for 0 6 y 6 x 6 1.

Z = ƒX - Y ƒ .
1.

1a1 + a2 , l2.
Z = X + Y1a2 , l21a1 , l2

Z = Y + X3 .
Y = X1 + X2 .

3-1, 14.X3X1 ,X2 ,
Z = XY.

Z = X - Y.
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5.107. Let X and Y be independent, zero-mean, unit-variance Gaussian random variables. Let
and

(a) Find the joint pdf of V and W, assuming the transformation matrix A is invertible.
(b) Suppose A is not invertible. What is the joint pdf of V and W?

5.108. Let X and Y be independent Gaussian random variables that are zero mean and unit
variance. Let and let Find the joint pdf of W and

5.109. Let X and Y be the random variables introduced in Example 5.4. Let 
and let 
(a) Find the joint pdf of R and
(b) What is the joint pdf of X and Y?

Section 5.9: Pairs of Jointly Gaussian Variables

5.110. Let X and Y be jointly Gaussian random variables with pdf

Find VAR[X], VAR[Y], and COV(X, Y).
5.111. Let X and Y be jointly Gaussian random variables with pdf

Find E[X], E[Y], VAR[X], VAR[Y], and COV(X, Y).
5.112. Let X and Y be jointly Gaussian random variables with and

Find the joint pdf of X and Y.
5.113. Let X and Y be zero-mean, independent Gaussian random variables with 

(a) Find the value of r for which the probability that (X, Y) falls inside a circle of radius
r is 1/2.

(b) Find the conditional pdf of (X, Y) given that (X, Y) is not inside a ring with inner ra-
dius and outer radius 

5.114. Use a plotting program (as provided by Octave or MATLAB) to show the pdf for jointly
Gaussian zero-mean random variables with the following parameters:
(a)
(b)
(c)
(d)
(e)
(f)

5.115. Let X and Y be zero-mean, jointly Gaussian random variables with and
correlation coefficient 
(a) Plot the principal axes of the constant-pdf ellipse of (X, Y).
(b) Plot the conditional expectation of Y given
(c) Are the plots in parts a and b the same or different? Why?

5.116. Let X and Y be zero-mean, unit-variance jointly Gaussian random variables for which
. Sketch the joint cdf of X and Y. Does a joint pdf exist?r = 1

X = x.

r.
s1 = 1, s2 = 2,

s1 = 1, s2 = 10, r = 0.8.
s1 = 1, s2 = 2, r = 0.8.
s1 = 1, s2 = 2, r = 0.
s1 = 1, s2 = 1, r = -0.8.
s1 = 1, s2 = 1, r = 0.8.
s1 = 1, s2 = 1, r = 0.

r2 .r1

s2 = 1.
E3X ƒ Y4 = Y/4 + 1.

E3Y4 = 0, s1 = 1, s2 = 2,

fX,Y1x, y2 =
expe -1

2
3x2 + 4y2 - 3xy + 3y - 2x + 14 f

2p
 for all x, y.

fX,Y1x, y2 =
exp5-2x2 - y2/26

2pc
 for all x, y.

®.
® = tan-11Y/X2.

R = 1X2 + Y221/2

®.® = tan-11Y/X2.W = X2 + Y2

W = cX + eY.V = aX + bY
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5.117. Let h(x, y) be a joint Gaussian pdf for zero-mean, unit-variance Gaussian random vari-
ables with correlation coefficient Let g(x, y) be a joint Gaussian pdf for zero-mean,
unit-variance Gaussian random variables with correlation coefficient Suppose
the random variables X and Y have joint pdf

(a) Find the marginal pdf for X and for Y.
(b) Explain why X and Y are not jointly Gaussian random variables.

5.118. Use conditional expectation to show that for X and Y zero-mean, jointly Gaussian random
variables,

5.119. Let be the zero-mean jointly Gaussian random variables in Problem 5.110.
Find a transformation A such that has components that are zero-mean, unit-
variance Gaussian random variables.

5.120. In Example 5. 47, suppose we estimate the value of the signal X from the noisy observa-
tion Y by:

(a) Evaluate the mean square estimation error:
(b) How does the estimation error in part a vary with signal-to-noise ratio 

Section 5.10: Generating Independent Gaussian Random Variables

5.121. Find the inverse of the cdf of the Rayleigh random variable to derive the transformation
method for generating Rayleigh random variables. Show that this method leads to the same
algorithm that was presented in Section 5.10.

5.122. Reproduce the results presented in Example 5.49.
5.123. Consider the two-dimensional modem in Problem 5.36.

(a) Generate 10,000 discrete random variables uniformly distributed in the set
Assign each outcome in this set to one of the signals

The sequence of discrete random variables
then produces a sequence of 10,000 signal points X.

(b) Generate 10,000 noise pairs N of independent zero-mean, unit-variance jointly
Gaussian random variables.

(c) Form the sequence of 10,000 received signals 
(d) Plot the scattergram of received signal vectors. Is the plot what you expected?
(e) Estimate the transmitted signal by the quadrant that Y falls in:

(f) Compare the estimates with the actually transmitted signals to estimate the proba-
bility of error.

5.124. Generate a sequence of 1000 pairs of independent zero-mean Gaussian random vari-
ables, where X has variance 2 and N has variance 1. Let be the noisy signal
from Example 5.47.
(a) Estimate X using the estimator in Problem 5.120, and calculate the sequence of esti-

mation errors.
(b) What is the pdf of the estimation error?
(c) Compare the mean, variance, and relative frequencies of the estimation error with

the result from part b.

Y = X + N

sgn1Y222.
XN = 1sgn1Y12,

Y = 1Y1 , Y22 = X + N.

511, 12, 11, -12, 1-1, 12, 1-1, -126.
51, 2, 3, 46.

sX/sN?
E31X - XN 224.

XN =
1

1 + sN2 /sX
2 Y.

Z = AX
X = 1X, Y2

E3X2Y24 = E3X24E3Y24 + 2E3XY42.

fX,Y1x, y2 = 5h1x, y2 + g1x, y26/2.

r2 Z r1 .
r1 .
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5.125. Let be a sequence of zero-mean, unit-variance independent Gaussian
random variables. Suppose that the sequence is “smoothed” as follows:

(a) Find the pdf of 
(b) Generate the sequence of and the corresponding sequence Plot the scatter-

gram of Does it agree with the result from part a?
(c) Repeat parts a and b for 

5.126. Let X and Y be independent, zero-mean, unit-variance Gaussian random variables. Find the
linear transformation to generate jointly Gaussian random variables with means vari-
ances and correlation coefficient Hint: Use the conditional pdf in Eq. (5.64).

5.127. (a) Use the method developed in Problem 5.126 to generate 1000 pairs of jointly Gauss-
ian random variables with variances and correla-
tion coefficient 

(b) Plot a two-dimensional scattergram of the 1000 pairs and compare to equal-pdf con-
tour lines for the theoretical pdf.

5.128. Let H and W be the height and weight of adult males. Studies have shown that H (in cm)
and (W in kg) are jointly Gaussian with parameters 

and
(a) Use the method in part a to generate 1000 pairs (H, V). Plot a scattergram to check

the joint pdf.
(b) Convert the (H, V) pairs into (H, W) pairs.
(c) Calculate the body mass index for each outcome, and estimate the proportion of the

population that is underweight, normal, overweight, or obese. (See Problem 5.6.)

Problems Requiring Cumulative Knowledge

5.129. The random variables X and Y have joint pdf:

.

(a) Find the value of the constant c.
(b) Find the joint cdf of X and Y.
(c) Find the marginal pdf’s of X and of Y.
(d) Find the mean, variance, and covariance of X and Y.

5.130. An inspector selects an item for inspection according to the outcome of a coin flip:The item is
inspected if the outcome is heads. Suppose that the time between item arrivals is an exponen-
tial random variable with mean one.Assume the time to inspect an item is a constant value t.
(a) Find the pmf for the number of item arrivals between consecutive inspections.
(b) Find the pdf for the time X between item inspections. Hint: Use conditional expectation.
(c) Find the value of p, so that with a probability of 90% an inspection is completed be-

fore the next item is selected for inspection.

5.131. The lifetime X of a device is an exponential random variable with Suppose
that due to irregularities in the production process, the parameter R is random and has a
gamma distribution.
(a) Find the joint pdf of X and R.
(b) Find the pdf of X.
(c) Find the mean and variance of X.

mean = 1/R.

fX,Y1x, y2 = c sin 1x + y2 0 … x … p/2, 0 … y … p/2

COV1H, V2 = 0.458.sH
2 = 42.36, sV

2 = 0.021,
mH = 174 cm, mV = 4.4,V = lnW

r = -1/2.
s1

2 = 1, s2
2 = 2,m1 = 1,m2 = -1,

r.s1
2 , s2

2 ,
m1 ,m2 ,

Zn = 1Xn - XN-12/2.
1Yn , Yn+12.

Yn .Xn

1Yn , Yn+12.
Yn = 1Xn + XN-12/2 where X0 = 0.

X1 ,X2 , Á ,X1000
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5.132. Let X and Y be samples of a random signal at two time instants. Suppose that X and Y are
independent zero-mean Gaussian random variables with the same variance. When signal
“0” is present the variance is and when signal “1” is present the variance is 
Suppose signals 0 and 1 occur with probabilities p and respectively. Let

be the total energy of the two observations.
(a) Find the pdf of when signal 0 is present; when signal 1 is present. Find the pdf of 
(b) Suppose we use the following “signal detection” rule: If then we decide sig-

nal 1 is present; otherwise, we decide signal 0 is present. Find an expression for the
probability of error in terms of T.

(c) Find the value of T that minimizes the probability of error.
5.133. Let be a sequence of independent zero-mean, unit-variance Gaussian ran-

dom variables. A “low-pass filter” takes the sequence and produces the output
sequence and a “high-pass filter” produces the output sequence

.
(a) Find the joint pdf of and of and 
(b) Repeat part a for 
(c) Find the joint pdf of and Ym .Xn

Yn .
Xn+m ,m 7 1.XnXn-1 ;Xn

Yn = 1Un - Un-12/2
Xn = 1Un + Un-12/2,

Ui

U0 , U1 , Á

R2 7 T,
R2.R2

R2 = X2 + Y2
1 - p,

s1
2 7 s0

2 .s0
2,



In the previous chapter we presented methods for dealing with two random variables.
In this chapter we extend these methods to the case of n random variables in the fol-
lowing ways:

• By representing n random variables as a vector, we obtain a compact notation for
the joint pmf, cdf, and pdf as well as marginal and conditional distributions.

• We present a general method for finding the pdf of transformations of vector ran-
dom variables.

• Summary information of the distribution of a vector random variable is provided
by an expected value vector and a covariance matrix.

• We use linear transformations and characteristic functions to find alternative
representations of random vectors and their probabilities.

• We develop optimum estimators for estimating the value of a random variable
based on observations of other random variables.

• We show how jointly Gaussian random vectors have a compact and easy-to-work-
with pdf and characteristic function.

6.1 VECTOR RANDOM VARIABLES

The notion of a random variable is easily generalized to the case where several quanti-
ties are of interest. A vector random variable X is a function that assigns a vector of
real numbers to each outcome in S, the sample space of the random experiment. We
use uppercase boldface notation for vector random variables. By convention X is a col-
umn vector (n rows by 1 column), so the vector random variable with components

corresponds to

X � DX1

X2
...
Xn

T = 3X1 ,X2 , Á ,Xn4T,

X1 ,X2 , Á ,Xn

z

303
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where denotes the transpose of a matrix or vector. We will sometimes write
to save space and omit the transpose unless dealing with matri-

ces. Possible values of the vector random variable are denoted by 
where corresponds to the value of 

Example 6.1 Arrivals at a Packet Switch

Packets arrive at each of three input ports of a packet switch according to independent Bernoulli
trials with Each arriving packet is equally likely to be destined to any of three output
ports. Let where is the total number of packets arriving for output port i.
X is a vector random variable whose values are determined by the pattern of arrivals at the
input ports.

Example 6.2 Joint Poisson Counts

A random experiment consists of finding the number of defects in a semiconductor chip and identi-
fying their locations. The outcome of this experiment consists of the vector 
where the first component specifies the total number of defects and the remaining components
specify the coordinates of their location. Suppose that the chip consists of M regions. Let

be the number of defects in each of these regions, that is, is the
number of y’s that fall in region k. The vector is then a vector random
variable.

Example 6.3 Samples of an Audio Signal

Let the outcome of a random experiment be an audio signal X(t). Let the random variable
be the sample of the signal taken at time kT.An MP3 codec processes the audio in

blocks of n samples X is a vector random variable.

6.1.1 Events and Probabilities

Each event A involving has a corresponding region in an n-
dimensional real space As before, we use “rectangular” product-form sets in 
as building blocks. For the n-dimensional random variable 
we are interested in events that have the product form

(6.1)

where each is a one-dimensional event (i.e., subset of the real line) that involves 
only. The event A occurs when all of the events occur jointly.

We are interested in obtaining the probabilities of these product-form events:

(6.2)! P3X1 in A1 ,X2 in A2 , Á ,Xn in An4.
P3A4 = P3X H A4 = P35X1 in A16 ¨ 5X2 in A26 ¨ Á ¨ 5Xn in An64

5Xk in Ak6
XkAk

A = 5X1 in A16 ¨ 5X2 in A26 ¨ Á ¨ 5Xn in An6,
X = 1X1 ,X2 , Á ,Xn2,

RnRn.
X = 1X1 ,X2 , Á ,Xn2

X = 1X1 ,X2 , Á ,Xn2.
Xk = X1kT2

z

N1z2 = 1N1 ,N2 , Á ,NM2
Nk1z2N11z2,N21z2, Á ,NM1z2

z = 1n, y1 , y2 , Á , yn2,

XiX = 1X1 ,X2 ,X32
p = 1/2.

Xi .xi

x = 1x1 , x2 , Á , xn2
X = 1X1 ,X2 , Á ,Xn2

“T”
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In principle, the probability in Eq. (6.2) is obtained by finding the probability of the
equivalent event in the underlying sample space, that is,

(6.3)

Equation (6.2) forms the basis for the definition of the n-dimensional joint probability
mass function, cumulative distribution function, and probability density function. The
probabilities of other events can be expressed in terms of these three functions.

6.1.2 Joint Distribution Functions

The joint cumulative distribution function of is defined as the probabil-
ity of an n-dimensional semi-infinite rectangle associated with the point 

(6.4)

The joint cdf is defined for discrete, continuous, and random variables of mixed type.
The probability of product-form events can be expressed in terms of the joint cdf.

The joint cdf generates a family of marginal cdf’s for subcollections of the ran-
dom variables These marginal cdf’s are obtained by setting the appropri-
ate entries to in the joint cdf in Eq. (6.4). For example:

Joint cdf for is given by and
Joint cdf for and is given by 

Example 6.4

A radio transmitter sends a signal to a receiver using three paths. Let and be the sig-
nals that arrive at the receiver along each path. Find 

The maximum of three numbers is less than 5 if and only if each of the three numbers is
less than 5; therefore

The joint probability mass function of n discrete random variables is defined by

(6.5)

The probability of any n-dimensional event A is found by summing the pmf over the
points in the event

(6.6)P3X in A4 = a
x in A
Á apX1,X2, Á ,Xn1x1 , x2 , Á , xn2.

pX1x2 ! pX1,X2 , Á ,Xn1x1 , x2 , Á , xn2 = P3X1 = x1 ,X2 = x2 , Á ,Xn = xn4.

= FX1,X2,X3
15, 5, 52.

P3A4 = P35X1 … 56 ¨ 5X2 … 56 ¨ 5X3 … 564

P3max1X1 ,X2 ,X32 … 54.
X3X1 ,X2 ,

FX1,X2, Á ,Xn1x1 , x2 , q, Á , q2.X2X1

FX1,X2, Á ,Xn1x1 , x2 , Á , xn-1 , q2X1 , Á ,Xn-1

+q
X1 , Á ,Xn .

FX1x2 ! FX1,X2, Á ,Xn1x1 , x2 , Á , xn2 = P3X1 … x1 ,X2 … x2 , Á ,Xn … xn4.
1x1 , Á , xn2:

X1 ,X2 , Á ,Xn

= P35z in S :X11z2 H A1 ,X21z2 H A2 , Á ,Xn1z2 H An64.
P3A4 = P35z in S : X1z2 in A64
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The joint pmf generates a family of marginal pmf’s that specifies the joint proba-
bilities for subcollections of the n random variables. For example, the one-dimensional
pmf of is found by adding the joint pmf over all variables other than 

(6.7)

The two-dimensional joint pmf of any pair and is found by adding the joint pmf
over all other variables, and so on. Thus, the marginal pmf for is
given by

(6.8)

A family of conditional pmf’s is obtained from the joint pmf by conditioning
on different subcollections of the random variables. For example, if 

(6.9a)

Repeated applications of Eq. (6.9a) yield the following very useful expression:

(6.9b)

Example 6.5 Arrivals at a Packet Switch

Find the joint pmf of in Example 6.1. Find 
Let N be the total number of packets arriving in the three input ports. Each input port has

an arrival with probability so N is binomial with pmf:

Given the number of packets arriving for each output port has a multinomial distribution:

The joint pmf of X is then:

The explicit values of the joint pmf are:

pX10, 0, 02 =
0!

0! 0! 0!
1
30 ¢3

0
≤ 1

23 =
1
8

… 3.pX1i, j, k2 = pX1i, j, k ƒ n2¢3
n
≤ 1

23 for i Ú 0, j Ú 0, k Ú 0, i + j + k = n

pX1,X2,X3
1i, j, k ƒ i + j + k = n2 = c n!

i! j! k!
1
3n
 for i + j + k = n, i Ú 0, j Ú 0, k Ú 0

 0   otherwise.

N = n,

pN1n2 = ¢3
n
≤ 1

23 for 0 … n … 3.

p = 1/2,

P3X1 7 X34.X = 1X1 ,X2 ,X32

pXn1xn |x1 , Á , xn-12pXn - 1
1xn-1 |x1 , Á , xn-22Á pX2

1x2 |x12pX1
1x12.

pX1 , Á ,Xn1x1 , Á , xn2 =

pXn1xn ƒ x1 , Á , xn-12 =
pX1 , Á ,Xn1x1 , Á , xn2
pX1 , Á ,Xn - 11x1 , Á , xn-12.

1x1 , Á , xn-12 7 0:
pX1 , Á ,Xn - 1

pX1 , Á ,Xn - 1
1x1 , x2 , Á , xn-12 = a

xn

pX1 , Á ,Xn1x1 , x2 , Á , xn2.

X1 , Á ,Xn-1n - 2
XkXj

pXj1xj2 = P3Xj = xj4 = a
x1

Á a
xj - 1
a
xj + 1

Á a
xn

pX1,X2 , Á ,Xn1x1 , x2 , Á , xn2.
xj:Xj
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Finally:

We say that the random variables are jointly continuous random
variables if the probability of any n-dimensional event A is given by an n-dimensional
integral of a probability density function:

(6.10)

where is the joint probability density function.
The joint cdf of X is obtained from the joint pdf by integration:

(6.11)
The joint pdf (if the derivative exists) is given by

(6.12)

A family of marginal pdf’s is associated with the joint pdf in Eq. (6.12). The mar-
ginal pdf for a subset of the random variables is obtained by integrating the other
variables out. For example, the marginal pdf of is

(6.13)

As another example, the marginal pdf for is given by

(6.14)

A family of conditional pdf’s is also associated with the joint pdf. For example,
the pdf of given the values of is given by

(6.15a)fXn1xn |x1 , Á , xn-12 =
fX1, Á ,Xn1x1 , Á , xn2
fX1, Á ,Xn - 1

1x1 , Á , xn-12

X1 , Á ,Xn-1Xn

fX1, Á ,Xn - 1
1x1 , Á , xn-12 = L

q

-q
fX1, Á ,Xn1x1 , Á , xn-1 , xn

œ 2 dxnœ .

X1 , Á ,Xn-1

fX1
1x12 = L

q

-q
Á L

q

-q
fX1,X2, Á ,Xn1x1 , x2

œ , Á , xn
œ 2 dx2

œ Á dxnœ .

X1

fX1x2 ! fX1,X2,Á ,Xn1x1 , x2 , Á , xn2 =
0n

0x1 Á 0xn
FX1,Á ,Xn1x1 , Á , xn2.

FX1x2 = FX1,X2 , Á ,Xn1x1 , x2 , Á , xn2 = L
x1

-q
ÁL

xn

-q
fX1, Á ,Xn1x1

œ , Á , xn
œ 2 dx1

œ Á dxnœ .

fX1, Á ,Xn1x1 , Á , xn2
P3X in A4 =Lx in A

Á LfX1, Á ,Xn1x1
œ , Á , xn

œ 2 dx1
œ Á dxnœ ,

X1 ,X2 , Á ,Xn

= 8/27.

+ pX12, 0, 12 + pX12, 1, 02 + pX13, 0, 02
P3X1 7 X34 = pX11, 0, 02 + pX11, 1, 02 + pX12, 0, 02 + pX11, 2, 02

pX13, 0, 02 = pX10, 3, 02 = pX10, 0, 32 = 1/216.

pX10, 1, 22 = pX10, 2, 12 = pX11, 0, 22 = pX11, 2, 02 = pX12, 0, 12 = pX12, 1, 02 = 3/216

pX11, 1, 12 = 6/216

pX12, 0, 02 = pX10, 2, 02 = pX10, 0, 22 = 3/72

pX11, 1, 02 = pX11, 0, 12 = pX10, 1, 12 =
2!

0! 1! 1!
1
32 ¢3

2
≤ 1

23 =
6

72

pX11, 0, 02 = pX10, 1, 02 = pX10, 0, 12 =
1!

0! 0! 1!
1
31 ¢3

1
≤ 1

23 =
3

24
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if

Repeated applications of Eq. (6.15a) yield an expression analogous to Eq. (6.9b):

(6.15b)

Example 6.6

The random variables and have the joint Gaussian pdf

Find the marginal pdf of and Find the conditional pdf of given and 
The marginal pdf for the pair and is found by integrating the joint pdf over 

The above integral was carried out in Example 5.18 with By substituting the result
of the integration above, we obtain

Therefore and are independent zero-mean, unit-variance Gaussian random variables.
The conditional pdf of given and is:

We conclude that given and is a Gaussian random variable with mean and 
variance 1/2.

Example 6.7 Multiplicative Sequence

Let be uniform in [0, 1], be uniform in and be uniform in (Note that 
is also the product of three uniform random variables.) Find the joint pdf of X and the marginal
pdf of 

For the joint pdf is nonzero and given by:

fX1,X2,X3
1x1 , x2 , x32 = fX3

1z |x, y2fX2
1y |x2fX1

1x2 =
1
y

1
x

1 =
1
xy

.

0 6 z 6 y 6 x 6 1,
X3 .

X330,X24.X330,X14,X2X1

x1/22X3X2

=
e-11�2x1

2+x2
2 -12x1x22
1p =

e-1x2-x1/12x122

1p .

fX2
1x2 ƒ x1 , x32 =

e-1x1
2+x2

2-12x1x2 + 1�2x3
22

2p1p
22p22p

e-x3
2 / 2e-x1

2/2

X3X1X2

X3X1

fX1,X3
1x1 , x32 =

e-x3
2/ 2

22p

e-x1
2/2

22p
.

r = -1/22.

fX1,X3
1x1 , x32 =

e-x 3
2/ 2

22pL
q

-q

e-1x1
2+x2

2-12x1x22
2p/22

dx2 .

x2:X3X1

X3 .X1X2X3 .X1

fX1,X2,X3
1x1 , x2 , x32 =

e-1x1
2+x2

2-12 x1x2+ 1�2x3
22

2p1p .

X3X1 ,X2 ,

fXn1xn ƒ x1 , Á , xn-12fXn - 1
1xn-1 ƒ x1 , Á , xn-22Á fX2

1x2 ƒ x12fX1
1x12.

fX1, Á ,Xn1x1 , Á , xn2 =

fX1, Á ,Xn - 1
1x1 , Á , xn-12 7 0.
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The joint pdf of and is nonzero for and is obtained by integrating x be-
tween y and 1:

We obtain the pdf of by integrating y between z and 1:

Note that the pdf of is concentrated at the values close to 

6.1.3 Independence

The collection of random variables is independent if

for any one-dimensional events It can be shown that are inde-
pendent if and only if

(6.16)

for all If the random variables are discrete, Eq. (6.16) is equivalent to

If the random variables are jointly continuous, Eq. (6.16) is equivalent to

for all 

Example 6.8

The n samples of a noise signal have joint pdf given by

It is clear that the above is the product of n one-dimensional Gaussian pdf’s.Thus are
independent Gaussian random variables.

6.2 FUNCTIONS OF SEVERAL RANDOM VARIABLES

Functions of vector random variables arise naturally in random experiments. For ex-
ample may correspond to observations from n repetitions of an
experiment that generates a given random variable.We are almost always interested in
the sample mean and the sample variance of the observations. In another example

X = 1X1 ,X2 , Á ,Xn2

X1 , Á ,Xn

fX1, Á , Xn1x1 , Á , xn2 =
e-1x1

2+Á+xn22/2
12p2n/2 for all x1 , Á , xn .

X1 ,X2 , Á ,Xn

x1 , Á , xn .

fX1, Á , Xn1x1 , Á , xn2 = fX1
1x12Á fXn1xn2

pX1, Á , Xn1x1 , Á , xn2 = pX1
1x12Á pXn1xn2 for all x1 , Á , xn .

x1 , Á , xn .

FX1, Á , Xn1x1 , Á , xn2 = FX1
1x12Á FXn1xn2

X1 , Á ,XnA1 , Á ,An .

P3X1 in A1 ,X2 in A2 , Á ,Xn in An4 = P3X1 in A14P3X2 in A24Á P3Xn in An4
X1 , Á ,Xn

x = 0.X3

fX3
1x32 = -3

 
1

z
 

 1
y

 ln y dy = -
1
2
1ln y22 `

z

1

=
1
2
1ln z22.

X3

fX2,X3
1x2 , x32 = 3

 
1

y
 

1
xy
dx =

1
y

 ln x `
y

1

=
1
y

 ln
1
y

.

0 6 z 6 y 6 1X3X2
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may correspond to samples of a speech waveform and we may
be interested in extracting features that are defined as functions of X for use in a
speech recognition system.

6.2.1 One Function of Several Random Variables

Let the random variable Z be defined as a function of several random variables:

(6.17)

The cdf of Z is found by finding the equivalent event of that is, the set
then

(6.18)

The pdf of Z is then found by taking the derivative of 

Example 6.9 Maximum and Minimum of n Random Variables

Let and where the are independent
random variables with the same distribution. Find and 

The maximum of is less than x if and only if each is less than x, so:

The minimum of is greater than x if and only if each is greater than x, so:

and

Example 6.10 Merging of Independent Poisson Arrivals

Web page requests arrive at a server from n independent sources. Source j generates packets
with exponentially distributed interarrival times with rate Find the distribution of the inter-
arrival times between consecutive requests at the server.

Let the interarrival times for the different sources be given by Each 
satisfies the memoryless property, so the time that has elapsed since the last arrival from each
source is irrelevant. The time until the next arrival at the multiplexer is then:

Therefore the pdf of Z is:

= P3X1 7 z4P3X2 7 z4Á P3Xn 7 z4
 1 - FZ1z2 = P3min1X1 ,X2 , Á ,Xn2 7 z4

Z = min1X1 ,X2 , Á ,Xn2.

XjX1 ,X2 , Á ,Xn .

lj .

FZ1z2 = 1 - 11 - FX1z22n.
= P3X1 7 z4P3X2 7 z4Á P3Xn 7 z4 = 11 - FX1z22n

 1 - FZ1z2 = P3min1X1 ,X2 , Á ,Xn2 7 z4
XiX1 ,X2 , Á ,Xn

= P3X1 … w4P3X2 … w4Á P3Xn … w4 = 1FX1w22n.
FW1w2 = P3max1X1 ,X2 , Á ,Xn2 … w4

XiX1 ,X2 , Á ,Xn
FZ1z2.FW1w2

XiZ = min1X1 ,X2 , Á ,Xn2,W = max1X1 ,X2 , Á ,Xn2

FZ1z2.
FZ1z2 = P3X in Rz4 = Lx in Rz

Á LfX1, Á , Xn1x1
œ , Á , xn

œ 2 dx1
œ Á dxnœ .

Rz = 5x: g1x2 … z6, 5Z … z6,
Z = g1X1 ,X2 , Á ,Xn2.

X = 1X1 ,X2 , Á ,Xn2



Section 6.2 Functions of Several Random Variables 311

The interarrival time is an exponential random variable with rate 

Example 6.11 Reliability of Redundant Systems

A computing cluster has n independent redundant subsystems. Each subsystem has an exponen-
tially distributed lifetime with parameter The cluster will operate as long as at least one sub-
system is functioning. Find the cdf of the time until the system fails.

Let the lifetime of each subsystem be given by The time until the last sub-
system fails is:

Therefore the cdf of W is:

6.2.2 Transformations of Random Vectors

Let be random variables in some experiment, and let the random vari-
ables be defined by a transformation that consists of n functions of

The joint cdf of at the point is equal to the probabil-
ity of the region of x where for 

(6.19a)

If have a joint pdf, then

(6.19b)

Example 6.12

Given a random vector X, find the joint pdf of the following transformation:

Zn = gn1Xn2 = anXn + bn .

o

Z2 = g21X22 = a2X2 + b2 ,

Z1 = g11X12 = a1X1 + b1 ,

FZ1, Á ,Zn1z1 , Á , zn2 = 1Á
x¿:gk1x¿2…zk1 fX1, Á ,Xn1x1

œ , Á , xn
œ 2 dx1

œ Á dx¿.

X1 , Á ,Xn

FZ1, Á ,Zn1z1 , Á , zn2 = P3g11X2 … z1 , Á , gn1X2 … zn4.
k = 1, Á , n:gk1x2 … zk

z = 1z1 , Á , zn2Z = 1Z1 , Á , Zn2
Z1 = g11X2 Z2 = g21X2 Á Zn = gn1X2.

X = 1X1 , Á ,Xn2:
Z1 , Á , Zn
X1 , Á ,Xn

FW1w2 = AFX1w2Bn = 11 - e-lw2n = 1 - ¢n
1
≤e-lw + ¢n

2
≤e-2lw + Á .

W = max1X1 ,X2 , Á ,Xn2.
X1 ,X2 , Á ,Xn .

l.

l1 + l2 + Á + ln .

= e-l1ze-l2zÁ e-lnz = e-1l1+l2+Á+ln2z.
= A1 - FX1

1z2B A1 - FX2
1z2B Á A1 - FXn1z2B
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Note that if and only if if so

6.2.3 pdf of General Transformations

We now introduce a general method for finding the pdf of a transformation of n jointly
continuous random variables. We first develop the two-dimensional case. Let the ran-
dom variables V and W be defined by two functions of X and Y:

(6.20)

Assume that the functions v(x, y) and w(x, y) are invertible in the sense that the equa-
tions and can be solved for x and y, that is,

The joint pdf of X and Y is found by finding the equivalent event of infinitesimal rec-
tangles.The image of the infinitesimal rectangle is shown in Fig. 6.1(a).The image can be
approximated by the parallelogram shown in Fig. 6.1(b) by making the approximation

and similarly for the y variable. The probabilities of the infinitesimal rectangle and the
parallelogram are approximately equal, therefore

and

(6.21)

where dP is the area of the parallelogram. By analogy with the case of a linear
transformation (see Eq. 5.59), we can match the derivatives in the above approxi-
mations with the coefficients in the linear transformations and conclude that the

fV,W1v, w2 =
fX,Y1h11v, w2, 1h21v, w22

` dP
dxdy

`
,

fX,Y1x, y2 dx dy = fV,W1v, w2 dP

gk1x + dx, y2 M gk1x, y2 +
0
0x
gk1x, y2 dx k = 1, 2

x = h11v, w2 and y = h21v, w2.
w = g21x, y2v = g11x, y2

V = g11X, Y2 and W = g21X, Y2.

*

=
1

a1 Á an
fX1,X2, Á , Xn¢ z1 - b1

a1
,
z2 - b2

a2
, Á ,

zn - bn
an

≤ .

fZ1,Z2, Á , Zn1z1 , z2 , Á , zn2 =
0n

0z1 Á 0zn
FZ1,Z2, Á , Zn1z1 , z2 , Á , zn2

= FX1,X2, Á , Xn¢ z1 - b1

a1
,
z2 - b2

a2
, Á ,

zn - bn
an

≤
FZ1,Z2, Á , Zn1z1 , z2 , Á , zn2 = PBX1 …

z1 - b1

a1
,X2 …

z2 - b2

a2
, Á ,Xn …

zn - bn
an

Rak 7 0,Xk … 1zk - bk2/ak ,Zk = akXk + bk , … zk ,
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“stretch factor” at the point (v, w) is given by the determinant of a matrix of partial
derivatives:

J1x, y2 = detD 0v
0x

0v
0y

0w
0x

0w
0y

T .

y

x

(a)

(b)

w

(x, y � dy) (x � dx, y � dy)
(g1(x, y � dy),

(g1(x � dx, y � dy), g2(x � dx, y � dy))

(g1(x � dx, y), g2(x � dx, y))

(g1(x, y), g2(x, y))

g2(x, y � dy))

(x � dx, y)(x, y)

v

w

(v, w)

v � g1(x, y)

(v � dx, w �

w � g2(x, y)

v


g1 


x dx)

g2  


x

(v � dy, w �

g1 


y dy)

g2  


y

(v � dx �

g1 


x dy, w �

g1 


y dx �

g2 


x dy)

g2 


y

FIGURE 6.1
(a) Image of an infinitesimal rectangle under general transformation. (b) Approximation of image by a parallelogram.
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The determinant J(x, y) is called the Jacobian of the transformation. The Jacobian of
the inverse transformation is given by

It can be shown that

We therefore conclude that the joint pdf of V and W can be found using either of the
following expressions:

(6.22a)

(6.22b)

It should be noted that Eq. (6.21) is applicable even if Eq. (6.20) has more than
one solution; the pdf is then equal to the sum of terms of the form given by Eqs. (6.22a)
and (6.22b), with each solution providing one such term.

Example 6.13

Server 1 receives m Web page requests and server 2 receives k Web page requests.Web page trans-
mission times are exponential random variables with mean Let X be the total time to transmit
files from server 1 and let Y be the total time for server 2. Find the joint pdf for T, the total trans-
mission time, and W, the proportion of the total transmission time contributed by server 1:

From Chapter 4, the sum of j independent exponential random variables is an Erlang ran-
dom variable with parameters j and Therefore X and Y are independent Erlang random vari-
ables with parameters m and and k and respectively:

We solve for X and Y in terms of T and W:

The Jacobian of the transformation is:

=
-x

1x + y22 -
y

1x + y22 =
-1
x + y

=
-1
t

.

J1x, y2 = detC 1 1
y

1x + y22
-x

1x + y22
S

X = TW and Y = T11 - W2.

fX1x2 =
me-mx1mx2m-1

1m - 12!  and fY1y2 =
me-my1my2k-1

1k - 12! .

m,m,
m.

T = X + Y and W =
X

X + Y
.

1/m.

= fX,Y1h11v, w2, 1h21v, w22 ƒJ1v, w2 ƒ .
fV,W1v, w2 =

fX,Y1h11v, w2, 1h21v, w22
ƒJ1x, y2 ƒ

ƒJ1v, w2 ƒ =
1

ƒJ1x, y2 ƒ .

J1v, w2 = detD 0x0v 0x
0w

0y
0v

0y
0w

T .
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The joint pdf of T and W is then:

We see that T and W are independent random variables. As expected, T is Erlang with parame-
ters and since it is the sum of independent Erlang random variables. W is the
beta random variable introduced in Chapter 3.

The method developed above can be used even if we are interested in only one
function of a random variable. By defining an “auxiliary” variable, we can use the
transformation method to find the joint pdf of both random variables, and then we can
find the marginal pdf involving the random variable of interest. The following example
demonstrates the method.

Example 6.14 Student’s t-distribution

Let X be a zero-mean, unit-variance Gaussian random variable and let Y be a chi-square random
variable with n degrees of freedom. Assume that X and Y are independent. Find the pdf of

Define the auxiliary function of The variables X and Y are then related to V and W by

The Jacobian of the inverse transformation is

Since the joint pdf of V and W is thus

The pdf of V is found by integrating the joint pdf over w:

If we let the integral becomes

fV1v2 =
11 + v2/n2-1n+12/2

2np≠1n/22 L
q

0
1w¿21n-12/2e-w¿ dw¿.

w¿ = 1w/221v2/n + 12,

fV1v2 =
1

22np≠1n/22L
q

0
1w/221n-12/2e-31w/2211+v2/n24 dw.

=
1w/221n-12/2e-31w/2211+v2/n24

22np≠1n/22 .

fV,W1v, w2 =
e-x

2/2

22p

1y/22n/2-1e-y/2

2≠1n/22 ƒJ1v, w2 ƒ ` x = v2w/n
y = w   

fX,Y1x, y2 = fX1x2fY1y2,
ƒJ1v, w2 ƒ = ` 1w/n 1v/221wn

0 1
` = 1w/n .

X = V2W/n and Y = W.

W = Y.
V = X/2Y/n .

m + km,m + k

=
me-mt1mt2m+k-1

1m + k - 12!
1m + k - 12!
1m - 12!1k - 12! 1w2m-111 - w2k-1.

= t
me-mtw1mtw2m-1

1m - 12!
me-mt11-w21mt11 - w22k-1

1k - 12!

x= tw
y= t(1-w)

fT,W1t, w2 =
1

ƒJ1x, y2 ƒ Bme-mx1mx2m-1

1m - 12!
me-my1my2k-1

1k - 12! R
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By noting that the above integral is the gamma function evaluated at we finally obtain
the Student’s t-distribution:

This pdf is used extensively in statistical calculations. (See Chapter 8.)

Next consider the problem of finding the joint pdf for n functions of n random
variables

We assume as before that the set of equations

(6.23)

has a unique solution given by

The joint pdf of Z is then given by

(6.24a)

(6.24b)

where and are the determinants of the transformation
and the inverse transformation, respectively,

and

J1z1 , Á , zn2 = detE 0h1

0z1

Á 0h1

0zn
o o

0hn
0z1

Á 0hn
0zn

U .

J1x1 , Á , xn2 = detE 0g1

0x1

Á 0g1

0xn
o o

0gn
0x1

Á 0gn
0xn

U
ƒJ1z1 , Á , zn2 ƒƒJ1x1 , Á , xn2 ƒ

= fX1, Á ,Xn1h11z2, h21z2, Á , hn1z22 ƒJ1z1 , z2 , Á , zn2 ƒ ,
fZ1, Á ,Zn1z1 , Á , zn2 =

fX1, Á ,Xn1h11z2, h21z2, Á , hn1z22
ƒJ1x1 , x2 , Á , xn2 ƒ

x1 = h11x2, x2 = h21x2, Á , xn = hn1x2.

z1 = g11x2, z2 = g21x2, Á , zn = gn1x2.

Z1 = g11X2, Z2 = g21X2, Á , Zn = gn1X2.
X = 1X1 , Á ,Xn2:

fV1v2 =
11 + v2/n2-1n+12/2≠11n + 12/22

2np≠1n/22 .

1n + 12/2,
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In the special case of a linear transformation we have:

The components of Z are:

Since the Jacobian is then simply:

Assuming that A is invertible,1 we then have that:

Example 6.15 Sum of Random Variables

Given a random vector find the joint pdf of the sum:

We will use the transformation by introducing auxiliary variables as follows:

The inverse transformation is given by:

The Jacobian matrix is:

Therefore the joint pdf of Z is

The pdf of is obtained by integrating with respect to and 

This expression can be simplified further if and are independent random variables.X3X1 ,X2 ,

fZ3
1z2 = 3

 q

-q 
3
 q

-q 

fX1z1 , z2 - z1 , z - z22 dz1dz2 .

z2:z1Z3

fZ1z1 , z2 , z32 = fX1z1 , z2 - z1 , z3 - z22.

J1x1 , x2 , x32 = detC1 0 0
1 1 0
1 1 1

S = 1.

X1 = Z1 ,X2 = Z2 - Z1 ,X3 = Z3 - Z2 .

Z1 = X1 , Z2 = X1 + X2 , Z3 = X1 + X2 + X3 .

Z = X1 + X2 + X3 .

X = 1X1 ,X2 ,X32,

fZ1z2 =
fX1x2
ƒdet A ƒ

`
x=A-1z

=
fX1A-1z2
ƒdet A ƒ

.

J1x1 , x2 , Á , xn2 = detDa11 a12 Á a1n

a21 a22 Á a2n

. . Á .
an1 an2 Á ann

T = det A.

dzj /dxi = aji ,
Zj = aj1X1 + aj2X2 + Á + ajnXn .

Z = AX = Da11 a12 Á a1n

a21 a22 Á a2n

. . Á .
an1 an2 Á ann

T DX1

X2

Á
Xn

T .

1Appendix C provides a summary of definitions and useful results from linear algebra.
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6.3 EXPECTED VALUES OF VECTOR RANDOM VARIABLES

In this section we are interested in the characterization of a vector random variable
through the expected values of its components and of functions of its components. We
focus on the characterization of a vector random variable through its mean vector and
its covariance matrix. We then introduce the joint characteristic function for a vector
random variable.

The expected value of a function of a vector random vari-
able is given by:

(6.25)

X = 1X1 ,X2 , Á ,Xn2
g1X2 = g1X1 , Á ,Xn2

E[Z] = d Lq

-q
Á L

q

-q
g1x1 , x2 , Á , xn2fX1x1 , x2 , Á , xn2 dx1 dx2 Á dxn X jointly

a
x1

Á a
xn

g1x1 , x2 , Á , xn2pX1x1 , x2 , Á , xn2 X discrete.

continuous

An important example is g(X) equal to the sum of functions of X. The procedure
leading to Eq. (5.26) and a simple induction argument show that:

(6.26)

Another important example is g(X) equal to the product of n individual functions of
the components. If are independent random variables, then

(6.27)

6.3.1 Mean Vector and Covariance Matrix

The mean, variance, and covariance provide useful information about the distribu-
tion of a random variable and are easy to estimate, so we are frequently interested
in characterizing multiple random variables in terms of their first and second mo-
ments. We now introduce the mean vector and the covariance matrix. We then in-
vestigate the mean vector and the covariance matrix of a linear transformation of a
random vector.

For the mean vector is defined as the column vector of
expected values of the components 

(6.28a)

Note that we define the vector of expected values as a column vector. In previous sec-
tions we have sometimes written X as a row vector, but in this section and wherever we
deal with matrix transformations, we will represent X and its expected value as a col-
umn vector.

mX = E[X] = EDX1

X2
...
Xn

T ! DE[X1]
E[X2]

...
E[Xn]

T .

Xk:
X = 1X1 ,X2 , Á ,Xn2,

E3g11X12g21X22Á gn1Xn24 = E3g11X124E3g21X224Á E3gn1Xn24.
X1 , Á ,Xn

E3g11X2 + g21X2 + Á + gn1X24 = E3g11X24 + Á + E3gn1X24.



Section 6.3 Expected Values of Vector Random Variables 319

The correlation matrix has the second moments of X as its entries:

(6.28b)

The covariance matrix has the second-order central moments as its entries:

(6.28c)

Both and are symmetric matrices.The diagonal elements of are
given by the variances of the elements of X. If these ele-
ments are uncorrelated, then for and is a diagonal ma-
trix. If the random variables are independent, then they are uncorrelated
and is diagonal. Finally, if the vector of expected values is 0, that is,
for all k, then

Example 6.16

Let be the jointly Gaussian random vector from Example 6.6. Find E[X] and 
We rewrite the joint pdf as follows:

We see that is a Gaussian random variable with zero mean and unit variance, and that it is in-
dependent of and We also see that and are jointly Gaussian with zero mean and
unit variance, and with correlation coefficient

Therefore the vector of expected values is: and

KX = E 1 - 1

22
0

-
1

22
1 0

0 0 1

U .

mX = 0,

rX1X2
= -

1

22
=

COV1X1 ,X22
sX1
sX2

= COV1X1 ,X22.

X2X1X2 .X1

X3

fX1,X2,X3
1x1 , x2 , x32 =

e-1x1
2 +x2

2 -2 1
22
x1x22

2pB1 - ¢ -
1

22
≤2

e-x3
2 /2

22p
.

KX.X = 1X1 ,X2 ,X32

RX = KX.
mk = E3Xk4 = 0KX

X1 , Á ,Xn
KXj Z k,COV1Xj ,Xk2 = 0

VAR3Xk4 = E31Xk - mk224
KXn * nKXRX

KX = D E31X1 -m1224 E31X1 -m121X2 -m224 Á E31X1 - m121Xn - mn24
E31X2 -m221X1 -m124 E31X2 -m2224 Á E31X2 - m221Xn - mn24

. . Á .
E31Xn -mn21X1 -m124 E31Xn -mn21X2 -m224 Á E31Xn - mn224

T .

RX = D E3X1
24 E3X1X24 Á E3X1Xn4

E3X2X14 E3X2
24 Á E3X2Xn4

. . Á .
E3XnX14 E3XnX24 Á E3Xn24

T .
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We now develop compact expressions for and If we multiply X, an
matrix, and a matrix, we obtain the following matrix:

If we define the expected value of a matrix to be the matrix of expected values of the
matrix elements, then we can write the correlation matrix as:

(6.29a)
The covariance matrix is then:

(6.29b)

6.3.2 Linear Transformations of Random Vectors

Many engineering systems are linear in the sense that will be elaborated on in Chapter
10. Frequently these systems can be reduced to a linear transformation of a vector of
random variables where the “input” is X and the “output” is Y:

The expected value of the kth component of Y is the inner product (dot product) of the
kth row of A and X:

Each component of E[Y] is obtained in this manner, so:

(6.30a)= AE3X4 = AmX.

mY = E3Y4 = G
a
n

j=1
a1jE3Xj4

a
n

j=1
a2jE3Xj4

...

a
n

j=1
anjE3Xj4

W = Da11 a12 Á an
a21 a22 Á a2n

. . Á .
an1 an2 Á ann

T DE3X14
E3X24

.

..

E3Xn4
T

E3Yk4 = EBan
j=1
akjXjR = a

n

j=1
akjE3Xj4.

Y = Da11 a12 Á an
a21 a22 Á a2n

. . Á .
an1 an2 Á ann

T DX1

X2...
Xn

T = AX.

= RX - mXmX
 T.

= E3XXT4 - mX E3XT4 - E3X4mX
 T + mXmX

 T

KX = E31X - mX21X - mX2T4

RX = E3XXT4.

XXT = DX1

X2
...
Xn

T3X1 ,X2 , Á ,Xn4 = D X1
2 X1X2 Á X1Xn

X2X1 X2
2 Á X2Xn

. . Á .
XnX1 XnX2 Á Xn

2

T .

n * n1 * nXT,
n * 1KX.RX
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The covariance matrix of Y is then:

(6.30b)

where we used the fact that the transpose of a matrix multiplication is the product of
the transposed matrices in reverse order:

The cross-covariance matrix of two random vectors X and Y is defined as:

We are interested in the cross-covariance between X and

(6.30c)

Example 6.17 Transformation of Uncorrelated Random Vector

Suppose that the components of X are uncorrelated and have unit variance, then the
identity matrix. The covariance matrix for is

(6.31)

In general is not a diagonal matrix and so the components of Y are correlated. In
Section 6.6 we discuss how to find a matrix A so that Eq. (6.31) holds for a given We can
then generate a random vector Y with any desired covariance matrix 

Suppose that the components of X are correlated so is not a diagonal matrix.
In many situations we are interested in finding a transformation matrix A so that

has uncorrelated components. This requires finding A so that 
is a diagonal matrix. In the last part of this section we show how to find such a ma-
trix A.

Example 6.18 Transformation to Uncorrelated Random Vector

Suppose the random vector and in Example 6.16 is transformed using the matrix:

Find the E[Y] and KY.

A = E 1

22

1

22
0

1

22
-

1

22
0

0 0 1

U .

X3X1 ,X2 ,

KY = AKXATY = AX

KX

KY.
KY.

KY = AAT

KY = AKXAT = AIAT = AAT.

Y = AX
KX = I,

= KXAT.

KXY = E3X - mX21Y - mY2T4 = E31X - mX21X - mX2TAT4
Y = AX:

KXY = E31X - mX21Y - mY2T4 = E3XYT4 - mXmY
 T = RXY - mXmY

 T.

5A1X - mX26T = 1X - mX2TAT.

= AKXAT,

= E3A1X - mX21X - mX2TAT4 = AE31X - mX21X - mX2T4AT

KY = E31Y - mY21Y - mY2T4 = E31AX - AmX21AX - AmX2T4
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Since then The covariance matrix of Y is:

The linear transformation has produced a vector of random variables with
components that are uncorrelated.

6.3.3 Joint Characteristic Function

The joint characteristic function of n random variables is defined as

(6.32a)

In this section we develop the properties of the joint characteristic function of two ran-
dom variables. These properties generalize in straightforward fashion to the case of n
random variables. Therefore consider

(6.32b)

If X and Y are jointly continuous random variables, then

(6.32c)

Equation (6.32c) shows that the joint characteristic function is the two-dimensional
Fourier transform of the joint pdf of X and Y. The inversion formula for the Fourier
transform implies that the joint pdf is given by

(6.33)

Note in Eq. (6.32b) that the marginal characteristic functions can be obtained from
joint characteristic function:

(6.34)

If X and Y are independent random variables, then the joint characteristic function is
the product of the marginal characteristic functions since

(6.35)

where the third equality follows from Eq. (6.27).

= E3ejv1X4E3ejv2Y4 = ≥X1v12≥Y1v22,
≥X,Y1v1 , v22 = E3ej1v1X+v2Y24 = E3ejv1Xejv2Y4

≥X1v2 = ≥X,Y1v, 02 ≥Y1v2 = ≥X,Y10, v2.

fX,Y1x, y2 =
1

4p2 = L
q

-qL
q

-q
≥X,Y1v1 , v22e-j1v1x+v2y2 dv1 dv2 .

≥X,Y1v1 , v22 = L
q

-qL
q

-q
fX,Y1x, y2ej1v1x+v2y2 dx dy.

≥X,Y1v1 , v22 = E3ej1v1X+v2Y24.

≥X1,X2, Á , Xn1v1 , v2 , Á , vn2 = E3ej1v1X1+v2X2+Á+vnXn24.

*

Y = 1Y1 , Y2 , Y32

=
1
2
C1 1 0

1 -1 0
0 0 1

S E1 -
1

22
1 +

1

22
0

1 -
1

22
- ¢1 +

1

22
≤ 0

0 0 1

U = E1 -
1

22
0 0

0 1 +
1

22
0

0 0 1

U .

KY = AKXAT =
1
2
C1 1 0

1 -1 0
0 0 1

S E 1 -
1

22
0

-
1

22
1 0

0 0 1

U C1 1 0
1 -1 0
0 0 1

S
E3Y4 = AmX = 0.mX = 0,
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The characteristic function of the sum can be obtained from the
joint characteristic function of X and Y as follows:

(6.36a)

If X and Y are independent random variables, the characteristic function of 
is then

(6.36b)

In Section 8.1 we will use the above result in dealing with sums of random variables.
The joint moments of X and Y (if they exist) can be obtained by taking the de-

rivatives of the joint characteristic function. To show this we rewrite Eq. (6.32b) as the
expected value of a product of exponentials and we expand the exponentials in a
power series:

It then follows that the moments can be obtained by taking an appropriate set of de-
rivatives:

(6.37)

Example 6.19

Suppose U and V are independent zero-mean, unit-variance Gaussian random variables, and let

Find the joint characteristic function of X and Y, and find E[XY].
The joint characteristic function of X and Y is

Since U and V are independent random variables, the joint characteristic function of U and V is
equal to the product of the marginal characteristic functions:

= .

where marginal characteristic functions were obtained from Table 4.1.

e{-
1
212v1

2 +6v1v2+5v2
2 2}

= e-
1
21v1+2v222e- 1

21v1+v222
= ≥U1v1 + 2v22≥V1v1 + v22

≥X,Y1v1 , v22 = E3ej11v1+2v22U24E3ej11v1+v22V24

= E3ej11v1+2v22U+1v1+v22V24.
≥X,Y1v1 , v22 = E3ej1v1X+v2Y24 = E3ejv11U+V2ejv212U+V24

X = U + V Y = 2U + V.

E3XiYk4 =
1

ji+k
0i0k

0v1
i 0v2

k≥X,Y1v1 , v22 |v1=0,v2=0 .

= a
q

i=0
a
q

k=0
E3XiYk4 1jv12i

i!

1jv22k
k!

.

= EBaq
i=0

1jv1X2i
i! a

q

k=0

1jv2Y2k
k!

R≥X,Y1v1 , v22 = E3ejv1Xejv2Y4

≥Z1v2 = ≥X,Y1av, bv2 = ≥X1av2≥Y1bv2.
Z = aX + bY

≥Z1v2 = E3ejv1aX+bY24 = E3ej1vaX+vbY24 = ≥X,Y1av, bv2.

Z = aX + bY
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The correlation E[XY] is found from Eq. (6.37) with and 

You should verify this answer by evaluating directly.

6.3.4 Diagonalization of Covariance Matrix

Let X be a random vector with covariance We are interested in finding an 
matrix A such that has a covariance matrix that is diagonal. The components
of Y are then uncorrelated.

We saw that is a real-valued symmetric matrix. In Appendix C we state results
from linear algebra that is then a diagonalizable matrix, that is, there is a matrix P
such that:

(6.38a)

where is a diagonal matrix and I is the identity matrix. Therefore if we let 
then from Eq. (6.30b) we obtain a diagonal 

We now show how P is obtained. First, we find the eigenvalues and eigenvectors
of from:

(6.38b)

where are column vectors.2 We can normalize each eigenvector so that
the sum of the square of its components, is 1. The normalized eigenvectors are

then orthonormal, that is,

(6.38c)

Let P be the matrix whose columns are the eigenvectors of and let be the diago-
nal matrix of eigenvalues:

From Eq. (6.38b) we have:

(6.39a)

where the second equality follows from the fact that each column of is obtained
by multiplying a column of P by By premultiplying both sides of the above equa-
tions by we obtain:

(6.39b)PTKXP = PTP∂ = ∂.
PT,

KX.
KXP

= 3l1e1 , l2e2 , Á , lnen4 = P∂

KXP = KX3e1 , e2 , Á , en4 = 3KXe1 , KXe2 , Á , KXen4

P = 3e1 , e2 , Á , en4 ∂ = diag3l14.
∂KX

ei
 Tej = di, j = b1 if i = j

0 if i Z j.

ei
 Tei ,

ein * 1ei

KXei = liei
KX

KY.
A = PT,∂

PTKXP = ∂ and PTP = I

KX

KX

Y = AX
n * nKX.

*

E3XY4 = E31U + V212U + V24
= 3.

+
1
2

exp{- 1
212v1

2 + 6v1v2 + 5v2
22}364 ƒ v1=0,v2=0

= -exp{- 1
212v1

2 + 6v1v2 + 5v2
22}36v1 + 10v24a 1

4
b34v1 + 6v24

E3XY4 =
1
j2

02

0v10v2
≥X,Y1v1 , v22 ƒ v1=0,v2=0

k = 1:i = 1

2See Appendix C.
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We conclude that if we let and

(6.40a)

then the random variables in Y are uncorrelated since

(6.40b)

In summary, any covariance matrix can be diagonalized by a linear transformation.
The matrix A in the transformation is obtained from the eigenvectors of 

Equation (6.40b) provides insight into the invertibility of and From lin-
ear algebra we know that the determinant of a product of matrices is the prod-
uct of the determinants, so:

where we used the fact that Recall that a matrix is invertible
if and only if its determinant is nonzero. Therefore is not invertible if and only if
one or more of the eigenvalues of is zero.

Now suppose that one of the eigenvalues is zero, say Since VAR
then But is defined as a linear combination, so

We conclude that the components of X are linearly dependent. Therefore, one or more
of the components in X are redundant and can be expressed as a linear combination of
the other components.

It is interesting to look at the vector X expressed in terms of Y. Multiply both
sides of Eq. (6.40a) by P and use the fact that 

(6.41)

This equation is called the Karhunen-Loeve expansion.The equation shows that a random
vector X can be expressed as a weighted sum of the eigenvectors of where the coeffi-
cients are uncorrelated random variables Furthermore, the eigenvectors form an ortho-
normal set. Note that if any of the eigenvalues are zero, VAR then =0,
and the corresponding term can be dropped from the expansion in Eq. (6.41). In Chapter
10, we will see that this expansion is very useful in the processing of random signals.

6.4 JOINTLY GAUSSIAN RANDOM VECTORS

The random variables are said to be jointly Gaussian if their joint pdf is
given by

(6.42a)fX1x2 ! fX1,X2,Á,Xn1x1 , Á , xn2 =
exp5-1

21x - m2TK-11x - m26
12p2n/2 ƒK ƒ 1/2 ,

X1 ,X2 , Á ,Xn

Yk3Yk4 = lk = 0,
Yk .

KX,

X = PPTX = PY = 3e1 , e2 , Á , en4DY1

Y2
...
Yn

T = a
n

k=1
Ykek .

PPT = I:

0 = Yk = ak1X1 + ak2X2 + Á + aknXn.

YkYk = 0.lk = 0,
3Yk4 =lk = 0.

KX

KY

det PT det P = det I = 1.

det KY = det PT det KX det P = det ∂ = l1l2 Á ln ,

n * n
KY.KX

KX.
KX.

KY = PTKXP = ∂.

Y = AX = PTX,

A = PT,
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where x and m are column vectors defined by

and K is the covariance matrix that is defined by

(6.42b)

The in Eq. (6.42a) denotes the transpose of a matrix or vector. Note that the co-
variance matrix is a symmetric matrix since 

Equation (6.42a) shows that the pdf of jointly Gaussian random variables is com-
pletely specified by the individual means and variances and the pairwise covariances. It
can be shown using the joint characteristic function that all the marginal pdf’s associat-
ed with Eq. (6.42a) are also Gaussian and that these too are completely specified by
the same set of means, variances, and covariances.

Example 6.20

Verify that the two-dimensional Gaussian pdf given in Eq. (5.61a) has the form of Eq. (6.42a).
The covariance matrix for the two-dimensional case is given by

where we have used the fact the The determinant of K is
so the denominator of the pdf has the correct form. The inverse of the covariance

matrix is also a real symmetric matrix:

The term in the exponent is therefore

Thus the two-dimensional pdf has the form of Eq. (6.42a).

=
11x - m12/s122 - 2rX,Y11x - m12/s1211y - m22/s22 + 11y - m22/s222

11 - rX,Y
2 2 .

=
1

s1
2s2

211 - rX,Y
2 2 1x - m1 , y - m22B s2

21x - m12 - rX,Ys1s21y - m22
-rX,Ys1s21x - m12 + s1

21y - m22R
1

s1
2s2

211 - rX,Y
2 2 1x - m1 , y - m22B s2

2 -rX,Ys1s2

-rX,Ys1s2 s1
2 R Bx - m1

y - m2
R

K-1 =
1

s1
2s2

211 - rX,Y
2 2 B s2

2 -rX,Ys1s2

-rX,Ys1s2 s1
2 R .

s2
  211 - r2

X,Y2
s2

 1COV1X1 ,X22 = rX,Ys1s2 .

K = B s1
2 rX,Ys1s2

rX,Ys1s2 s2
2 R ,

COV1Xi ,Xj2 = COV1Xj ,Xi2.
1.2T

K = D VAR1X12 COV1X1 ,X22 Á COV1X1 ,Xn2
COV1X2 ,X12 VAR1X22 Á COV1X2 ,Xn2

o o o
COV1Xn ,X12 Á VAR1Xn2

T .

x = Dx1

x2

o
xn

T , m = Dm1

m2

o
mn

T = DE3X14
E3X24

o
E3Xn4

T
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Example 6.21

The vector of random variables (X, Y, Z) is jointly Gaussian with zero means and covariance matrix:

Find the marginal pdf of X and Z.
We can solve this problem two ways. The first involves integrating the pdf directly to obtain

the marginal pdf.The second involves using the fact that the marginal pdf for X and Z is also Gauss-
ian and has the same set of means, variances, and covariances.We will use the second approach.

The pair (X, Z) has zero-mean vector and covariance matrix:

The joint pdf of X and Z is found by substituting a zero-mean vector and this covariance matrix
into Eq. (6.42a).

Example 6.22 Independence of Uncorrelated Jointly Gaussian Random Variables

Suppose are jointly Gaussian random variables with for 
Show that are independent random variables.

From Eq. (6.42b) we see that the covariance matrix is a diagonal matrix:

Therefore

and

Thus from Eq. (6.42a)

Thus are independent Gaussian random variables.

Example 6.23 Conditional pdf of Gaussian Random Variable

Find the conditional pdf of given 
Let be the covariance matrix for and be the covariance ma-

trix for Let and then the latter matrices areQn -1
= Kn

-1
-1,Qn = Kn

-1Xn-1 = 1X1 ,X2 , Á ,Xn-12.
Kn-1Xn = 1X1 ,X2 , Á ,Xn2Kn

X1 ,X2 , Á ,Xn-1 .Xn

X1 ,X2 , Á ,Xn

fX1x2 =
expE -1

2a n
i=1

[1xi - mi2/si]2F
12p2n/2 ƒK ƒ

1/2
= q

n

i=1

expE - 1
2 [1xi - mi2/si]2F
22psi

2
= q

n

i=1
fXi1xi2.

1x - m2TK-11x - m2 = a
n

i=1
¢xi - mi
si

≤2

.

K-1 = diagB 1
si

2R
K = diag3VAR1Xi24 = diag3si24

X1 ,X2 , Á ,Xn
i Z j.COV1Xi ,Xj2 = 0X1 ,X2 , Á ,Xn

K¿ = B VAR1X2 COV1X, Z2
COV1Z,X2 VAR1Z2 R = B1.0 0.3

0.3 1.0
R .

K = C VAR1X2 COV1X, Y2 COV1X, Z2
COV1Y,X2 VAR1Y2 COV1Y, Z2
COV1Z,X2 COV1Z, Y2 VAR1Z2

S = C1.0 0.2 0.3
0.2 1.0 0.4
0.3 0.4 1.0

S .
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submatrices of the former matrices as shown below:

Below we will use the subscript n or to distinguish between the two random vectors and
their parameters. The marginal pdf of given is given by:

In Problem 6.60 we show that the terms in the above expression are given by:

(6.43)

where and

This implies that has mean and variance The term is part of the nor-
malization constant. We therefore conclude that:

We see that the conditional mean of is a linear function of the “observations”

6.4.1 Linear Transformation of Gaussian Random Variables

A very important property of jointly Gaussian random variables is that the linear trans-
formation of any n jointly Gaussian random variables results in n random variables that
are also jointly Gaussian. This is easy to show using the matrix notation in Eq. (6.42a).
Let be jointly Gaussian with covariance matrix and mean vector

and define by

Y = AX,

Y = 1Y1 , Á , Yn2mX

KXX = 1X1 , Á ,Xn2

*

x1 , x2 , Á , xn-1 .
Xn

fXn1xn ƒ x1 , Á , xn-12 =

expb - Qnn
2
¢x - mn +

1
Qnn
a
n-1

j=1
Qjn1xj - mj2≤2 r

22p /Qnn

QnnB
21/Qnn .mn - B,Xn

ƒKn ƒ / ƒKn-1 ƒ = 1/Qnn .B =
1
Qnn
a
n-1

j=1
Qjn1xj - mj2

= Qnn51xn - mn2 + B62 - QnnB2

1
21xn - mn2TQn1xn - mn2 - 1

21xn-1 - mn-12TQn-11xn-1 - mn-12

=
exp5-1

21xn - mn2TQn1xn - mn2 + 1
21xn-1 - mn-12TQn-11xn-1 - mn-126

22p ƒKn ƒ 1/2/ ƒKn-1 ƒ 1/2
.

=
exp5-1

21xn - mn2TQn1xn - mn26
12p2n/2 ƒKn ƒ 1/2

12p21n-121/2 ƒKn-1 ƒ 1/2

exp5-1
21xn-1 - mn-12TQn-11xn-1 - mn-126

fXn1xn ƒ x1 , Á , xn-12 =
fXn1Xn2
fXn - 1
1Xn-12

X1 ,X2 , Á ,Xn-1Xn

n - 1

Kn = D K1n

Kn-1 K2n
...

K1n K2n Á Knn

T Qn = D Q1n

Qn-1 Q2n
...

Q1n Q2n Á Qnn

T
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where A is an invertible matrix. From Eq. (5.60) we know that the pdf of Y is
given by

(6.44)

From elementary properties of matrices we have that

and

The argument in the exponential is therefore equal to

since Letting and and noting that 
we finally

have that the pdf of Y is

(6.45)

Thus the pdf of Y has the form of Eq. (6.42a) and therefore are jointly
Gaussian random variables with mean vector and covariance matrix:

This result is consistent with the mean vector and covariance matrix we obtained be-
fore in Eqs. (6.30a) and (6.30b).

In many problems we wish to transform X to a vector Y of independent Gaussian
random variables. Since is a symmetric matrix, it is always possible to find a matrix
A such that is a diagonal matrix. (See Section 6.6.) For such a matrix A,
the pdf of Y will be

(6.46)

where are the diagonal components of We assume that these values are
all nonzero. The above pdf implies that are independent random variablesY1 , Á , Yn

¶.l1 , Á , ln

=
expb -1

2a
n

i=1
1yi - ni22/li r

312pl1212pl22Á 12pln241/2,

fY1y2 =
e-11/221y-n2T¶-11y-n2
12p2n/2

ƒ ¶ ƒ
1/2

AKXA
T = ¶

KX

mY = AmX and KY = AKXAT.

Y1 , Á , Yn

fY1y2 =
e-11/221y-mY2TKY-1 1y-mY2
12p2n/2

ƒKY ƒ
1/2 .

det1KY2 = det1AKXAT2 = det1A2det1KX2det1AT2 = det1A22 det1KX2,
mY = AmXKY = AKXATA-1TK-1

 X = 1AKXAT2-1.

1y - AmX2TA-1TKX
-1A-11y - AmX2 = 1y - AmX2T1AKXAT2-11y - AmX2

1A-1y - mX2T = 1y - AmX2TA-1T.

1A-1y - mX2 = A-11y - AmX2

=
exp5-1

21A-1y - mX2TKX-11A-1y - mX26
12p2n/2

ƒA ƒ ƒKX ƒ
1/2 .

fY1y2 =
fX1A-1y2

ƒA ƒ

n * n
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with means and variance In conclusion, it is possible to linearly transform a vector
of jointly Gaussian random variables into a vector of independent Gaussian random
variables.

It is always possible to select the matrix A that diagonalizes K so that 
The transformation AX then corresponds to a rotation of the coordinate system so that
the principal axes of the ellipsoid corresponding to the pdf are aligned to the axes of the
system. Example 5.48 provides an example of rotation.

In computer simulation models we frequently need to generate jointly Gaussian
random vectors with specified covariance matrix and mean vector. Suppose that

has components that are zero-mean, unit-variance Gaussian
random variables, so its mean vector is 0 and its covariance matrix is the identity matrix
I. Let K denote the desired covariance matrix. Using the methods discussed in Section
6.3, it is possible to find a matrix A so that Therefore has zero
mean vector and covariance K. From Eq. (6.46) we have that Y is also a jointly Gauss-
ian random vector with zero mean vector and covariance K. If we require a nonzero
mean vector m, we use 

Example 6.24 Sum of Jointly Gaussian Random Variables

Let be jointly Gaussian random variables with joint pdf given by Eq. (6.42a). Let

We will show that Z is always a Gaussian random variable.
We find the pdf of Z by introducing auxiliary random variables. Let

If we define then

where

From Eq. (6.45) we have that Z is jointly Gaussian with mean and covariance matrix
Furthermore, it then follows that the marginal pdf of Z is a Gaussian pdf with mean

given by the first component of n and variance given by the 1-1 component of the covariance ma-
trix C. By carrying out the above matrix multiplications, we find that

(6.47a)

(6.47b)VAR3Z4 = a
n

i=1
a
n

j=1
aiaj COV1Xi ,Xj2.

E3Z4 = a
n

i=1
aiE3Xi4

C = AKAT.
n = Am,

A = Da1 a2 Á # an
0 1 Á # 0
# # Á # #
0 # Á 0 1

T .

Z = AX

Z = 1Z1 , Z2 , Á , Zn2,
Z2 = X2 ,  Z3 = X3 , Á ,  Zn = Xn .

Z = a1X1 + a2X2 + Á + anXn .

X1 ,X2 , Á ,Xn

Y + m.

Y = ATUATA = K.

X = 1X1 ,X2 , Á ,Xn2

n = 2

det1A2 = 1.

li .ni
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6.4.2 Joint Characteristic Function of a Gaussian Random Variable

The joint characteristic function is very useful in developing the properties of jointly
Gaussian random variables. We now show that the joint characteristic function of n
jointly Gaussian random variables is given by

(6.48a)

which can be written more compactly as follows:

(6.48b)

where m is the vector of means and K is the covariance matrix defined in Eq. (6.42b).
Equation (6.48) can be verified by direct integration (see Problem 6.65). We use

the approach in [Papoulis] to develop Eq. (6.48) by using the result from Example 6.24
that a linear combination of jointly Gaussian random variables is always Gaussian.
Consider the sum

The characteristic function of Z is given by

On the other hand, since Z is a Gaussian random variable with mean and variance
given Eq. (6.47), we have

(6.49)

By equating both expressions for with we finally obtain

(6.50)

By replacing the with we obtain Eq. (6.48).
The marginal characteristic function of any subset of the random variables

can be obtained by setting appropriate to zero. Thus, for example,
the marginal characteristic function of for is obtained by set-
ting Note that the resulting characteristic function
again corresponds to that of jointly Gaussian random variables with mean and covari-
ance terms corresponding the reduced set 

The derivation leading to Eq. (6.50) suggests an alternative definition for jointly
Gaussian random vectors:

Definition: X is a jointly Gaussian random vector if and only every linear com-
bination is a Gaussian random variable.Z = aTX

X1 ,X2 , Á ,Xm .

vm+1 = vm+2 = Á = vn = 0.
m 6 nX1 ,X2 , Á ,Xm

vi’sX1 ,X2 , Á ,Xn

vi’sai’s

= eja
Tm- 1

2 aTKa.

£X1,X2, Á  , Xn1a1 , a2 , Á , an2 = ejani = 1
aimi- 1

2ani = 1ank = 1
aiak COV1Xi,Xk2

v = 1,£Z1v2
= ejvani = 1

aimi-
1
2v

2ani = 1ank = 1
aiak COV1Xi,Xk2.

£Z1v2 = ejvE3Z4- 1
2 VAR3Z4v2

= £X1, Á , Xn1a1v, a2v, Á , anv2.
£Z1v2 = E3ejvZ4 = E3ej1va1X1+va2X2+Á+vanXn24

Z = a1X1 + a2X2 + Á + anXn .

£X1V2 ! £X1,X2, Á , Xn1v1 , v2 , Á ,vn2 = ejV
Tm- 1

2V
TKV,

£X1,X2, Á , Xn1v1 , v2 , Á ,vn2 = ejani = 1
vimi- 1

2ani = 1ank = 1
vivk COV1Xi,Xk2,

X1, X2, Á , Xn

*
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In Example 6.24 we showed that if X is a jointly Gaussian random vector then the lin-
ear combination is a Gaussian random variable. Suppose that we do not
know the joint pdf of X but we are given that is a Gaussian random variable
for any choice of coefficients This implies that Eqs. (6.48) and
(6.49) hold, which together imply Eq. (6.50) which states that X has the characteristic
function of a jointly Gaussian random vector.

The above definition is slightly broader than the definition using the pdf in Eq. (6.44).
The definition based on the pdf requires that the covariance in the exponent be invertible.
The above definition leads to the characteristic function of Eq. (6.50) which does not
require that the covariance be invertible. Thus the above definition allows for cases
where the covariance matrix is not invertible.

6.5 ESTIMATION OF RANDOM VARIABLES

In this book we will encounter two basic types of estimation problems. In the first type, we
are interested in estimating the parameters of one or more random variables, e.g., probabil-
ities, means, variances, or covariances. In Chapter 1, we stated that relative frequencies can
be used to estimate the probabilities of events, and that sample averages can be used to es-
timate the mean and other moments of a random variable. In Chapters 7 and 8 we will
consider this type of estimation further. In this section, we are concerned with the second
type of estimation problem, where we are interested in estimating the value of an inacces-
sible random variable X in terms of the observation of an accessible random variable Y. For
example, X could be the input to a communication channel and Y could be the observed
output. In a prediction application, X could be a future value of some quantity and Y its
present value.

6.5.1 MAP and ML Estimators

We have considered estimation problems informally earlier in the book. For example,
in estimating the output of a discrete communications channel we are interested in
finding the most probable input given the observation that is, the value of input
x that maximizes 

In general we refer to the above estimator for X in terms of Y as the maximum a pos-
teriori (MAP) estimator. The a posteriori probability is given by:

and so the MAP estimator requires that we know the a priori probabilities 
In some situations we know but we do not know the a priori proba-
bilities, so we select the estimator value x as the value that maximizes the likelihood of
the observed value 

max
x
P3Y = y ƒX = x4.

Y = y:

P3Y = y ƒX = x4
P3X = x4.

P3X = x ƒ Y = y4 =
P3Y = y ƒX = x4P3X = x4

P3Y = y4

max
x
P3X = x ƒ Y = y4.

P3X = x ƒ Y = y4: Y = y,

aT = 1a1 , a2 , Á , an2.
Z = aTX

Z = aTX
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We refer to this estimator of X in terms of Y as the maximum likelihood (ML) estimator.
We can define MAP and ML estimators when X and Y are continuous random

variables by replacing events of the form by If X and Y
are continuous, the MAP estimator for X given the observation Y is given by:

and the ML estimator for X given the observation Y is given by:

Example 6.25 Comparison of ML and MAP Estimators

Let X and Y be the random pair in Example 5.16. Find the MAP and ML estimators for X in
terms of Y.

From Example 5.32, the conditional pdf of X given Y is given by:

which decreases as x increases beyond y. Therefore the MAP estimator is On the
other hand, the conditional pdf of Y given X is:

As x increases beyond y, the denominator becomes larger so the conditional pdf decreases.There-
fore the ML estimator is In this example the ML and MAP estimators agree.

Example 6.26 Jointly Gaussian Random Variables

Find the MAP and ML estimator of X in terms of Y when X and Y are jointly Gaussian random
variables.

The conditional pdf of X given Y is given by:

which is maximized by the value of x for which the exponent is zero. Therefore

The conditional pdf of Y given X is:

which is also maximized for the value of x for which the exponent is zero:

0 = y - r
sY

sX
1x - mX2 - mY .

fY1y |x2 =

expb - 1
211 - r22sY 2 ¢y - r

sY

sX
1x - mX2 - mY≤2 r

22psY
 2 11 - r22 .

Xn MAP = r
sX

sY
1y - mY2 + mX .

fX1x |y2 =

expb - 1
211 - r22sX 2 ¢x - r

sX

sY
1y - mY2 - mX≤2 r

22psX
 2 11 - r22

Xn ML = y.

fY1y ƒ x2 =
e-y

1 - e-x
   for   0 6 y … x.

Xn MAP = y.

fX1x ƒ y2 = e-1x-y2 for y … x

max
x
fX1Y = y ƒX = x2.

max
x
fX1X = x ƒ Y = y2,

5y 6 Y 6 y + dy6.5Y = y6
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The ML estimator for X given is then:

Therefore we conclude that In other words, knowledge of the a priori probabili-
ties of X will affect the estimator.

6.5.2 Minimum MSE Linear Estimator

The estimate for X is given by a function of the observation In general, the 
estimation error, is nonzero, and there is a cost associated with
the error, We are usually interested in finding the function g(Y) that
minimizes the expected value of the cost, For example, if X and Y
are the discrete input and output of a communication channel, and c is zero when

and one otherwise, then the expected value of the cost corresponds to the
probability of error, that is, that When X and Y are continuous random
variables, we frequently use the mean square error (MSE) as the cost:

In the remainder of this section we focus on this particular cost function. We first con-
sider the case where g(Y) is constrained to be a linear function of Y, and then consider
the case where g(Y) can be any function, whether linear or nonlinear.

First, consider the problem of estimating a random variable X by a constant a so
that the mean square error is minimized:

(6.51)

The best a is found by taking the derivative with respect to a, setting the result to zero,
and solving for a. The result is

(6.52)

which makes sense since the expected value of X is the center of mass of the pdf. The
mean square error for this estimator is equal to 

Now consider estimating X by a linear function

(6.53a)

Equation (6.53a) can be viewed as the approximation of by the constant b.
This is the minimization posed in Eq. (6.51) and the best b is

(6.53b)

Substitution into Eq. (6.53a) implies that the best a is found by

We once again differentiate with respect to a, set the result to zero, and solve for a:

 0 =
d

da
E31X - E3X42 - a1Y - E3Y4224

min
a
E351X - E3X42 - a1Y - E3Y42624.

b* = E3X - aY4 = E3X4 - aE3Y4.
X - aY

min
a,b
E31X - aY - b224.

g1Y2 = aY + b:
E31X - a*224 = VAR1X2.

a* = E3X4,

min
a
E31X - a224 = E3X24 - 2aE3X4 + a2.

e = E31X - g1Y2224.
X Z g1Y2.X = g1Y2

E3c1X - g1Y224.c1X - g1Y22.X - Xn = X - g1Y2,
Xn = g1Y2.

Xn ML Z Xn MAP.

Xn ML =
sX

rsY
1y - mY2 + mX .

Y = y



Section 6.5 Estimation of Random Variables 335

(6.54)

The best coefficient a is found to be

where and Therefore, the minimum mean
square error (mmse) linear estimator for X in terms of Y is

(6.55)

The term is simply a zero-mean, unit-variance version of Y. Thus
is a rescaled version of Y that has the variance of the random variable 

that is being estimated, namely The term E[X] simply ensures that the estimator has
the correct mean. The key term in the above estimator is the correlation coefficient:

specifies the sign and extent of the estimate of Y relative to If X
and Y are uncorrelated (i.e., ) then the best estimate for X is its mean, E[X].
On the other hand, if then the best estimate is equal to 

We draw our attention to the second equality in Eq. (6.54):

(6.56)

This equation is called the orthogonality condition because it states that the error of
the best linear estimator, the quantity inside the braces, is orthogonal to the observa-
tion The orthogonality condition is a fundamental result in mean square
estimation.

The mean square error of the best linear estimator is

(6.57)

where the second equality follows from the orthogonality condition. Note that when
the mean square error is zero. This implies that 

so that X is essentially a linear function of Y.= P3X = a*Y + b*4 = 1,
P3|X - a*Y - b*| = 04|rX,Y| = 1,

= VAR1X211 - rX,Y
2 2

= VAR1X2 - a* COV1X, Y2
= E311X - E3X42 - a*1Y - E3Y4221X - E3X424

- a*E311X - E3X42 - a*1Y - E3Y4221Y - E3Y424
= E311X - E3X42 - a*1Y - E3Y4221X - E3X424

eL
* = E311X - E3X42 - a*1Y - E3Y42224

Y - E[Y].

E351X - E3X42 - a*1Y - E3Y4261Y - E3Y424 = 0.

sY + E3X4. ;sX1Y - E3Y42/rX,Y = ;1
rX,Y = 0

sX1Y - E3Y42/sY .rX,Y

s X
2 .

sX1Y - E3Y42/sY
1Y - E3Y42/sY

= rX,YsX
Y - E3Y4
sY

+ E3X4.
Xn = a*Y + b*

sX = 2VAR1X2 .sY = 2VAR1Y2
a* =

COV1X, Y2
VAR1Y2 = rX,Y

sX

sY
,

= -21COV1X, Y2 - aVAR1Y22.
= -2E351X - E3X42 - a1Y - E3Y4261Y - E3Y424
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6.5.3 Minimum MSE Estimator

In general the estimator for X that minimizes the mean square error is a nonlinear
function of Y. The estimator g(Y) that best approximates X in the sense of minimizing
mean square error must satisfy

The problem can be solved by using conditional expectation:

The integrand above is positive for all y; therefore, the integral is minimized by mini-
mizing for each y. But g(y) is a constant as far as the condi-
tional expectation is concerned, so the problem is equivalent to Eq. (6.51) and the
“constant” that minimizes is

(6.58)

The function is called the regression curve which simply traces
the conditional expected value of X given the observation 

The mean square error of the best estimator is:

Linear estimators in general are suboptimal and have larger mean square errors.

Example 6.27 Comparison of Linear and Minimum MSE Estimators

Let X and Y be the random pair in Example 5.16. Find the best linear and nonlinear estimators
for X in terms of Y, and of Y in terms of X.

Example 5.28 provides the parameters needed for the linear estimator:
and Example 5.32 provides the

conditional pdf’s needed to find the nonlinear estimator. The best linear and nonlinear estima-
tors for X in terms of Y are:

Thus the optimum linear and nonlinear estimators are the same.

E3X ƒ y4 = L
q

y
xe-1x-y2 dx = y + 1 and so E3X ƒ Y4 = Y + 1.

Xn =
1

25

25
2
Y - 1/2

1/2
+

3
2

= Y + 1

rX,Y = 1/25.VAR3Y4 = 1/4,VAR3X4 = 5/4,E3Y4 = 1/2,
E3X4 = 3/2,

= 3Rn
 

VAR3X ƒ Y = y4fY1y2 dy.

e* = E31X - g*1Y2224 = 3R
 

E31X - E3X ƒ y422 ƒ Y = y4fY1y2 dy

Y = y.
g*1y2 = E3X ƒ Y = y4

g*1y2 = E3X ƒ Y = y4.
E31X - g1y222 ƒ Y = y4

E31X - g1Y222 ƒ Y = y4

= L
q

-q
E31X - g1Y222 ƒ Y = y4fY1y2dy.

E31X - g1Y2224 = E3E31X - g1Y222 ƒ Y44

minimize
g1.2 E31X - g1Y2224.
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The best linear and nonlinear estimators for Y in terms of X are:

The optimum linear and nonlinear estimators are not the same in this case. Figure 6.2 compares
the two estimators. It can be seen that the linear estimator is close to for lower values of
x, where the joint pdf of X and Y are concentrated and that it diverges from for larger
values of x.

Example 6.28

Let X be uniformly distributed in the interval and let Find the best linear esti-
mator for Y in terms of X. Compare its performance to the best estimator.

The mean of X is zero, and its correlation with Y is

Therefore and the best linear estimator for Y is E[Y] by Eq. (6.55). The mean
square error of this estimator is the VAR(Y) by Eq. (6.57).

The best estimator is given by Eq. (6.58):

The mean square error of this estimator is

Thus in this problem, the best linear estimator performs poorly while the nonlinear estimator
gives the smallest possible mean square error, zero.

E31Y - g1X2224 = E31X2 - X2224 = 0.

E3Y ƒX = x4 = E3X2 ƒX = x4 = x2.

COV1X, Y2 = 0

E3XY4 = E3XX24 = L
1

- 1
2

x3/2 dx = 0.

Y = X2.1-1, 12

E3Y ƒ x4
E3Y ƒ x4

E3Y ƒ x4 = L
x

0
y
e-y

1 - e-x
dy =

1 - e-x - xe-x

1 - e-x
= 1 -

xe-x

1 - e-x
.
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1
2
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Comparison of linear and nonlinear estimators.
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Example 6.29 Jointly Gaussian Random Variables

Find the minimum mean square error estimator of X in terms of Y when X and Y are jointly
Gaussian random variables.

The minimum mean square error estimator is given by the conditional expectation of X
given Y. From Eq. (5.63), we see that the conditional expectation of X given is given by

This is identical to the best linear estimator. Thus for jointly Gaussian random variables the min-
imum mean square error estimator is linear.

6.5.4 Estimation Using a Vector of Observations

The MAP, ML, and mean square estimators can be extended to where a vector of ob-
servations is available. Here we focus on mean square estimation. We wish to estimate
X by a function g(Y) of a random vector of observations so that
the mean square error is minimized:

To simplify the discussion we will assume that X and the have zero means. The
same derivation that led to Eq. (6.58) leads to the optimum minimum mean square
estimator:

(6.59)

The minimum mean square error is then:

Now suppose the estimate is a linear function of the observations:

The mean square error is now:

We take derivatives with respect to and again obtain the orthogonality conditions:

EB ¢X - a
n

k=1
akYk≤YjR = 0 for j = 1, Á , n.

ak

E31X - g1Y2224 = EB ¢X - a
n

k=1
akYk≤2R .

g1Y2 = a
n

k=1
akYk = aTY.

= 3Rn
 

VAR3X ƒ Y = y4fY1y2dy.

E31X - g*1Y2224 = 3Rn E31X - E3X ƒ Y422 ƒ Y = y4fY1y2dy

g*1y2 = E3X ƒ Y = y4.

Yi

minimize
g1.2 E31X - g1Y2224.

Y = 1Y1 , Y2 , Á , Yn2T

E3X ƒ Y = y4 = E3X4 + rX, Y
sX
sY
1Y - E3Y42.

Y = y
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The orthogonality condition becomes:

We obtain a compact expression by introducing matrix notation:

(6.60)

where and is the correlation matrix.
Assuming is invertible, the optimum coefficients are:

(6.61a)

We can use the methods from Section 6.3 to invert The mean square error of the
optimum linear estimator is:

(6.61b)

Now suppose that X has mean and Y has mean vector so our estimator
now has the form:

(6.62)

The same argument that led to Eq. (6.53b) implies that the optimum choice for b is:

Therefore the optimum linear estimator has the form:

where is a random vector with zero mean vector. The mean square error
for this estimator is:

where has zero mean. We have reduced the general estimation prob-
lem to one with zero mean random variables, i.e., W and Z, which has solution given
by Eq. (6.61a). Therefore the optimum set of linear predictors is given by:

(6.63a)

The mean square error is:

(6.63b)

This result is of particular importance in the case where X and Y are jointly Gauss-
ian random variables. In Example 6.23 we saw that the conditional expected value

= VAR1X2 - aTE31X - mX21Y - mY24.
E31X - aTY - b224 = E31W - aTZW4 = VAR1W2 - aTE3WZ4

a = Rz
 -1E3WZ4 = KY

 -1E31X - mX21Y - mY24.

W = X - mX

E31X - g1Y2224 = E31X - aTZ - mX224 = E31W - aTZ224

Z = Y - mY

Xn = g1Y2 = aT1Y - mY2 + mX = aTZ + mX

b = E3X4 - aTmY .

Xn = g1Y2 = a
n

k=1
akYk + b = aTY + b.

mY ,mX

= E31X - aTY2X4 = VAR1X2 - aTE3YX4.
E31X - aTY224 = E31X - aTY2X4 - E31X - aTY2aTY4

RY .

a = RY
 -1E3XY4.

RY

RYE3XY4 = 3E3XY14, E3XY24 , Á , E3XYn4T
E3XY4 = RYa where a = 1a1 , a2 , Á , an2T.

E3XYj4 = EB ¢an
k=1
akYk≤YjR = a

n

k=1
akE3YkYj4 for j = 1, Á , n.
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of X given Y is a linear function of Y of the form in Eq. (6.62). Therefore in this case
the optimum minimum mean square estimator corresponds to the optimum linear
estimator.

Example 6.30 Diversity Receiver

A radio receiver has two antennas to receive noisy versions of a signal X. The desired signal X is
a Gaussian random variable with zero mean and variance 2. The signals received in the first
and second antennas are and where and are zero-mean,
unit-variance Gaussian random variables. In addition, and are independent random
variables. Find the optimum mean square error linear estimator for X based on a single antenna
signal and the corresponding mean square error. Compare the results to the optimum mean
square estimator for X based on both antenna signals 

Since all random variables have zero mean, we only need the correlation matrix and the
cross-correlation vector in Eq. (6.61):

and

The optimum estimator using a single antenna received signal involves solving the version
of the above system:

and the associated mean square error is:

The coefficients of the optimum estimator using two antenna signals are:

and the optimum estimator is:

The mean square error for the two antenna estimator is:

E31X - aTY224 = VAR1X2 - aTE3YX4 = 2 - 30.4, 0.44B2
2
R = 0.4.

XN = 0.4Y1 + 0.4Y2 .

a = RY
 -1E3XY4 = B3 2

2 3
R-1B2

2
R =

1
5
B 3 -2
-2 3

R B2
2
R = B0.4

0.4
R

VAR1X2 - a* COV1Y1 ,X2 = 2 -
2
3

2 =
2
3

.

XN =
E3X24

E3X24 + E3N1
24Y1 =

2
3
Y1

1 * 1

E3XY4 = BE3XY14
E3XY24R = BE3X24

E3X24R = B2
2
R .

= BE3X24 + E3N1
24 E3X24

E3X24 E3X24 + E3N2
24R = B3 2

2 3
R

= B E31X + N1224 E31X + N121X + N224
E31X + N121X + N224 E31X + N2224 R

RY = B E3Y1
24 E3Y1Y24

E3Y1Y24 E3Y2
24 R

Y = 1Y1 , Y22.

N2X,N1 ,
N2N1Y2 = X + N2Y1 = X + N1
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As expected, the two antenna system has a smaller mean square error. Note that the re-
ceiver adds the two received signals and scales the result by 0.4. The sum of the signals is:

so combining the signals keeps the desired signal portion, X, constant while averaging the two
noise signals N1 and N2. The problems at the end of the chapter explore this topic further.

Example 6.31 Second-Order Prediction of Speech

Let be a sequence of samples of a speech voltage waveform, and suppose that the
samples are fed into the second-order predictor shown in Fig. 6.3. Find the set of predictor coef-
ficients a and b that minimize the mean square value of the predictor error when is estimat-
ed by 

We find the best predictor for and and assume that the situation is identical for
and and so on. It is common practice to model speech samples as having zero mean

and variance and a covariance that does not depend on the specific index of the samples, but
rather on the separation between them:

The equation for the optimum linear predictor coefficients becomes

Equation (6.61a) gives

a =
r2 - r1

2

1 - r1
2  and b =

r111 - r1
22

1 - r1
2 .

s2B 1 r1

r1 1
R Ba
b
R = s2Br2

r1
R .

COV1Xj ,Xk2 = r ƒj-k ƒs2.

s2,
X4X2 ,X3,

X3X1 ,X2 ,
aXn-2 + bXn-1 .

Xn

X1 ,X2 , Á

XN = 0.4Y1 + 0.4Y2 = 0.412X + N1 + N22 = 0.8¢X +
N1 + N2

2
≤

b a�







�



�

Xn Xn � 2Xn � 1

Xn

En

^

FIGURE 6.3
A two-tap linear predictor for processing
speech.
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In Problem 6.78, you are asked to show that the mean square error using the above values of a
and b is

(6.64)

Typical values for speech signals are and . The mean square value of the pre-
dictor output is then The lower variance of the output relative to the input vari-
ance shows that the linear predictor is effective in anticipating the next sample in terms of
the two previous samples. The order of the predictor can be increased by using more terms in the
linear predictor. Thus a third-order predictor has three terms and involves inverting a cor-
relation matrix, and an n-th order predictor will involve an matrix. Linear predictive tech-
niques are used extensively in speech, audio, image and video compression systems. We discuss
linear prediction methods in greater detail in Chapter 10.

6.6 GENERATING CORRELATED VECTOR RANDOM VARIABLES

Many applications involve vectors or sequences of correlated random variables. Com-
puter simulation models of such applications therefore require methods for generating
such random variables. In this section we present methods for generating vectors of
random variables with specified covariance matrices. We also discuss the generation of
jointly Gaussian vector random variables.

6.6.1 Generating Random Vectors with Specified Covariance Matrix

Suppose we wish to generate a random vector Y with an arbitrary valid covariance ma-
trix Let as in Example 6.17, where X is a vector random variable with
components that are uncorrelated, zero mean, and unit variance. X has covariance ma-
trix equal to the identity matrix and

Let P be the matrix whose columns are the eigenvectors of and let be the diago-
nal matrix of eigenvalues, then from Eq. (6.39b) we have:

If we premultiply the above equation by P and then postmultiply by we obtain ex-
pression for an arbitrary covariance matrix in terms of its eigenvalues and eigen-
vectors:

(6.65)

Define the matrix as the diagonal matrix of square roots of the eigenvalues:

∂1/2 ! D2l1 0 Á 0
0 2l2 Á 0
. . Á .

0 0 Á 2ln

T .

∂1/2

P∂PT = PPTKYPPT = KY .

KY

PT,

PTKYP = PTP∂ = ∂.

∂KY

KY = ATKXA = ATA.

KX = I, mY = AmX = 0,

Y = ATXKY .

*

n * n
3 * 3

1s22
1.281s22.281s2.

r2 = .562r1 = .825

s2b1 - r1
2 -
1r1

2 - r222
1 - r1

2 r .
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In Problem 6.53 we show that any covariance matrix is positive semi-definite,
which implies that it has nonnegative eigenvalues, and so taking the square root is al-
ways possible. If we now let

(6.66)

then

Therefore Y has the desired covariance matrix 

Example 6.32

Let consist of two zero-mean, unit-variance, uncorrelated random variables. Find
the matrix A such that has covariance matrix

First we need to find the eigenvalues of K which are determined from the following equation:

We find the eigenvalues to be and Next we need to find the eigenvectors corre-
sponding to each eigenvalue:

which implies that Thus any vector of the form is an eigenvector. We 
choose the normalized eigenvector corresponding to as We 
similarly find the eigenvector corresponding to as 

The method developed in Section 6.3 requires that we form the matrix P whose columns
consist of the eigenvectors of K:

Next it requires that we form the diagonal matrix with elements equal to the square root of the
eigenvalues:

The desired matrix is then

You should verify that K = AAT.

A = P∂1/2 = B 1 23
-1 23

R .

∂1/2 = B22 0
0 26

R .

P =
1

22
B 1 1
-1 1

R .

e2 = 31/22, 1/224T.l2 = 6
e1 = 31/22, -1/224T.l1 = 2

31, -14T2e1 + 2e2 = 0.

B4 2
2 4

R Be1
e2
R = l1Be1e2R = 2Be1

e2
R

l2 = 6.l1 = 2

= 1l - 621l - 22.

det1K - lI2 = 0 = detB4 - l 2
2 4 - l

R = 14 - l22 - 4 = l2 - 8l + 12

K = B4 2
2 4

R .

Y = AX
X = 1X1 ,X22

KY .

ATA = P∂1/2∂1/2PT = P∂PT = KY .

A = 1P∂1/22T

KY
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Example 6.33

Use Octave to find the eigenvalues and eigenvectors calculated in the previous example.
After entering the matrix K, we use the eig(K) function to find the matrix of eigenvectors

P and eigenvalues We then find A and its transpose Finally we confirm that gives the
desired covariance matrix.

> K=[4, 2; 2, 4];

> [P,D] =eig (K)

P =

-0.70711 0.70711

0.70711 0.70711

D =

2 0

0 6

> A=(P*sqrt(D))’

A =

-1.0000 1.0000

1.7321 1.7321

> A’

ans =

-1.0000 1.7321

1.0000 1.7321

> A’*A

ans =

4.0000 2.0000

2.0000 4.0000

The above steps can be used to find the transformation for any desired covariance
matrix K. The only check required is to ascertain that K is a valid covariance matrix:
(1) K is symmetric (trivial); (2) K has positive eigenvalues (easy to check numerically).

6.6.2 Generating Vectors of Jointly Gaussian Random Variables

In Section 6.4 we found that if X is a vector of jointly Gaussian random variables with
covariance then is also jointly Gaussian with covariance matrix

If we assume that X consists of unit-variance, uncorrelated random
variables, then the identity matrix, and therefore 

We can use the method from the first part of this section to find A for any desired
covariance matrix We generate jointly Gaussian random vectors Y with arbitrary
covariance matrix and mean vector as follows:

1. Find a matrix A such that 
2. Use the method from Section 5.10 to generate X consisting of n independent,

zero-mean, Gaussian random variables.
3. Let Y = AX + mY.

KY = AAT.

mYKY

KY .

KY = AAT.KX = I,
KY = AKXAT.

Y = AXKX ,

AT

ATAAT.¶.
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Example 6.34

The Octave commands below show necessary steps for generating the Gaussian random vari-
ables with the covariance matrix from Example 6.30.

> U1=rand(1000, 1); %Create a 1000-element vector U1.

> U2=rand(1000, 1); %Create a 1000-element vector U2.

> R2=-2*log(U1); % Find

> TH=2*pi*U2; % Find

> X1=sqrt(R2).*sin(TH); %Generate X1.

> X2=sqrt(R2).*cos(TH); %Generate X2.

> Y1=X1+sqrt(3)*X2 %Generate Y1.

> Y2=-X1+sqrt(3)*X2 %Generate Y2.

> plot(Y1,Y2,’+’) % Plot scattergram.

We plotted the values vs. the values for 1000 pairs of generated random variables in
a scattergram as shown in Fig. 6.4. Good agreement with the elliptical symmetry of the desired
jointly Gaussian pdf is observed.

Y2Y1

®.

R2.

FIGURE 6.4
Scattergram of jointly Gaussian random variables.
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SUMMARY

• The joint statistical behavior of a vector of random variables X is specified by
the joint cumulative distribution function, the joint probability mass function,
or the joint probability density function. The probability of any event involv-
ing the joint behavior of these random variables can be computed from these
functions.

• The statistical behavior of subsets of random variables from a vector X is speci-
fied by the marginal cdf, marginal pdf, or marginal pmf that can be obtained from
the joint cdf, joint pdf, or joint pmf of X.

• A set of random variables is independent if the probability of a product-form
event is equal to the product of the probabilities of the component events. Equiv-
alent conditions for the independence of a set of random variables are that the
joint cdf, joint pdf, or joint pmf factors into the product of the corresponding mar-
ginal functions.

• The statistical behavior of a subset of random variables from a vector X, given
the exact values of the other random variables in the vector, is specified by the
conditional cdf, conditional pmf, or conditional pdf. Many problems naturally
lend themselves to a solution that involves conditioning on the values of some of
the random variables. In these problems, the expected value of random variables
can be obtained through the use of conditional expectation.

• The mean vector and the covariance matrix provide summary information about
a vector random variable. The joint characteristic function contains all of the in-
formation provided by the joint pdf.

• Transformations of vector random variables generate other vector random vari-
ables. Standard methods are available for finding the joint distributions of the
new random vectors.

• The orthogonality condition provides a set of linear equations for finding the
minimum mean square linear estimate. The best mean square estimator is given
by the conditional expected value.

• The joint pdf of a vector X of jointly Gaussian random variables is determined by
the vector of the means and by the covariance matrix.All marginal pdf’s and con-
ditional pdf’s of subsets of X have Gaussian pdf’s. Any linear function or linear
transformation of jointly Gaussian random variables will result in a set of jointly
Gaussian random variables.

• A vector of random variables with an arbitrary covariance matrix can be gener-
ated by taking a linear transformation of a vector of unit-variance, uncorrelated
random variables. A vector of Gaussian random variables with an arbitrary co-
variance matrix can be generated by taking a linear transformation of a vector of
independent, unit-variance jointly Gaussian random variables.
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CHECKLIST OF IMPORTANT TERMS

Conditional cdf
Conditional expectation
Conditional pdf
Conditional pmf
Correlation matrix
Covariance matrix
Independent random variables
Jacobian of a transformation
Joint cdf
Joint characteristic function
Joint pdf
Joint pmf
Jointly continuous random variables
Jointly Gaussian random variables

Karhunen-Loeve expansion
MAP estimator
Marginal cdf
Marginal pdf
Marginal pmf
Maximum likelihood estimator
Mean square error
Mean vector
MMSE linear estimator
Orthogonality condition
Product-form event
Regression curve
Vector random variables

ANNOTATED REFERENCES

Reference [3] provides excellent coverage on linear transformation and jointly
Gaussian random variables. Reference [5] provides excellent coverage of vector
random variables. The book by Anton [6] provides an accessible introduction to linear
algebra.
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McGraw-Hill, New York, 2002.

2. N. Johnson et al., Continuous Multivariate Distributions, Wiley, New York, 2000.

3. H. Cramer, Mathematical Methods of Statistics, Princeton Press, 1999.

4. R. Gray and L.D. Davisson, An Introduction to Statistical Signal Processing,
Cambridge Univ. Press, Cambridge, UK, 2005.
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PROBLEMS

Section 6.1: Vector Random Variables

6.1. The point is uniformly distributed inside a sphere of radius 1 about the
origin. Find the probability of the following events:
(a) X is inside a sphere of radius 
(b) X is inside a cube of length centered about the origin.
(c) All components of X are positive.
(d) Z is negative.

6.2. A random sinusoid signal is given by where A is a uniform random vari-
able in the interval [0, 1]. Let be samples of the signal taken at
times and 
(a) Find the joint cdf of X in terms of the cdf of A if and Are

independent random variables?
(b) Find the joint cdf of X for and . Let 

6.3. Let the random variables X, Y, and Z be independent random variables. Find the follow-
ing probabilities in terms of and 
(a)
(b)
(c)
(d)

6.4. A radio transmitter sends a signal to a receiver using three paths. The signals that
arrive at the receiver along each path are:

where and are independent Gaussian random variables with zero mean and
unit variance.
(a) Find the joint pdf of Are and independent random

variables?
(b) Find the probability that the minimum of all three signals is positive.
(c) Find the probability that a majority of the signals are positive.

6.5. An urn contains one black ball and two white balls. Three balls are drawn from the urn.
Let if the outcome of the kth draw is the black ball and let otherwise. Define
the following three random variables:

(a) Specify the range of values of the triplet (X, Y, Z) if each ball is put back into the urn
after each draw; find the joint pmf for (X, Y, Z).

(b) In part a, are X, Y, and Z independent? Are X and Y independent?
(c) Repeat part a if each ball is not put back into the urn after each draw.

6.6. Consider the packet switch in Example 6.1. Suppose that each input has one packet with
probability p and no packets with probability Packets are equally likely to be1 - p.

Z = max5I1 , I2 , I36.
Y = min5I1 , I2 , I36,
X = I1 + I2 + I3 ,

Ik = 0Ik = 1

X3X1 ,X2 ,X = 1X1 ,X2 ,X32.
N3N1 ,N2 ,

X1 = s + N1 ,X2 = s + N2 , and X3 = s + N3 ,

s 7 0
P3max1X, Y, Z2 7 64.
P3min1X, Y, Z2 6 24.
P3X = 5, Y 6 0, Z 7 14.
P3 ƒX ƒ 6 5, Y 6 4, Z3 7 84.

FZ1z2.FX1x2, FY1y2,
t1 = p/6.t3 = t1 + pt1 , t2 = t1 + p/2,

X1t12,X1t22,X1t32
t3 = p.t1 = 0, t2 = p/2,

t3 .t1 , t2 ,
X = 1X1t12,X1t22,X1t322

X1t2 = A sin1t2

2/23
r, r 7 0.

X = 1X, Y, Z2
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destined to each of the outputs. Let be the number of packet arrivals des-
tined for output 1, 2, and 3, respectively.
(a) Find the joint pmf of and Hint: Imagine that every input has a packet go

to a fictional port 4 with probality 1 – p.
(b) Find the joint pmf of and 
(c) Find the pmf of 
(d) Are and independent random variables?
(e) Suppose that each output will accept at most one packet and discard all additional

packets destined to it. Find the average number of packets discarded by the module
in each T-second period.

6.7. Let X, Y, Z have joint pdf

(a) Find k.
(b) Find and 
(c) Find and 

6.8. A point is selected at random inside the unit sphere.
(a) Find the marginal joint pdf of Y and Z.
(b) Find the marginal pdf of Y.
(c) Find the conditional joint pdf of X and Y given Z.
(d) Are X, Y, and Z independent random variables?
(e) Find the joint pdf of X given that the distance from X to the origin is greater than 1/2

and all the components of X are positive.
6.9. Show that 

6.10. Let be binary random variables taking on values 0 or 1 to denote whether
a speaker is silent (0) or active (1).A silent speaker remains idle at the next time slot with
probability 3/4, and an active speaker remains active with probability 1/2. Find the joint
pmf for and the marginal pmf of Assume that the speaker begins in the
silent state.

6.11. Show that 
6.12. Let and be independent random variables and let and

(a) Use the result in Problem 6.11 to find the joint pdf of X, Y, and Z.
(b) Let the be independent uniform random variables in the interval [0, 1]. Find the

marginal joint pdf of Y and Z. Find the marginal pdf of Z.
(c) Let the be independent zero-mean, unit-variance Gaussian random variables.

Find the marginal pdf of Y and Z. Find the marginal pdf of Z.
6.13. Let and be the multiplicative sequence in Example 6.7.

(a) Find, plot, and compare the marginal pdfs of and 
(b) Find the conditional pdf of given 
(c) Find the conditional pdf of given 

6.14. Requests at an online music site are categorized as follows: Requests for most popular
title with second most popular title with third most popular title with

and other Suppose there are a total number ofp4 = 1 - p1 - p2 - p3 = 1/8.p3 = 1/8;
p2 = 1/4;p1 = 1/2;

X3 = z.X1

X1 = x.X3

X3 .X1 ,X2 ,
X3X1 ,X2 ,

Ui

Ui

Z = U1 + U2 + U3 .
X = U1 , Y = U1 + U2 ,U3U1 , U2 ,

fX,Y,Z1x, y, z2 = fZ1z ƒ x, y2fY1y ƒ x2fX1x2.
X3 .X1 ,X2 ,X3 ,

X1 ,X2 , Á ,Xn

pX1,X2,X3
1x1 , x2 , x32 = pX3

1x3 ƒ x1 , x22pX2
1x2 ƒ x12pX1

1x12.

X = 1X, Y, Z2
fZ1z2.fX1x2, fY1y2,

fZ1z ƒ x, y2.fX1x ƒ y, z2

fX,Y,Z1x, y, z2 = k1x + y + z2 for 0 … x … 1, 0 … y … 1, 0 … z … 1.

X3X1 ,X2 ,
X2 .

X2 .X1

X3X1 ,X2 ,

X1,X2 and X3
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n requests in T seconds. Let be the number of times category k occurs.
(a) Find the joint pmf of 
(b) Find the marginal pmf of Hint: Use the binomial theorem.
(c) Find the marginal pmf of 
(d) Find the conditional joint pmf of given where 

6.15. The number N of requests at the online music site in Problem 6.14 is a Poisson random
variable with mean customers per second. Let be the number of type k requests in
T seconds. Find the joint pmf of 

6.16. A random experiment has four possible outcomes. Suppose that the experiment is re-
peated n independent times and let be the number of times outcome k occurs. The
joint pmf of is given by

(a) Find the marginal pmf of 
(b) Find the marginal pmf of 
(c) Find the conditional joint pmf of given where 

6.17. The number of requests of types 1, 2, and 3, respectively, arriving at a service station in
t seconds are independent Poisson random variables with means and Let

and be the number of requests that arrive during an exponentially distributed
time T with mean 
(a) Find the joint pmf of and 
(b) Find the marginal pmf of 
(c) Find the conditional pmf of and given 

Section 6.2: Functions of Several Random Variables  

6.18. N devices are installed at the same time. Let Y be the time until the first device fails.
(a) Find the pdf of Y if the lifetimes of the devices are independent and have the same

Pareto distribution.
(b) Repeat part a if the device lifetimes have a Weibull distribution.

6.19. In Problem 6.18 let be the indicator function for the event “kth device is still work-
ing at time t.” Let N(t) be the number of devices still working at time t:

Find the pmf of N(t) as well as its mean and variance.
6.20. A diversity receiver receives N independent versions of a signal. Each signal version has

an amplitude that is Rayleigh distributed. The receiver selects that signal with the
largest amplitude . A signal is not useful if the squared amplitude falls below a thresh-
old Find the probability that all N signals are below the threshold.

6.21. (Haykin) A receiver in a multiuser communication system accepts K binary signals from
K independent transmitters: where is the received signal from
the kth transmitter. In an ideal system the received vector is given by:

where is a diagonal matrix of positive channel gains, is
the vector of bits from each of the transmitters where and N is a vector of Kbk = ;1,

b = 1b1 , b2 , Á , bK2A = 3ak4
Y = Ab + N

YkY = 1Y1 , Y2 , Á , YK2,
g.

Xk
 2

Xk

I21t2 + Á + IN1t2.
N1t2 = I11t2 +

Ik1t2

N3 .N2 ,N1

N1 .
N3 .N1 ,N2 ,

at.
N3N1 ,N2 ,

l3t.l1t, l2t,

0 … m … n.X1 = m,1X2 ,X32
X1 .
1X1 ,X22.

p1k1 , k2 , k32 =
n! 3!
1n + 32! = ¢n + 3

3
≤-1

 for 0 … ki and k1 + k2 + k3 … n.

1X1 ,X2 ,X32
Xk

1X1 ,X2 ,X3 ,X42.
Xka

0 … m … n.X1 = m,1X2 ,X32
X1 .
1X1 ,X22.

1X1 ,X2 ,X32.
Xk
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independent zero-mean, unit-variance Gaussian random variables.
(a) Find the joint pdf of Y.
(b) Suppose find the probability that all components of Y are positive.

6.22. (a) Find the joint pdf of and 
(b) Evaluate the joint pdf of (U, V, W) if the are independent zero-mean, unit vari-

ance Gaussian random variables.
(c) Find the marginal pdf of V and of W.

6.23. (a) Find the joint pdf of the sample mean and variance of two random variables:

in terms of the joint pdf of and 
(b) Evaluate the joint pdf if and are independent Gaussian random variables with

the same mean 1 and variance 1.
(c) Evaluate the joint pdf if and are independent exponential random variables

with the same parameter 1.
6.24. (a) Use the auxiliary variable method to find the pdf of

(b) Find the pdf of Z if X and Y are independent exponential random variables with the
parameter 1.

(c) Repeat part b if X and Y are independent Pareto random variables with parameters
and

6.25. Repeat Problem 6.24 parts a and b for 
6.26. Let X and Y be zero-mean, unit-variance Gaussian random variables with correlation co-

efficient 1/2. Find the joint pdf of and 
6.27. Use auxilliary variables to find the pdf of where the are independent

random variables that are uniformly distributed in [0, 1].
6.28. Let X, Y, and Z be independent zero-mean, unit-variance Gaussian random variables.

(a) Find the pdf of R
(b) Find the pdf of 

6.29. Let be processed as follows:

(a) Find an expression for the joint pdf of in terms of the joint pdf
of

(b) Find the joint pdf of Y if are independent zero-mean, unit-variance
Gaussian random variables.

Section 6.3: Expected Values of Vector Random Variables

6.30. Find E[M], E[V], and E[MV] in Problem 6.23c.
6.31. Compute E[Z] in Problem 6.27 in two ways:

(a) by integrating over 
(b) by integrating over the joint pdf of 1X1 ,X2 ,X32.

fZ1z2;

X1 ,X2 ,X3 ,X4

X = 1X1 ,X2 ,X3 ,X42.
Y = 1Y1 , Y2 , Y3 , Y42

Y1 = X1 , Y2 = X1 + X2 , Y3 = X2 + X3 , Y4 = X3 + X4 .

X1 ,X2 ,X3 ,X4

R2 = X2 + Y2 + Z2.
(X2 + Y2 + Z2)1/2.=

XiZ = X1X2X3

V = Y4.U = X2

Z = X/Y.
xm = 1.k = 2

Z =
X

X + Y
.

X2X1

X2X1

X2 .X1

M =
X1 + X2

2
V =

1X1 - M22 + 1X2 - M22
2

Xi

W = X1 + X2 + X3 .U = X1 , V = X1 + X2 ,
b = 11, 1, Á , 12,



352 Chapter 6 Vector Random Variables

6.32. Find the mean vector and covariance matrix for three multipath signals 
in Problem 6.4.

6.33. Find the mean vector and covariance matrix for the samples of the sinusoidal signals
in Problem 6.2.

6.34. (a) Find the mean vector and covariance matrix for (X, Y, Z) in Problem 6.5a.
(b) Repeat part a for Problem 6.5c.

6.35. Find the mean vector and covariance matrix for (X, Y, Z) in Problem 6.7.
6.36. Find the mean vector and covariance matrix for the point (X, Y, Z) inside the unit sphere

in Problem 6.8.
6.37. (a) Use the results of Problem 6.6c to find the mean vector for the packet arrivals

and in Example 6.5.
(b) Use the results of Problem 6.6b to find the covariance matrix.
(c) Explain why and are correlated.

6.38. Find the mean vector and covariance matrix for the joint number of packet arrivals in a
random time and in Problem 6.17. Hint: Use conditional expectation.

6.39. (a) Find the mean vector and covariance matrix (U, V, W) in terms of in
Problem 6.22b.

(b) Find the cross-covariance matrix between (U, V, W) and 
6.40. (a) Find the mean vector and covariance matrix of in terms of

those of in Problem 6.29.
(b) Find the cross-covariance matrix between Y and X.
(c) Evaluate the mean vector, covariance, and cross-covariance matrices if 

are independent random variables.
(d) Generalize the results in part c to 

6.41. Let consist of equal mean, independent, unit-variance random
variables. Find the mean vector, covariance, and cross-covariance matrices of 

(a)

(b)

6.42. Let where X and Y are random variables.
(a) Find the characteristic function of W in terms of the joint characteristic function of

X and Y.
(b) Find the characteristic function of W if X and Y are the random variables discussed

in Example 6.19. Find the pdf of W.

W = aX + bY + c,

A = D1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

T .

A = D1 1/2 1/4 1/8
0 1 1/2 1/4
0 0 1 1/2
0 0 0 1

T
Y = AX:

X = 1X1 ,X2 ,X3 ,X42
Y = 1Y1 , Y2 , Á , Yn-1 , Yn2.

X1 ,X2 ,X3 ,X4

X = 1X1 ,X2 ,X3 ,X42
Y = 1Y1 , Y2 , Y3 , Y42

1X1 ,X2 ,X32.
1X1 ,X2 ,X32

N3N1 ,N2 ,

X3X1 ,X2 ,

X3X1 ,X2 ,

X = 1X1t12,X1t22,X1t322

X = 1X1 ,X2 ,X32
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6.43. (a) Find the joint characteristic function of the jointly Gaussian random variables X and
Y introduced in Example 5.45. Hint: Consider X and Y as a transformation of the in-
dependent Gaussian random variables V and W.

(b) Find
(c) Find the joint characteristic function of and 

6.44. Let and where 
(a) Find the joint characteristic function of X and Y in terms of the joint characteristic

function of U and V.
(b) Find an expression for E[XY] in terms of joint moments of U and V.

6.45. Let X and Y be nonnegative, integer-valued random variables. The joint probability gen-
erating function is defined by

(a) Find the joint pgf for two independent Poisson random variables with parameters 
and

(b) Find the joint pgf for two independent binomial random variables with parameters
(n, p) and (m, p).

6.46. Suppose that X and Y have joint pgf

(a) Use the marginal pgf’s to show that X and Y are Poisson random variables.
(b) Find the pgf of Is Z a Poisson random variable?

6.47. Let X and Y be trinomial random variables with joint pmf

(a) Find the joint pgf of X and Y.
(b) Find the correlation and covariance of X and Y.

6.48. Find the mean vector and covariance matrix for (X, Y) in Problem 6.46.
6.49. Find the mean vector and covariance matrix for (X, Y) in Problem 6.47.
6.50. Let have covariance matrix:

(a) Find the eigenvalues and eigenvectors of 
(b) Find the orthogonal matrix P that diagonalizes Verify that P is orthogonal and

that
(c) Express X in terms of the eigenvectors of using the Karhunen-Loeve expansion.

6.51. Repeat Problem 6.50 for with covariance matrix:

KX = C 1 -1/2 -1/2
-1/2 1 -1/2
-1/2 -1/2 1

S .

X = 1X1 ,X2 ,X32
KX

PTKXP = ∂.
KX.

KX.

KX = B 1 1/4
1/4 1

R .

X = 1X1 ,X22

P3X = j, Y = k4 =
n! p1

jp2
k11 - p1 - p22n- j-k
j! k!1n - j - k2!  for 0 … j, k and j + k … n.

Z = X + Y.

GX,Y1z1 , z22 = ea11z1-12+a21z2-12+b1z1z2-12.

a2 .
a1

GX,Y1z1 , z22 = E3z1
 X z2

 Y 4 = a
q

j=0
a
q

k=0
z1

 j z2
 k P3X = j, Y = k4.

ƒad - bc ƒ Z 0.y = cU + dV,X = aU + bV
Y¿ = Y + b.X¿ = X + a

E3X2Y4.
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6.52. A square matrix A is said to be nonnegative definite if for any vector 
Show that the covariance matrix is nonnegative definite. Hint: Use

the fact that 
6.53. A is positive definite if for any nonzero vector 

(a) Show that if all the eigenvalues are positive, then is positive definite. Hint: Let

(b) Show that if is positive definite, then all the eigenvalues are positive. Hint: Let a
be an eigenvector of 

Section 6.4: Jointly Gaussian Random Vectors

6.54. Let be the jointly Gaussian random variables with mean vector and covariance
matrix given by:

(a) Find the pdf of X in matrix notation.
(b) Find the pdf of X using the quadratic expression in the exponent.
(c) Find the marginal pdfs of and 
(d) Find a transformation A such that the vector consists of independent

Gaussian random variables.
(e) Find the joint pdf of Y.

6.55. Let be the jointly Gaussian random variables with mean vector and
covariance matrix given by:

(a) Find the pdf of X in matrix notation.
(b) Find the pdf of X using the quadratic expression in the exponent.
(c) Find the marginal pdfs of and 
(d) Find a transformation A such that the vector consists of independent

Gaussian random variables.
(e) Find the joint pdf of Y.

6.56. Let and be independent zero-mean, unit-variance Gaussian random variables
and let and 
(a) Find the covariance matrix of (X, Y, Z).
(b) Find the joint pdf of (X, Y, Z).
(c) Find the conditional pdf of Y and Z given X.
(d) Find the conditional pdf of Z given X and Y.

6.57. Let be independent zero-mean, unit-variance Gaussian random variables
that are processed as follows:

(a) Find the covariance matrix of 
(b) Find the joint pdf of Y.
(c) Find the joint pdf of and and 
(d) Find a transformation A such that the vector consists of independent

Gaussian random variables.
Z = AY

Y3 .Y1Y2 ;Y1

Y = 1Y1 , Y2 , Y32.
Y1 = X1 + X2 , Y2 = X2 + X3 , Y3 = X3 + X4 .

X1 ,X2 ,X3 ,X4

Z = U1 + U2 + U3 .X = U1 , Y = U1 + U2 ,
U3U1 , U2 ,

Y = AX
X3 .X1 ,X2 ,

mX = C1
0
2
S KX = C3/2 0 1/2

0 1 0
1/2 0 3/2

S .

X = 1X1 ,X2 ,X32

Y = AX
X2 .X1

mX = B1
0
R  KX = B 3/2 -1/2

-1/2 3/2
R .

X = 1X1 ,X22

KX.
KX

b = PTa.
KX

a = 1a1 , a2 , Á , an2T: aTA a 7 0.
E31aT1X - mX2224 Ú 0.

Á ,an)
T : a TA a Ú 0.

a = (a1,a2,
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6.58. A more realistic model of the receiver in the multiuser communication system in Prob-
lem 6.21 has the K received signals given by:

where is a diagonal matrix of positive channel gains, R is a symmetric matrix
that accounts for the interference between users, and is the vector of
bits from each of the transmitters. N is the vector of K independent zero-mean, unit-variance
Gaussian noise random variables.
(a) Find the joint pdf of Y.
(b) Suppose that in order to recover b, the receiver computes Find the

joint pdf of Z.
6.59. (a) Let be the covariance matrix in Problem 6.55. Find the corresponding and 

in Example 6.23.
(b) Find the conditional pdf of given and 

6.60. In Example 6.23, show that:

6.61. Find the pdf of the sum of Gaussian random variables in the following cases:
(a) in Problem 6.55.
(b) in Problem 6.56.
(c) in Problem 6.57.

6.62. Find the joint characteristic function of the jointly Gaussian random vector X in Problem 6.54.
6.63. Suppose that a jointly Gaussian random vector X has zero mean vector and the covari-

ance matrix given in Problem 6.51.
(a) Find the joint characteristic function.
(b) Can you obtain an expression for the joint pdf? Explain your answer.

6.64. Let X and Y be jointly Gaussian random variables. Derive the joint characteristic func-
tion for X and Y using conditional expectation.

6.65. Let be jointly Gaussian random variables. Derive the characteris-
tic function for X by carrying out the integral in Eq. (6.32). Hint: You will need to com-
plete the square as follows:

6.66. Find for jointly Gaussian random variables from the characteristic function.
6.67. Let be zero-mean jointly Gaussian random variables. Show that

Section 6.5: Mean Square Estimation 

6.68. Let X and Y be discrete random variables with three possible joint pmf’s:

E3X1X2X3X44 = E3X1X24E3X3X44 + E3X1X34E3X2X44 + E3X1X44E3X2X34.
X = 1X1 ,X2 ,X3 ,X42
E[X2Y2]

1x - jKv2TK-11x - jKv2 = xTK-1x - 2jxTv + j2vTKv.

X = 1X1 ,X2 , Á ,Xn2

Z = Y1 + Y2 + Y3

Z = X + Y + Z
Z = X1 + X2 + X3

where B =
1
Qnn
a
n-1

j=1
Qjk1xj - mj2 and ƒKn ƒ / ƒKn-1 ƒ = Qnn .

= Qnn51xn - mn2 + B62 - QnnB2

1
21xn - mn2TQn1xn - mn2 - 1

21xn-1 - mn-12TQn-11xn-1 - mn-12

X2 .X1X3

Q3Q2K3

Z = 1AR2-1Y.

b = 1b1 , b2 , Á , bK2
A = 3ak4

Y = ARb + N

Y = 1Y1 , Y2 , Á , YK2

(i) (ii) (iii)

X/Y -1 0 1 X/Y -1 0 1 X/Y -1 0 1

-1 1/6 1/6 0 -1 1/9 1/9 1/9 -1 1/3 0 0

0 0 0 1/3 0 1/9 1/9 1/9 0 0 1/3 0
1 1/6 1/6 0 1 1/9 1/9 1/9 1 0 0 1/3
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(a) Find the minimum mean square error linear estimator for Y given X.
(b) Find the minimum mean square error estimator for Y given X.
(c) Find the MAP and ML estimators for Y given X.
(d) Compare the mean square error of the estimators in parts a, b, and c.

6.69. Repeat Problem 6.68 for the continuous random variables X and Y in Problem 5.26.
6.70. Find the ML estimator for the signal s in Problem 6.4.
6.71. Let be the number of Web page requests arriving at a server in the period (0, 100) ms

and let be the total combined number of Web page requests arriving at a server in the
period (0, 200) ms. Assume page requests occur every 1-ms interval according to inde-
pendent Bernoulli trials with probability of success p.
(a) Find the minimum linear mean square estimator for given and the associated

mean square error.
(b) Find the minimum mean square error estimator for given and the associated

mean square error.
(c) Find the maximum a posteriori estimator for given 
(d) Repeat parts a, b, and c for the estimation of given 

6.72. Let where X and N are independent Gaussian random variables with dif-
ferent variances and N is zero mean.
(a) Plot the correlation coefficient between the “observed signal” Y and the “desired

signal” X as a function of the signal-to-noise ratio 
(b) Find the minimum mean square error estimator for X given Y.
(c) Find the MAP and ML estimators for X given Y.
(d) Compare the mean square error of the estimators in parts a, b and c.

6.73. Let X, Y, Z be the random variables in Problem 6.7.
(a) Find the minimum mean square error linear estimator for Y given X and Z.
(b) Find the minimum mean square error estimator for Y given X and Z.
(c) Find the MAP and ML estimators for Y given X and Z.
(d) Compare the mean square error of the estimators in parts b and c.

6.74. (a) Repeat Problem 6.73 for the estimator of given and in Problem 6.13.
(b) Repeat Problem 6.73 for the estimator of given and 

6.75. Consider the ideal multiuser communication system in Problem 6.21. Assume the trans-
mitted bits are independent and equally likely to be or 
(a) Find the ML and MAP estimators for b given the observation Y.
(b) Find the minimum mean square linear estimator for b given the observation Y. How

can this estimator be used in deciding what were the transmitted bits?
6.76. Repeat Problem 6.75 for the multiuser system in Problem 6.58.
6.77. A second-order predictor for samples of an image predicts the sample E as a linear func-

tion of sample D to its left and sample B in the previous line, as shown below:
line j A B C

line D E

Estimate for E =
(a) Find a and b if all samples have variance and if the correlation coefficient be-

tween D and E is between B and E is and between D and B is
(b) Find the mean square error of the predictor found in part a, and determine the reduc-

tion in the variance of the signal in going from the input to the output of the predictor.

r2.r,r,
s2

aD + bB.
ÁÁj + 1
ÁÁ

-1.+1bk

X2 .X1X3

X3X1X2 ,

sX/sN .

Y = X + N
N2 .N1

N1 .N2

N1N2

N1N2

N2

N1
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6.78. Show that the mean square error of the two-tap linear predictor is given by Eq. (6.64).
6.79. In “hexagonal sampling” of an image, the samples in consecutive lines are offset relative

to each other as shown below:

line j A B

line C D

The covariance between two samples a and b is given by where d(a, b) is the Eu-
clidean distance between the points. In the above samples, the distance between A and B,
A and C, A and D, C and D, and B and D is 1. Suppose we wish to use a two-tap linear
predictor to predict the sample D. Which two samples from the set should we
use in the predictor? What is the resulting mean square error?

Section 6.6: Generating Correlated Vector Random Variables

6.80. Find a linear transformation that diagonalizes K.

(a)

(b)

6.81. Generate and plot the scattergram of 1000 pairs of random variables Y with the covari-
ance matrices in Problem 6.80 if:
(a) and are independent random variables that are each uniform in the unit

interval;
(b) and are independent zero-mean, unit-variance Gaussian random variables.

6.82. Let be the jointly Gaussian random variables in Problem 6.55.
(a) Find a linear transformation that diagonalizes the covariance matrix.
(b) Generate 1000 triplets of and plot the scattergrams for and and

and and Confirm that the scattergrams are what is expected.
6.83. Let X be a jointly Gaussian random vector with mean and covariance matrix and

let A be a matrix that diagonalizes What is the joint pdf of 
6.84. Let be independent zero-mean, unit-variance Gaussian random variables.

Let that is, is the moving average of pairs of values of X.Assume

(a) Find the covariance matrix of the 
(b) Use Octave to generate a sequence of 1000 samples How would you

check whether the have the correct covariances?
6.85. Repeat Problem 6.84 with 
6.86. Let U be an orthogonal matrix. Show that if A diagonalizes the covariance matrix K, then

also diagonalizes K.
6.87. The transformation in Problem 6.56 is said to be “causal” because each output depends

only on “past” inputs.
(a) Find the covariance matrix of X, Y, Z in Problem 6.56.
(b) Find a noncausal transformation that diagonalizes the covariance matrix in part a.

6.88. (a) Find a causal transformation that diagonalizes the covariance matrix in Problem 6.54.
(b) Repeat for the covariance matrix in Problem 6.55.

B = UA

Yk = Xk - Xk-1 .
Yk’s

Y1 , Á , Yn .
Yk’s.

X-1 = 0 = Xn+1 .
YkYk = 1Xk + Xk-12/2,

X1 ,X2 , Á ,Xn

A-11X - mX2?KX .
KXmX

Y3 .Y2Y3 ,
Y2 , Y1Y1Y = AX

X = 1X1 ,X2 ,X32
X2X1

X2X1

K = B4 1
1 4

R .

K = B2 1
1 4

R .

*

5A, B, C6

rd1a,b2
Áj + 1
Á
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Problems Requiring Cumulative Knowledge

6.89. Let be a sequence of independent zero-mean, unit-variance Gaussian ran-
dom variables. A “low-pass filter” takes the sequence and produces the output se-
quence and a “high-pass filter” produces the output sequence

(a) Find the joint pdf of , and of ,
(b) Repeat part a for 
(c) Find the joint pdf of , and 
(d) Find the corresponding joint characteristic functions in parts a, b, and c.

6.90. Let be the samples of a speech waveform in Example 6.31. Suppose we
want to interpolate for the value of a sample in terms of the previous and the next sam-
ples, that is, we wish to find the best linear estimate for in terms of and 
(a) Find the coefficients of the best linear estimator (interpolator).
(b) Find the mean square error of the best linear interpolator and compare it to the

mean square error of the two-tap predictor in Example 6.31.
(c) Suppose that the samples are jointly Gaussian. Find the pdf of the interpolation error.

6.91. Let be samples from some signal. Suppose that the samples are jointly
Gaussian random variables with covariance

Suppose we take blocks of two consecutive samples to form a vector X, which is then lin-
early transformed to form 
(a) Find the matrix A so that the components of Y are independent random variables.
(b) Let and be two consecutive blocks and let and be the corresponding

transformed variables. Are the components of and independent?
6.92. A multiplexer combines N digital television signals into a common communications line.

TV signal n generates bits every 33 milliseconds, where is a Gaussian random vari-
able with mean m and variance Suppose that the multiplexer accepts a maximum
total of T bits from the combined sources every 33 ms, and that any bits in excess of T are
discarded. Assume that the N signals are independent.
(a) Find the probability that bits are discarded in a given 33-ms period, if we let

where is the mean total bits generated by the combined sources,and 
is the standard deviation of the total number of bits produced by the combined sources.

(b) Find the average number of bits discarded per period.
(c) Find the long-term fraction of bits lost by the multiplexer.
(d) Find the average number of bits per source allocated in part a, and find the average

number of bits lost per source. What happens as N becomes large?
(e) Suppose we require that t be adjusted with N so that the fraction of bits lost per

source is kept constant. Find an equation whose solution yields the desired value of t.
(f) Do the above results change if the signals have pairwise covariance 

6.93. Consider the estimation of T given and arrivals in Problem 6.17.
(a) Find the ML and MAP estimators for T.
(b) Find the linear mean square estimator for T.
(c) Repeat parts a and b if and are given.N2N1

N1

r?

smaT = ma + ts,

s2.
XnXn

Yi+1Yi
Yi+1YiXi+1Xi

Y = AX.

COV1Xi ,Xj2 = c s2 for i = j
rs2 for ƒ i - j ƒ = 1
0 otherwise.

X1 ,X2 , Á ,Xn

X3 .X1X2

X1 ,X2 , Á ,Xn

Ym .Xm, Yn,Xn

Yn .
Xn+2m ,m 7 1.Xn+m,andXnXn-1 ;XnXn+1,

Yn = 1Un - Un-12/2.
Xn = 1Un + Un-12/2,

Ui

U0 , U1 , Á



Many problems involve the counting of the number of occurrences of events, the
measurement of cumulative effects, or the computation of arithmetic averages in
a series of measurements. Usually these problems can be reduced to the problem
of finding, exactly or approximately, the distribution of a random variable that
consists of the sum of n independent, identically distributed random variables. In
this chapter, we investigate sums of random variables and their properties as n
becomes large.

In Section 7.1, we show how the characteristic function is used to compute the
pdf of the sum of independent random variables. In Section 7.2, we discuss the sample
mean estimator for the expected value of a random variable and the relative frequen-
cy estimator for the probability of an event. We introduce measures for assessing the
goodness of these estimators.We then discuss the laws of large numbers, which are the-
orems that state that the sample mean and relative frequency estimators converge to
the corresponding expected values and probabilities as the number of samples is in-
creased. These theoretical results demonstrate the remarkable consistency between
probability theory and observed behavior, and they reinforce the relative frequency in-
terpretation of probability.

In Section 7.3, we present the central limit theorem, which states that, under very
general conditions, the cdf of a sum of random variables approaches that of a Gaussian
random variable even though the cdf of the individual random variables may be far
from Gaussian. This result enables us to approximate the pdf of sums of random vari-
ables by the pdf of a Gaussian random variable. The result also explains why the
Gaussian random variable appears in so many diverse applications.

In Section 7.4 we consider sequences of random variables and their conver-
gence properties. In Section 7.5 we discuss random experiments in which events
occur at random times. In these experiments we are interested in the average rate at
which events occur as well as the rate at which quantities associated with the events
grow. Finally, Section 7.6 introduces computer methods based on the discrete Fourier
transform that prove very useful in the numerical calculation of pmf’s and pdf’s from
their transforms.

359
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CHAPTER
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7.1 SUMS OF RANDOM VARIABLES

Let be a sequence of random variables, and let be their sum:

(7.1)

In this section, we find the mean and variance of as well as the pdf of in the im-
portant special case where the are independent random variables.

7.1.1 Mean and Variance of Sums of Random Variables

In Section 6.3, it was shown that regardless of statistical dependence, the expected value
of a sum of n random variables is equal to the sum of the expected values:

(7.2)

Thus knowledge of the means of the suffices to find the mean of 
The following example shows that in order to compute the variance of a sum of

random variables, we need to know the variances and covariances of the 

Example 7.1

Find the variance of 
From Eq. (7.2), The variance of Z is therefore

In general, the covariance COV(X, Y) is not equal to zero, so the variance of a sum is not neces-
sarily equal to the sum of the individual variances.

The result in Example 7.1 can be generalized to the case of n random variables:

(7.3)

Thus in general, the variance of a sum of random variables is not equal to the sum
of the individual variances.

= a
n

k=1
VAR1Xk2 + a

n

j=1
a
n

k=1
j Z k

COV1Xj ,Xk2.

= a
n

j=1
a
n

k=1
E31Xj - E3Xj421Xk - E3Xk424

VAR1X1 + X2 + Á + Xn2 = Eban
j=1
1Xj - E3Xj42a

n

k=1
1Xk - E3Xk42 r

= VAR3X4 + VAR3Y4 + 2 COV1X, Y2.
= VAR3X4 + VAR3Y4 + COV1X, Y2 + COV1Y,X2

+ 1Y - E3Y421X - E3X424
= E31X - E3X422 + 1Y - E3Y422 + 1X - E3X421Y - E3Y42
= E351X - E3X42 + 1Y - E3Y42624

VAR1Z2 = E31Z - E3Z4224 = E31X + Y - E3X4 - E3Y4224
E3Z4 = E3X + Y4 = E3X4 + E3Y4.
Z = X + Y.

Xj’s.

Sn .Xj’s

E3X1 + X2 + Á + Xn4 = E3X14 + Á + E3Xn4.

Xj’s
SnSn ,

Sn = X1 + X2 + Á + Xn .

SnX1 ,X2 , Á ,Xn
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An important special case is when the are independent random variables. If
are independent random variables, then for 

and

(7.4)

Example 7.2 Sum of iid Random Variables

Find the mean and variance of the sum of n independent, identically distributed (iid) random
variables, each with mean and variance 

The mean of is obtained from Eq. (7.2):

The covariance of pairs of independent random variables is zero, so by Eq. (7.4),

since for 

7.1.2 pdf of Sums of Independent Random Variables

Let be n independent random variables. In this section we show how
transform methods can be used to find the pdf of 

First, consider the case, where X and Y are independent ran-
dom variables. The characteristic function of Z is given by

(7.5)

where the fourth equality follows from the fact that functions of independent random
variables (i.e., and ) are also independent random variables, as discussed in
Example 5.25. Thus the characteristic function of Z is the product of the individual
characteristic functions of X and Y.

In Example 5.39, we saw that the pdf of is given by the convolution
of the pdf’s of X and Y:

(7.6)

Recall that can also be viewed as the Fourier transform of the pdf of Z:

By equating the transform of Eq. (7.6) to Eq. (7.5) we obtain

(7.7)£Z1v2 = f5fZ1z26 = f5fX1x2*fY1y26 = £X1v2£Y1v2.

£Z1v2 = f5fZ1z26.
£Z1v2

fZ1z2 = fX1x2*fY1y2.
Z = X + Y

ejvYejvX

= £X1v2£Y1v2,
= E3ejvX4E3ejvY4
= E3ejvXejvY4
= E3ejv1X+Y24

£Z1v2 = E3ejvZ4

Z = X + Y,n = 2
Sn = X1 + X2 + Á + Xn .

X1 ,X2 , Á ,Xn

j = 1, Á , n.VAR3Xj4 = s2

VAR3Sn4 = n VAR3Xj4 = ns2,

E3Sn4 = E3X14 + Á + E3Xn4 = nm.

Sn

s2.m

VAR1X1 + X2 + Á + Xn2 = VAR1X12 + Á + VAR1Xn2.
j Z kCOV1Xj ,Xk2 = 0X1 ,X2 , Á ,Xn

Xj’s
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Equation (7.7) states the well-known result that the Fourier transform of a convolution
of two functions is equal to the product of the individual Fourier transforms.

Now consider the sum of n independent random variables:

The characteristic function of is

(7.8)

Thus the pdf of can then be found by finding the inverse Fourier transform of the
product of the individual characteristic functions of the 

(7.9)

Example 7.3 Sum of Independent Gaussian Random Variables

Let be the sum of n independent Gaussian random variables with respective means and
variances, and Find the pdf of 

The characteristic function of is

so by Eq. (7.8),

This is the characteristic function of a Gaussian random variable. Thus is a Gaussian random
variable with mean and variance 

Example 7.4 Sum of iid Random Variables

Find the pdf of a sum of n independent, identically distributed random variables with character-
istic functions

Equation (7.8) immediately implies that the characteristic function of is

(7.10)

The pdf of is found by taking the inverse transform of this expression.Sn

£Sn1v2 = 5£X1v26n.
Sn

£Xk1v2 = £X1v2 for k = 1, Á , n.

s1
2 + Á + sn2 .m1 + Á + mn

Sn

= exp5+jv1m1 + Á + mn2 - v21s1
2 + Á + sn22/26

£Sn1v2 = q
n

k=1
e+jvmk-v

2sk
2/2

£Xk1v2 = e+jvmk-v
2sk

2/2

Xk

Sn .s1
2 , Á , sn

2 .m1 , Á ,mn
Sn

fSn1X2 = f -15£X1
1v2Á £Xn1v26.

Xj’s.
Sn

= £X1
1v2Á £Xn1v2.

= E3ejvX14Á E3ejvXn4
£Sn1v2 = E3ejvSn4 = E3ejv1X1+X2+Á+Xn24

Sn

Sn = X1 + X2 + Á + Xn .
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Example 7.5 Sum of iid Exponential Random Variables

Find the pdf of a sum of n independent exponentially distributed random variables, all with
parameter

The characteristic function of a single exponential random variable is

From the previous example we then have that

From Table 4.1, we see that is an m-Erlang random variable.

When dealing with integer-valued random variables it is usually preferable to
work with the probability generating function

The generating function for a sum of independent discrete random variables,
is

(7.11)

Example 7.6

Find the generating function for a sum of n independent, identically geometrically distributed
random variables.

The generating function for a single geometric random variable is given by

Therefore the generating function for a sum of n such independent random variables is

From Table 3.1, we see that this is the generating function of a negative binomial random variable
with parameters p and n.

GN1z2 = e pz

1 - qz
fn.

GX1z2 =
pz

1 - qz
.

= GX1
1z2Á GXn1z2.

GN1z2 = E3zX1+Á+Xn4 = E3zX14Á E3zXn4
N = X1 + Á + Xn ,

GN1z2 = E3zN4.

Sn

£Sn1v2 = e a

a - jv
fn.

£X1v2 =
a

a - jv
.

a.
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7.1.3 Sum of a Random Number of Random Variables

In some problems we are interested in the sum of a random number N of iid random
variables:

(7.12)

where N is assumed to be a random variable that is independent of the For
example, N might be the number of computer jobs submitted in an hour and 
might be the time required to execute the kth job.

The mean of is found readily by using conditional expectation:

(7.13)

The second equality follows from the fact that

so
The characteristic function of can also be found by using conditional expecta-

tion. From Eq. (7.10), we have that

so

Therefore

(7.14)

That is, the characteristic function of is found by evaluating the generating function
of N at

Example 7.7

The number of jobs N submitted to a computer in an hour is a geometric random variable with
parameter p, and the job execution times are independent exponentially distributed random
variables with mean Find the pdf for the sum of the execution times of the jobs submitted in
an hour.

1>a.

z = £X1v2.
SN

= GN1£X1v22.
= E3zN4 ƒ z=£X1v2
= E3£X1v2N4

£SN1v2 = E3E3ejvSN ƒ N44

E3ejvSN ƒ N4 = £X1v2N.

E3ejvSN ƒ N = n4 = E3ejv1X1+ Á +Xn24 = £X1v2n,

Sn

E3SN ƒ N4 = NE3X4.
E3SN ƒ N = n4 = EBan

k=1
XkR = nE3X4,

= E3N4E3X4.
= E3NE3X44

E3SN4 = E3E3SN ƒN44.
SN

Xk

Xk’s.

SN = a
N

k=1
Xk ,

*
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The generating function for N is

and the characteristic function for an exponentially distributed random variable is

From Eq. (7.14), the characteristic function of is

The pdf of is found by taking the inverse transform of the above expression:

The pdf has a direct interpretation: With probability p there are no job arrivals and hence the
total execution time is zero; with probability there are one or more arrivals, and the
total execution time is an exponential random variable with mean 

7.2 THE SAMPLE MEAN AND THE LAWS OF LARGE NUMBERS

Let X be a random variable for which the mean, is unknown. Let
denote n independent, repeated measurements of X; that is, the are

independent, identically distributed (iid) random variables with the same pdf as X.The
sample mean of the sequence is used to estimate E[X]:

(7.15)

In this section, we compute the expected value and variance of in order to assess
the effectiveness of as an estimator for E[X]. We also investigate the behavior of

as n becomes large.
The following example shows that the relative frequency estimator for the prob-

ability of an event is a special case of a sample mean.Thus the results derived below for
the sample mean are also applicable to the relative frequency estimator.

Example 7.8 Relative Frequency

Consider a sequence of independent repetitions of some random experiment, and let the ran-
dom variable be the indicator function for the occurrence of event A in the jth trial. The total
number of occurrences of A in the first n trials is then

Nn = I1 + I2 + Á + In .

Ij

Mn

Mn

Mn

Mn =
1
na
n

j=1
Xj .

Xj’sX1 , Á ,Xn
E3X4 = m,

1/pa.
11 - p2

fSN1x2 = p d1x2 + 11 - p2pae-pax x Ú 0.

SN

= p + 11 - p2 pa

pa - jv
.

= p1a - jv2/1pa - jv2
£SN1v2 =

p

1 - q3a>1a - jv24

SN

£X1v2 =
a

a - jv
.

GN1z2 =
p

1 - qz
,
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The relative frequency of event A in the first n repetitions of the experiment is then

(7.16)

Thus the relative frequency is simply the sample mean of the random variables 

The sample mean is itself a random variable, so it will exhibit random variation.
A good estimator should have the following two properties: (1) On the average, it
should give the correct value of the parameter being estimated, that is,
and (2) It should not vary too much about the correct value of this parameter, that is,

is small.
The expected value of the sample mean is given by

(7.17)

since for all j.Thus the sample mean is equal to on the
average. For this reason, we say that the sample mean is an unbiased estimator for

Equation (7.17) implies that the mean square error of the sample mean about 
is equal to the variance of that is,

Note that where From Eq. (7.4),
since the are iid random variables. Thus

(7.18)

Equation (7.18) states that the variance of the sample mean approaches zero as the
number of samples is increased.This implies that the probability that the sample mean is
close to the true mean approaches one as n becomes very large. We can formalize this
statement by using the Chebyshev inequality, Eq. (4.76):

Substituting for and we obtain

(7.19)

If we consider the complement of the event considered in Eq. (7.19), we obtain

(7.20)

Thus for any choice of error and probability we can select the number of samples
n so that is within of the true mean with probability or greater.The following
example illustrates this.

1 - deMn

1 - d,e

P3 ƒMn - m ƒ 6 e4 Ú 1 -
s2

ne2 .

P3 ƒMn - m ƒ Ú e4 …
s2

ne2 .

VAR3Mn4,E3Mn4
P3 ƒMn - E3Mn4 ƒ Ú e4 …

VAR3Mn4
e2 .

VAR3Mn4 =
1

n2 VAR3Sn4 =
ns2

n2 =
s2

n
.

Xj’sVAR3Xj4 = ns2,
VAR3Sn4 = nSn = X1 + X2 + Á + Xn .Mn = Sn/n,

E31Mn - m224 = E31Mn - E3Mn4224.
Mn ,

m

m.
E3X4 = m,E3Xj4 = E3X4 = m

E3Mn4 = EB 1
na
n

j=1
XjR =

1
na
n

j=1
E3Xj4 = m,

E31Mn - m224
E3Mn4 = m;

Ij .fA1n2
fA1n2 =

1
na
n

j=1
Ij .
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Example 7.9

A voltage of constant, but unknown, value is to be measured. Each measurement is actually 
the sum of the desired voltage v and a noise voltage of zero mean and standard deviation of
1 microvolt

Assume that the noise voltages are independent random variables. How many measure-
ments are required so that the probability that is within of the true mean is at
least .99?

Each measurement has mean v and variance 1, so from Eq. (7.20) we require that n
satisfy

This implies that 
Thus if we were to repeat the measurement 100 times and compute the sample mean, on

the average, at least 99 times out of 100, the resulting sample mean will be within of the
true mean.

Note that if we let n approach infinity in Eq. (5.20) we obtain

Equation (7.20) requires that the have finite variance. It can be shown that this
limit holds even if the variance of the does not exist [Gnedenko, p. 203]. We state
this more general result:

Weak Law of Large Numbers Let be a sequence of iid random
variables with finite mean 

(7.21)

The weak law of large numbers states that for a large enough fixed value of
n, the sample mean using n samples will be close to the true mean with high prob-
ability. The weak law of large numbers does not address the question about what
happens to the sample mean as a function of n as we make additional measure-
ments. This question is taken up by the strong law of large numbers, which we
discuss next.

Suppose we make a series of independent measurements of the same random
variable. Let be the resulting sequence of iid random variables with mean

Now consider the sequence of sample means that results from the above measure-
ments: where is the sample mean computed using through The
notion of statistical regularity discussed in Chapter 1 leads us to expect that this se-
quence of sample means converges to that is, we expect that with high probability,
each particular sequence of sample means approaches and stays there, as shown inm

m,

Xj .X1MjM1 ,M2 , Á ,
m.

X1 ,X2 , Á

lim
n:q
P3 ƒMn - m ƒ 6 e4 = 1.

then for e 7 0,E3X4 = m,
X1 ,X2 , Á

Xj’s
Xj’s

lim
n:q
P3 ƒMn - m ƒ 6 e4 = 1.

1 mV

n = 100.

1 -
s2

ne2 = 1 -
1
n

= .99.

Xj

e = 1 mVMn

Xj = v + Nj .

1mV2:
Nj

Xj
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n

E[X]

Mn

FIGURE 7.1
Convergence of sequence of sample means to E[X].

Fig. 7.1. In terms of probabilities, we expect the following:

that is, with virtual certainty, every sequence of sample mean calculations converges to
the true mean of the quantity. The proof of this result is well beyond the level of this
course (see [Gnedenko, p. 216]), but we will have the opportunity in later sections to
apply the result in various situations.

Strong Law of Large Numbers Let be a sequence of iid random
variables with finite mean and finite variance, then

(7.22)

Equation (7.22) appears similar to Eq. (7.21), but in fact it makes a dramati-
cally different statement. It states that with probability 1, every sequence of sample
mean calculations will eventually approach and stay close to This is the
type of convergence we expect in physical situations where statistical regularity
holds.

With the strong law of large numbers we come full circle in the modeling process.
We began in Chapter 1 by noting that statistical regularity is observed in many physical
phenomena, and from this we deduced a number of properties of relative frequency.
These properties were used to formulate a set of axioms from which we developed a
mathematical theory of probability. We have now come full circle and shown that,
under certain conditions, the theory predicts the convergence of sample means to ex-
pected values. There are still gaps between the mathematical theory and the real world
(i.e., we can never actually carry out an infinite number of measurements and compute
an infinite number of sample means). Nevertheless, the strong law of large numbers
demonstrates the remarkable consistency between the theory and the observed physi-
cal behavior.

E3X4 = m.

P3 lim
n:q
Mn = m4 = 1.

E3X4 = m
X1 ,X2 , Á

P3 lim
n:q
Mn = m4 = 1;
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We already indicated that relative frequencies are special cases of sample aver-
ages. If we apply the weak law of large numbers to the relative frequency of an event
A, in a sequence of independent repetitions of a random experiment, we obtain

(7.23)

If we apply the strong law of large numbers, we obtain

(7.24)

Example 7.10

In order to estimate the probability of an event A, a sequence of Bernoulli trials is carried out
and the relative frequency of A is observed. How large should n be in order to have a .95 proba-
bility that the relative frequency is within 0.01 of 

Let be the indicator function of A. From Table 3.1 we have that the mean of is
and the variance is Since p is unknown, is also unknown. However, it

is easy to show that is at most 1/4 for Therefore, by Eq. (7.19),

The desired accuracy is and the desired probability is

We then solve for n and obtain It has already been pointed out that the Chebyshev
inequality gives very loose bounds, so we expect that this value for n is probably overly conser-
vative. In the next section, we present a better estimate for the required value of n.

7.3 THE CENTRAL LIMIT THEOREM

Let be a sequence of iid random variables with finite mean and finite
variance and let be the sum of the first n random variables in the sequence:

(7.25)

In Section 7.1, we developed methods for determining the exact pdf of We now pre-
sent the central limit theorem, which states that, as n becomes large, the cdf of a prop-
erly normalized approaches that of a Gaussian random variable. This enables us to
approximate the cdf of with that of a Gaussian random variable.

The central limit theorem explains why the Gaussian random variable appears in
so many diverse applications. In nature, many macroscopic phenomena result from the
addition of numerous independent, microscopic processes; this gives rise to the Gauss-
ian random variable. In many man-made problems, we are interested in averages that
often consist of the sum of independent random variables. This again gives rise to the
Gaussian random variable.

From Example 7.2, we know that if the are iid, then has mean and 
variance ns2. The central limit theorem states that the cdf of a suitably normalized 
version of approaches that of a Gaussian random variable.Sn

nmSnXj’s

Sn

Sn

Sn .

Sn = X1 + X2 + Á + Xn .

Sns2,
mX1 ,X2 , Á

n = 50,000.

1 - .95 =
1

4ne2 .

e = 0.01

P3 ƒfA1n2 - p ƒ Ú e4 …
s2

ne2 …
1

4ne2 .

0 … p … 1.p11 - p2
s2s2 = p11 - p2.m = p

IAX = IA
p = P[A]?

P3 lim
n:q
fA1n2 = P3A44 = 1.

lim
n:q
P3 ƒfA1n2 - P3A4 ƒ 6 e4 = 1.
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(a) (b)
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FIGURE 7.2
(a) The cdf of the sum of five independent Bernoulli random variables with and the cdf of a Gaussian random variable
of the same mean and variance. (b) The cdf of the sum of 25 independent Bernoulli random variables with and the cdf
of a Gaussian random variable of the same mean and variance.

p = 1/2
p = 1/2

Central Limit Theorem Let be the sum of n iid random variables with fi-
nite mean and finite variance and let be the zero-mean, unit-
variance random variable defined by

(7.26a)

then

(7.26b)

Note that is sometimes written in terms of the sample mean:

(7.27)

The amazing part about the central limit theorem is that the summands can
have any distribution as long as they have a finite mean and finite variance. This gives
the result its wide applicability.

Figures 7.2 through 7.4 compare the exact cdf and the Gaussian approximation
for the sums of Bernoulli, uniform, and exponential random variables, respectively. In
all three cases, it can be seen that the approximation improves as the number of terms
in the sum increases. The proof of the central limit theorem is discussed in the last part
of this section.

Example 7.11

Suppose that orders at a restaurant are iid random variables with mean and standard
deviation Estimate the probability that the first 100 customers spend a total of more
than $840. Estimate the probability that the first 100 customers spend a total of between $780
and $820.

s = $2.
m = $8

Xj

Zn = 1n Mn - m
s

.

Zn

lim
n:q
P3Zn … z4 =

1

22pL
z

-q
e-x

2/2 dx.

Zn =
Sn - nm
s1n ,

Zns2,E3X4 = m
Sn
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Let denote the expenditure of the kth customer, then the total spent by the first 100
customers is

The mean of is and the variance is Figure 7.5 shows the pdf of 
where it can be seen that the pdf is highly concentrated about the mean. The normalized form of

is

Z100 =
S100 - 800

20
.

S100

S100ns2 = 400.nm = 800S100

S100 = X1 + X2 + Á + X100 .

Xk

FIGURE 7.3
The cdf of the sum of five independent discrete, uniform random variables from
the set and the cdf of a Gaussian random variable of the same
mean and variance .

50, 1, Á , 96

FIGURE 7.4 
(a) The cdf of the sum of five independent exponential random variables of mean 1 and the cdf of a Gaussian random variable
of the same mean and variance. (b) The cdf of the sum of 50 independent exponential random variables of mean 1 and the
cdf of a Gaussian random variable of the same mean and variance.
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x
700
0

.01 fS100(x) fS129(x)
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FIGURE 7.5
Gaussian pdf approximations and in Examples 7.11 and 7.12.S129S100

Thus

where we used Table 4.2 to evaluate Q(2). Similarly,

Example 7.12

In Example 7.11, after how many orders can we be 90% sure that the total spent by all customers
is more than $1000?

The problem here is to find the value of n for which

has mean 8n and variance 4n. Proceeding as in the previous example, we have

Using the fact that Table 4.3 implies that n must satisfy

1000 - 8n
21n = -1.2815,

Q1-x2 = 1 - Q1x2,
P3Sn 7 10004 = PBZn 7

1000 - 8n
21n R = .90.

Sn

P3Sn 7 10004 = .90.

= .682.

M 1 - 2Q112
P3780 … S100 … 8204 = P3-1 … Z100 … 14

M Q122 = 2.28110-22,
P3S100 7 8404 = P cZ100 7

840 - 800
20

d
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which yields the following quadratic equation for 

The positive root of the equation yields or Figure 7.5 shows the pdf for 

Example 7.13

The time between events in a certain random experiment is iid exponential random variables with
mean m seconds.Find the probability that the 1000th event occurs in the time interval 

Let be the time between events and let be the time of the nth event, then is given
by Eq. (7.25). From Table 4.1, the mean and variance of is given by and 

The mean and variance of are then and 
The central limit theorem then gives

Thus as n becomes large, is very likely to be close to its mean nm.We can therefore conjecture
that the long-term average rate at which events occur is

(7.28)

The calculation of event occurrence rates and related averages is discussed in Section 7.5.

7.3.1 Gaussian Approximation for Binomial Probabilities

We found in Chapter 2 that the binomial random variable becomes difficult to compute
directly for large n because of the need to calculate factorial terms. A particularly im-
portant application of the central limit theorem is in the approximation of binomial
probabilities. Since the binomial random variable is a sum of iid Bernoulli random vari-
ables (which have finite mean and variance), its cdf approaches that of a Gaussian ran-
dom variable. Let X be a binomial random variable with mean np and variance

and let Y be a Gaussian random variable with the same mean and variance,
then by the central limit theorem for n large the probability that is approxi-
mately equal to the integral of the Gaussian pdf in an interval of unit length about k, as
shown in Fig. 7.6:

(7.29)=
1

22pnp11 - p2L
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k-1/2
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FIGURE 7.6
(a) Gaussian approximation for binomial probabilities with and 
(b) Gaussian approximation for binomial with and p = 1/2.n = 25

p = 1/2.n = 5

The above approximation can be simplified by approximating the integral by the prod-
uct of the integrand at the center of the interval of integration (that is, ) and the
length of the interval of integration (one):

(7.30)P3X = k4 M
1

22pnp11 - p2 e
-1k-np22/2np11-p2.

x = k
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Figures 7.6(a) and 7.6(b) compare the binomial probabilities and the Gaussian approx-
imation using Eq. (7.30).

Example 7.14

In Example 7.10 in Section 7.2, we used the Chebyshev inequality to estimate the number of
samples required for there to be a .95 probability that the relative frequency estimate for the
probability of an event A would be within 0.01 of P[A].We now estimate the required number of
samples using the Gaussian approximation for the binomial distribution.

Let be the relative frequency of A in n Bernoulli trials. Since has mean p and
variance then

has zero mean and unit variance, and is approximately Gaussian for n sufficiently large. The
probability of interest is

The above probability cannot be computed because p is unknown. However, it can be easily shown 
that for p in the unit interval. It then follows that for such p,
and since Q(x) decreases with increasing argument

We want the above probability to equal .95.This implies that 
From Table 4.2, we see that the argument of Q(x) should be approximately 1.95, thus

Solving for n, we obtain

7.3.2 Chernoff Bound for Binomial Random Variable

The Gaussian pdf extends over the entire real line. When taking the sum of random
variables that have a finite range, such as the binomial random variable, the central
limit theorem can be inaccurate at the extreme values of the sum. The Chernoff bound
introduced in Chapter 3 gives better estimates.

The Chernoff bound for the binomial is given by:

where is the pgf for the binomial random variable. To minimize the
bound we take the derivative with respect to s and set it to zero:

a1q + pes2 = esnp

0 =
d

ds
e-saGN1es2 = -ae-sa1q + pes2n + e-saesnp1q + pes2n-1

s 7 0, and GN1z2
P3X Ú a4 … e-saE3esX4 = e-saE31es2X4 = e-saGN1es2 = e-sa1q + pes2n

n = 1.9822/e2 = 9506.

2e1n = 1.95.

Q12e1n2 = 11 - .952/2 = .025.

P3 ƒfA1n2 - p ƒ 6 e4 7 1 - 2Q12e1n2.

2p11 - p2 … 1/2,p11 - p2 … 1/4

P3 ƒfA1n2 - p ƒ 6 e4 M PB ƒZn ƒ 6
e1n

2p11 - p2R = 1 - 2Q¢ e1n
2p11 - p2 ≤ .

Zn =
fA1n2 - p

2p11 - p2/n

p11 - p2/n,
fA1n2fA1n2
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where the second line results after canceling common terms. The optimum s and the
associated bound are:

Example 7.15

Compare the central limit estimate for with the Chernoff bound for the binomial
random variable with and 

The central limit gives the estimate:

The Chernoff bound is:

Figure 7.7 shows a comparison of the exact values of the tail distribution with the Chernoff
bound and the estimate from the central limit theorem. The central limit theorem estimate is

P3X Ú a4 … ¢ 1/2

1x/1002 x10011 - x/10021-x/100
≤100

.

P3X Ú a4 L Q¢x - np
1npq ≤ = Qax - 50

5
b .

p = 0.5.n = 100
P3X 7 x4

= ap11 - a/n2
1a/n2q baa q

1 - a/n
bn = ¢ pa/nq1-a/n

1a/n2an11 - a/n21-a/n ≤n.
P3X Ú a4 … ap1n - a2

aq
baaq + p

aq

p1n - a2 b
n

= ap1n - a2
aq

baa qn

1n - a2 b
n

es =
aq

p1n - a2

1E-29

1E-27

1E-25

1E-23

1E-21

1E-19

1E-17

1E-15

1E-13

1E-11

1E-09

1E-07

1E-05

0.001

0.1

10
50 55 60 65 70 75 80 85 90 95

Exact

Chernoff

Central limit theorem

x

FIGURE 7.7
Comparison of Chernoff bound and central limit theorem.
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more accurate than the Chernoff bounds up to about At the extreme values of x, the
Chernoff bound remains accurate while the central limit estimate loses its accuracy.

7.3.3 Proof of the Central Limit Theorem

We now sketch a proof of the central limit theorem. First note that

The characteristic function of is given by

(7.31)

The third equality follows from the independence of the and the last equality fol-
lows from the fact that the are identically distributed.

By expanding the exponential in the expression, we obtain an expression in terms
of n and the central moments of X:

Noting that and we have

(7.32)

The term can be neglected relative to as n becomes large. If we sub-
stitute Eq. (7.32) into Eq. (7.31), we obtain
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The latter expression is the characteristic function of a zero-mean, unit-variance Gauss-
ian random variable.Thus the cdf of approaches the cdf of a zero-mean, unit-variance
Gaussian random variable.

7.4 CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES

In Section 7.2 we discussed the convergence of the sequence of arithmetic averages 
of iid random variables to the expected value 

(7.33)

The weak law and strong law of large numbers describe two ways in which the sequence
of random variables converges to the constant value given by In this section we
consider the more general situation where a sequence of random variables (usually not
iid) converges to some random variable X:

(7.34)

We will describe several ways in which this convergence can take place. Note that
Eq. (7.33) is a special case of Eq. (7.34) where the limiting random variable X is given
by the constant 

To understand the meaning of Eq. (7.34), we first need to revisit the defini-
tion of a vector random variable X was defined as a func-
tion that assigns a vector of real values to each outcome from some sample
space S:

The randomness in the vector random variable was induced by the randomness in the un-
derlying probability law governing the selection of We obtain a sequence of random
variables by letting n increase without bound, that is, a sequence of random variables X is
a function that assigns a countably infinite number of real values to each outcome from
some sample space S:1

(7.35)

From now on, we will use the notation or instead of to denote the
sequence of random variables.

Equation (7.35) shows that a sequence of random variables can be viewed as a se-
quence of functions of On the other hand, it is more natural to instead imagine that
each point in S, say produces a particular sequence of real numbers,

(7.36)

where and so on. The sequence in Eq. (7.36) is called the
sample sequence for the point z.

x1 = X11z2, x2 = X21z2,
x1 , x2 , x3 , Á ,

z,
z.

X1z25Xn65Xn1z26
X1z2 = 1X11z2,X21z2, Á ,Xn1z2, Á2.

z

z.

X1z2 = 1X11z2,X21z2, Á ,Xn1z22.

z

 X = 1X1 ,X2 , Á ,Xn2.
m.

Xn:X as n: q .

X1 ,X2 , Á

m.Mn

Mn: m as n: q .

m:
Mn

*

Zn

1In Chapter 8, we will see that this is also the definition of a discrete-time stochastic process.
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FIGURE 7.8
Two ways of looking at sequences of random variables.

Example 7.16

Let be selected at random from the interval where we assume that the probability
that is in a subinterval of S is equal to the length of the subinterval. For we define
the sequence of random variables

The two ways of looking at sequences of random variables is evident here. First, we can view 
as a sequence of functions of as shown in Fig. 7.8(a). Alternatively, we can imagine that we first
perform the random experiment that yields and that we then observe the corresponding
sequence of real numbers as shown in Fig. 7.8(b).Vn1z2,

z,
z,

Vn1z2
Vn1z2 = za1 -

1
n
b .

n = 1, 2 , Áz

S = [0, 1],z
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The standard methods from calculus can be used to determine the convergence
of the sample sequence for each point Intuitively, we say that the sequence of real
numbers converges to the real number x if the difference approaches zero
as n approaches infinity. More formally, we say that:

The sequence converges to x if, given any we can specify an integer N such that
for all values of n beyond N we can guarantee that 

Thus if a sequence converges, then for any we can find an N so that the sequence re-
mains inside a corridor about x, as shown in Fig. 7.9(a).2e

e

ƒxn - x ƒ 6 e.
e 7 0,xn

ƒxn - x ƒxn

z.

Convergence in probability

(c)

n
N

x

xn

2ε 

2ε 

2ε 

Almost-sure convergence

(b)

Convergence of a sequence of numbers

(a)

n

n

x

xn

x

xn

n0

FIGURE 7.9
Sample sequences and convergence types.
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If we make smaller, N becomes larger. Hence we arrive at our intuitive view
that becomes closer and closer to x. If the limiting value x is not known, we can still
determine whether a sequence converges by applying the Cauchy criterion:

The sequence converges if and only if, given we can specify integer such that
for m and n greater than 

The Cauchy criterion states that the maximum variation in the sequence for points be-
yond is less than 

Example 7.17

Let be the sequence of random variables from Example 7.16. Does the sequence of real
numbers corresponding to a fixed converge?

From Fig. 7.8(a), we expect that for a fixed value will converge to the limit 
Therefore, we consider the difference between the nth number in the sequence and the limit:

where the last inequality follows from the fact that is always less than one. In order to keep the
above difference less than we choose n so that

that is, we select Thus the sequence of real numbers converges to 

When we talk about the convergence of sequences of random variables, we are
concerned with questions such as: Do all (or almost all) sample sequences converge,
and if so, do they all converge to the same values or to different values? The first two
definitions of convergence address these questions.

Sure Convergence: The sequence of random variables converges
surely to the random variable if the sequence of functions con-
verges to the function as for all in S:

Sure convergence requires that the sample sequence corresponding to every con-
verges. Note that it does not require that all the sample sequences converge to the
same values; that is, the sample sequences for different points and can converge to
different values.

Almost-Sure Convergence: The sequence of random variables con-
verges almost surely to the random variable if the sequence of functions

converges to the function as for all in S, except possibly
on a set of probability zero; that is,

(7.37)P3z :Xn1z2:X1z2 as n: q4 = 1.

zn: qX1z2Xn1z2
X1z2 5Xn1z26

z¿z

z

Xn1z2:X1z2 as n: q for all z H S.

zn: qX1z2 Xn1z2X1z2 5Xn1z26

z.Vn1z2n 7 N = 1/e.

ƒVn1z2 - z ƒ 6
1
n

6 e;

e,
z

ƒVn1z2 - z ƒ = ` za1 -
1
n
b - z ` = ` z

n
` 6 1
n

,

z.z, Vn1z2
z

Vn1z2

e.N¿

N¿, ƒxn - xm ƒ 6 e.
N¿e 7 0,xn

xn

e
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In Fig. 7.9(b) we illustrate almost-sure convergence for the case where sample se-
quences converge to the same value x; we see that almost all sequences must eventual-
ly enter and remain inside a corridor. In almost-sure convergence some of the
sample sequences may not converge, but these must all belong to that are in a set
that has probability zero.

The strong law of large numbers is an example of almost-sure convergence. Note
that sure convergence implies almost-sure convergence.

Example 7.18

Let be selected at random from the interval where we assume that the probability
that is in a subinterval of S is equal to the length of the subinterval. For we define
the following five sequences of random variables:

Which of these sequences converge surely? almost surely? Identify the limiting random variable.
The sequence converges to 0 for all and hence surely:

Note that in this case all sample sequences converge to the same value, namely zero.
The sequence converges to for all and hence surely:

In this case all sample sequences converge to different values, and the limiting random variable
is a uniform random variable on the unit interval.
The sequence converges to 0 for but diverges to infinity for all other values

of Thus this sequence of random variables does not converge.
The sequence converges to 1 for and but oscillates between and 1

for all other values of Thus this sequence of random variables does not converge.
The sequence is an interesting case. For we have

On the other hand, for and for values of the sequence decreases exponen-
tially to zero, thus:

But thus converges to zero almost surely. However, does not converge
surely to zero.

Zn1z2Zn1z2P3z 7 04 = 1,

Zn1z2: 0 for all z 7 0.

Zn1z2n 7 1/z,z 7 0

Z102 = en: q as n: q .

z = 0,Zn1z2
z.

-1z = 1,z = 0Yn1z2
z.

z = 0,Wn1z2
V1z2

Vn1z2: V1z2 = z as n: q for all z H S.

z,zVn1z2

Un1z2: U1z2 = 0 as n: q for all z H S.

z,Un1z2

Zn1z2 = e-n1nz-12.
Yn1z2 = cos 2pnz

Wn1z2 = zen

Vn1z2 = za1 -
1
n
b

Un1z2 =
z

n

n = 1, 2 , Áz

S = 30, 14,z

z’s
2e
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The dependence of the sequence of random variables on is not always evident,
as shown by the following examples.

Example 7.19 iid Bernoulli Random Variables

Let the sequence of random variables consist of independent equiprobable Bernoulli random
variables, that is,

Does this sequence of random variables converge?
This sequence of random variables will generate sample sequences consisting of all

possible sequences of 0’s and 1’s. In order for a sample sequence to converge, it must eventually
stay equal to zero (or one) for all remaining values of n. However, the probability of obtaining all
zeros (or all ones) in an infinite number of Bernoulli trials is zero. Hence the sample sequences
that converge have zero probability, and therefore this sequence of random variables does not
converge.

Example 7.20

An urn contains 2 black balls and 2 white balls. At time n a ball is selected at random from the
urn, and the color is noted. If the number of balls of this color is greater than the number of balls
of the other color, then the ball is put back in the urn; otherwise, the ball is left out. Let be
the number of black balls in the urn after the nth draw. Does this sequence of random variables
converge?

The first draw is the critical draw. Suppose the first draw is black, then the black ball that
is selected will be left out. Thereafter, each time a white ball is selected it will be put back in, and
when the remaining black ball is selected it will be left out. Thus with probability one, the black
ball will eventually be selected, and will converge to zero. On the other hand, if a white
ball is selected in the first draw, then eventually the remaining white ball will be removed, and
hence with probability one will converge to 2. Thus is equally likely to eventually
converge to 0 or 2, that is,

where

In order to determine whether a sequence of random variables converges
almost surely, we need to know the probability law that governs the selection of and
the relation between and the sequence (as in Example 7.16), or the sequence must
be sufficiently simple that we can determine the convergence directly (as in Examples
7.19 and 7.20). In general it is easier to deal with other,“weaker” types of convergence
that are much easier to verify. For example, we may require that at particular time
most sample sequences be close to X in the sense that is small.E31Xn0

- X224Xn0

n0 ,

z

z

P3X1z2 = 04 =
1
2

= P3X1z2 = 24.

Xn1z2:X1z2 as n: q almost surely,

Xn1z2Xn1z2
Xn1z2

Xn1z2

P3Xn1z2 = 04 =
1
2

= P3Xn1z2 = 14.

Xn1z2

z
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This requirement focuses on a particular time instant and, unlike almost-sure con-
vergence, it does not address the behavior of entire sample sequences. It leads to the
following type of convergence:

Mean Square Convergence: The sequence of random variables 
converges in the mean square sense to the random variable if

(7.38a)

We denote mean square convergence by (limit in the mean)

(7.38b)

Mean square convergence is of great practical interest in electrical engineering appli-
cations because of its analytical simplicity and because of the interpretation of

as the “power” in an error signal.
The Cauchy criterion can be used to ascertain convergence in the mean square

sense when the limiting random variable X is not known:

Cauchy Criterion: The sequence of random variables converges in
the mean square sense if and only if

(7.39)

Example 7.21

Does the sequence in Example 7.18 converge in the mean square sense?
In Example 7.18, we found that converges surely to We therefore consider

where we have used the fact that is uniformly distributed in the interval [0, 1].As n approaches in-
finity, the mean square error approaches zero, and so we have convergence in the mean square
sense.

Mean square convergence occurs if the second moment of the error 
approaches zero as n approaches infinity. This implies that as n increases, an increasing
proportion of sample sequences are close to X; however, it does not imply that all such
sequences remain close to X as in the case of almost-sure convergence. This difference
will become apparent with the next type of convergence:

Convergence in Probability: The sequence of random variables 
converges in probability to the random variable if, for any 

(7.40)

In Fig. 7.9(c) we illustrate convergence in probability for the case where the limiting ran-
dom variable is a constant x; we see that at the specified time most sample sequencesn0

P3 ƒXn1z2 - X1z2 ƒ 7 e4: 0 as n: q .

e 7 0,X1z2 5Xn1z26

Xn - X

z

E31Vn1z2 - z224 = EB a z
n
b2R = L

1

0
a z
n
b2

dz =
1

3n2 ,

z.Vn1z2
Vn1z2

E31Xn1z2 - Xm1z2224: 0 as n: q  and m: q .

5Xn1z26

E31Xn - X224

l.i.m.Xn1z2 = X1z2 as n: q .

E31Xn1z2 - X1z2224: 0 as n: q .

X1z2
5Xn1z26
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Yn
Wn

Vn
Zn

Un s

as p d

Rn

ms

FIGURE 7.10
Relations between different types of convergence and classification of
sequences introduced in the examples.

must be within of x.However, the sequences are not required to remain inside a corridor.
The weak law of large numbers is an example of convergence in probability. Thus we see
that the fundamental difference between almost-sure convergence and convergence in
probability is the same as that between the strong law and the weak law of large numbers.

We now show that mean square convergence implies convergence in probability.
The Markov inequality (Eq. (4.75)) applied to implies

If the sequence converges in the mean square sense, then the right-hand side
approaches zero as n approaches infinity. It then follows that the sequence also con-
verges in probability. Figure 7.10 shows a Venn diagram that indicates that mean square
convergence implies convergence in probability. The diagram shows that all sequences
that converge in the mean square sense (designated by the set ms) are contained inside
the set p of all sequences that converge in probability. The diagram also shows some of
the sequences introduced in the examples.

It can be shown that almost-sure convergence implies convergence in probability.
However, almost-sure convergence does not always imply mean square convergence,
as demonstrated by the following example.

Example 7.22

Does the sequence in Example 7.18 converge in the mean square sense?
In Example 7.18, we found that converges to 0 almost surely, so we consider

= e2n

L
1

0
e-2n2z dz =

e2n

2n2 11 - e-2n22.
E31Zn1z2 - 0224 = E3e-2n1nz-124

Zn1z2
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P3 ƒXn - X ƒ 7 e4 = P31Xn - X22 7 e24 …
E31Xn - X224
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As n approaches infinity, the rightmost term approaches infinity. Therefore this sequence does
not converge in the mean square sense even though it converges almost surely.

The following example shows that mean square convergence does not imply almost-
sure convergence.

Example 7.23

Let be the error introduced by a communication channel in the nth transmission. Suppose
that the channel introduces errors in the following way: In the first transmission the channel in-
troduces an error; in the next two transmissions the channel randomly selects one transmission
to introduce an error, and it allows the other transmission to be error-free; in the next three
transmissions, the channel randomly selects one transmission to introduce an error, and it allows
the other transmissions to be error-free; and so on. Suppose that when errors are introduced,
they are uniformly distributed in the interval [1, 2]. Does the sequence of transmission errors
converge, and if so, in what sense?

Figure 7.11 shows the manner in which the channel introduces errors. The errors become
sparser as time progresses, so we expect that the sequence is approaching zero in the mean
square sense. The probability of error in the nth transmission is 1/m for n in the interval from

to If we let Y be a uni-
form random variable in the interval [1, 2], then the mean square error at time n is

Thus as n (and m) increases, the mean square error approaches zero and the sequence con-
verges to zero in the mean square sense.

Rn

for
1m - 12m

2
6 n …

m1m + 12
2

.

E31Xn1z2 - 0224 = E3Xn24 = E3Y24pn + 011 - pn2 = a7
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1 + 2 + Á + m = m1m + 12/2.1 + 2 + Á + 1m - 12 = 1m - 12m/2
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converges in mean square sense but not almost surely.Rn
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In order for the sequence to converge to 0 almost surely, almost all sample sequences
must eventually become and remain close to zero. However, the manner in which errors are in-
troduced guarantees that regardless of how large n becomes, a value in the range [1, 2] is certain
to occur some time later.Thus none of the sample sequences converges to zero, and the sequence
of random variables does not converge almost surely.

The last type of convergence we will discuss addresses the convergence of the
cumulative distribution functions of a sequence of random variables, rather than the
random variables themselves.

Convergence in Distribution: The sequence of random variables with
cumulative distribution functions converges in distribution to the ran-
dom variable X with cumulative distribution F(x) if

(7.41)

for all x at which F(x) is continuous.

The central limit theorem is an example of convergence in distribution. To see that
convergence in distribution does not make any statement regarding the convergence
of the random variables in a sequence, consider the Bernoulli iid sequence in
Example 7.19. These random variables do not converge in any of the previous conver-
gence modes. However, they trivially converge in distribution since they have the
same distribution for all n. All of the previous forms of convergence imply conver-
gence in distribution as indicated in Fig. 7.10.

7.5 LONG-TERM ARRIVAL RATES AND ASSOCIATED AVERAGES

In many problems events of interest occur at random times, and we are interested in
the long-term average rate at which the events occur. For example, suppose that a
new electronic component is installed at time and that it fails at time an
identical new component is installed immediately, and it fails after seconds, and so
on. Let N(t) be the number of components that have failed by time t. N(t) is called a
renewal counting process. In this section, we are interested in the behavior of N(t)/t
as t becomes very large.

Let denote the lifetime of the jth component, then the time when the nth com-
ponent fails is given by

(7.42)

where we assume that the are iid nonnegative random variables with 
We say that is the time of the nth arrival or renewal, and we call the

the interarrival or cycle times. Figure 7.12 shows a realization of N(t) and the asso-
ciated sequence of interarrival times. The lines in the time axis indicate the arrival
times. Note that N(t) is a nondecreasing, integer-valued staircase function of time that
increases without bound as t approaches infinity.

Since the mean interarrival time is E[X] seconds per event, we expect intuitively
that N(t) grows at a rate of 1/E[X] events per second.We will now use the strong law of

Xj’s
SnE3Xj4 6 q .

0 6 E3X4 =Xj

Sn = X1 + X2 + Á + Xn ,

Xj

X2

X1 ;t = 0

*

Fn1x2: F1x2 as n: q

5Fn1x26
5Xn6
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FIGURE 7.12
A counting process and its interarrival times.

t
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N(t) � 1

SN(t) SN(t)�1

N(t)

FIGURE 7.13
Time of first arrival after time t and first arrival before
time t.

large numbers to show this is the case. The average arrival rate in the first t seconds is
given by N(t)/t. We will show that with probability one, as 

Since N(t) is the number of arrivals up to time t, then is the time of the
last arrival prior to time t, and is the time of the first arrival after time t (see
Fig. 7.13). Therefore

If we divide the above equation by N(t), we obtain

(7.43)
SN1t2
N1t2 …

t

N1t2 6
SN1t2+1

N1t2 .

SN1t2 … t 6 SN1t2+1 .

SN1t2+1

SN1t2
t: q .N1t2/t: 1/E3X4
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The term on the left-hand side is the sample average interarrival time for the first N(t)
arrivals:

As N(t) approaches infinity so the above sample average converges to E[X],
with probability one, by the strong law of large numbers.We now show that the term on
the right-hand side also approaches E[X]:

As the first term on the right-hand side approaches E[X] and the second
term approaches 1 with probability one. Thus the lower and upper terms in Eq. (7.34)
both approach E[X] with probability one as t approaches infinity. We have proved
the following theorem:

Theorem 1 Arrival Rate for iid Interarrivals

Let N(t) be the counting process associated with the iid interarrival sequence with
Then with probability one,

(7.44)

Example 7.24 Exponential Interarrivals

Customers arrive at a service station with iid exponential interarrival times with mean
Find the long-term average arrival rate.

From Theorem 1, it immediately follows that with probability one,

Thus represents the long-term average arrival rate.

Example 7.25 Repair Cycles

Let be the “up” time during which a system is continuously functioning, and let be the
“down” time required to repair the system when it breaks down. Find the long-term average rate
at which repairs need to be done.

Define a repair cycle to consist of an “up” time followed by a “down” time,
then the average cycle time is The number of repairs required by time t is N(t),
and by Theorem 1, the rate at which repairs need to be done is

lim
t:q
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7.5.1 Long-Term Time Averages

Suppose that events occur at random with iid interevent times and that a cost is
associated with each occurrence of an event. Let C(t) be the cost incurred up to time t.
We now determine the long-term behavior of C(t)/t, that is, the long-term average rate
at which costs are incurred.

We assume that the pairs form a sequence of iid random vectors, but
that and need not be independent; that is, the cost associated with an event
may depend on the associated interevent time. The total cost C(t) incurred up to
time t is then the sum of costs associated with the N(t) events that have occurred up
to time t:

(7.45)

The time average of the cost up to time t is C(t)/t, thus

(7.46)

By Theorem 1, as the first term on the right-hand side approaches 1/E[X] with
probability one. The expression inside the brackets is simply the sample mean of the
first N(t) costs.As N(t) approaches infinity, so the second term approaches E[C]
with probability one, by the strong law of large numbers. Thus we have the following
theorem:

Theorem 2 Cost Accumulation Rate

Let be a sequence of iid interevent times and associated costs, with 
and and let C(t) be the cost incurred up to time t. Then, with probability one,

(7.47)

The following series of examples demonstrate how Theorem 2 can be used to
calculate long-term time averages.

Example 7.26 Long-Term Proportion of “Up” Time

Find the long-term proportion of time that the system is “up” in Example 7.25.
Let be equal to one if the system is up at time t and zero otherwise, then the long-

term proportion of time in which the system is up is

where the integral is the total time the system is up in the time interval [0, t].
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Now define a cycle to consist of a system “up” time followed by a “down” time, then
and If we let the cost associated with each cycle be the

“up” time then if t is an instant when a cycle ends,

Thus C(t)/t is the proportion of time that the system is “up” in the time interval (0, t). By Theo-
rem 2, the long-term proportion of time that the system is “up” is

Example 7.27

In the previous example, suppose that a cost is associated with each repair. Find the long-term
average rate at which repair costs are incurred.

The mean interevent time is and the mean cost per repair is E[C]. Thus by
Theorem 2, the long-term average repair cost rate is

Example 7.28 A Packet Voice Transmission System

A packet voice multiplexer can transmit up to M packets every 10-millisecond period. Let N be
the number of packets input into the multiplexer every 10 ms. If the multiplexer trans-
mits all N packets, and if the multiplexer transmits M packets and discards 
packets. Find the long-term proportion of packets discarded by the multiplexer.

Define a “cycle” by that is, the length of the “cycle” is equal to the number of 
packets produced in the jth interval. Define the cost in the jth cycle by 

that is, the number of packets that are discarded in the jth cycle. With these defini-
tions, t represents the first t packets input into the multiplexer and C(t) represents the number
that had to be discarded. The long-term proportion of packets discarded is then

where

where is the pmf of N.

Example 7.29 The Residual Lifetime

Let be a sequence of interarrival times, and let the residual lifetime r(t) be defined as
the time from an arbitrary time instant t until the next arrival as shown in Fig. 7.14. Find the long-
term proportion of time that r(t) exceeds c seconds.
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=
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t

=
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Cj

lim
t:q

C1t2
t

=
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L
t

0
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t

N(t) � 1

N(t) � 1

SN(t) SN(t)�1

N(t)

r(t)

FIGURE 7.14
Residual lifetime in a cycle.

The amount of time that the residual lifetime exceeds c in a cycle of length X is
that is, when the cycle is longer than c seconds, and 0 when it is shorter than c seconds.
The long-term proportion of time that r(t) exceeds c seconds is obtained from Theorem 2 by
defining the cost per cycle by 

(7.48)

where Eq. (4.28) was used for in the second equality. This result is used extensively
in reliability theory and in queueing theory.

7.6 CALCULATING DISTRIBUTIONS USING THE DISCRETE FOURIER TRANSFORM

In many situations we are forced to obtain the pmf or pdf of a random variable from its
characteristic function using numerical methods because the inverse transform cannot
be expressed in closed form. In the most common case, we are interested in finding the
pmf/pdf corresponding to which corresponds to the characteristic function of
the sum of n iid random variables. In this section we introduce the discrete Fourier trans-
form, which enables us to perform this numerical calculation in an efficient manner.

£X1v2n,

*

E31X - c2+4
=

1
E3X4L

q

c
51 - FX1y26 dy,

=
1
E3X4L

q

0
51 - FX1x + c26 dx

=
1
E3X4L

q

0
P3X 7 x + c4 dx

=
1
E3X4L

q

0
P31X - c2+ 7 x4 dx

proportion of time r1t2 exceeds c =
E31X - c2+4
E3X4

Cj = 1Xj - c2+:

X - c
1X - c2+,
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7.6.1 Discrete Random Variables

First, suppose that X is an integer-valued random variable that takes on values in the
set The pmf of the sum of n such independent random variables is
given by the n-fold convolution of the pmf of X, or equivalently by the nth power of the
characteristic function of X. Therefore we can deal with the sum of n random variables
through the convolution of pmf’s or through the product of characteristic functions
and inverse transforms. Let us first consider the convolution approach.

Example 7.30

Use Octave to calculate the pmf of where the are iid uniform discrete
random variables in the set 

Octave and MATLAB provide a function for convolving the elements of two vectors. The
sequence of commands below produces a 4-fold convolution of the above discrete uniform pdf.
The first convolution of the pmf with itself yields a pdf with triangular shape. Figure 7.15 shows
that the 4-fold convolution is beginning to have a bell-shaped form.

> P= [1,1,1,1,1,1,1,1,1,1] /10;
> P2=conv (P, P);
> stem (conv (P2,”@11”))
> hold on
> stem (conv (P2,P2),”@22”)

If a large number of sample values is involved in the calculations, then the char-
acteristic function approach is more efficient.The characteristic function for this integer-
valued random variable is

(7.49)£X1v2 = a
N-1

k=0
ejvkpk ,

50, 1, Á , 96.
UiZ = U1 + U2 + U3 + U4

50, 1, Á ,N - 16.
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FIGURE 7.15
pmf of sum of random variables using convolution method.
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where is the pmf. is a periodic function of with period 
since 2

Consider the characteristic function at N equally spaced values in the interval

(7.50)

Equation (7.50) defines the discrete Fourier transform (DFT) of the sequence
(The sign in the exponent in Eq. (7.50) is the opposite of that used in the

usual definition of the DFT.) In general, the are complex numbers. Note that if we
extend the range of m outside the range we obtain a periodic sequence
consisting of a repetition of the basic sequence 

The sequence of can be obtained from the sequence of using the inverse
DFT formula:

(7.51)

Example 7.31

A discrete random variable X has pmf

Find the characteristic function of X, the DFT for and verify the inverse transform formula.
The characteristic function of X is given by Eq. (7.49):

The DFT for is given by the values of the characteristic function at for
1, 2:
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.
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N a
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c0 , Á , cN-1 .

50,N - 16cm’s
p0 , Á , pN-1 .

cm = £Xa2pm
N
b = a

N-1

k=0
pke

j2pkm/N m = 0, 1, Á ,N - 1.

30, 2p2:
e1j1v + 2p2k2 = ejvkejk2p = ejvk.

2pv£X1v2pk = P3X = k4

2This follows from Euler’s formula eju = cos u + sin u.
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where we have used Euler’s formula to evaluate the complex exponentials.
We substitute the into Eq. (7.51) to recover the pmf:

The range of the integer-valued random variable X can be extended to the larger
set by defining a new pmf given by

(7.52)

The characteristic function of the random variable, remains unchanged, but
the associated DFT now involves evaluating at a different set of points:

(7.53)

The inverse transform of the sequence in Eq. (7.53) then yields Eq. (7.52). Thus the
pmf can be recovered using the DFT on samples of as specified by
Eq. (7.53). In essence, we have only padded the pmf with zeros in Eq. (7.52).

The zero-padding method discussed above is required to evaluate the pmf of a
sum of iid random variables. Suppose that

where the are integer-valued iid random variables with characteristic function
If the assume values from then Z will assume values

from The pmf of Z is found using the DFT evaluated at the
points:

since Note that this requires evaluating the characteristic function
of X at points. The pmf of Z is then found from
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Example 7.32

Let where the are iid random variables with characteristic function:

Find using the DFT method.
X assumes values from and Z from so needs to be

evaluated at three points:

These values are found to be

Substituting these values into Eq. (7.54) with gives

We can verify this answer by noting that

In practice we are interested in using the DFT when the number of points in the
pmf is large. An examination of Eq. (7.51) shows that the calculation of all N points re-
quires approximately multiplications of complex numbers.Thus if 
approximately multiplications will be required. The popularity of the DFT method
stems from the fact that algorithms, called fast Fourier transform (FFT) algorithms,
have been developed that can carry out the above calculations in multiplica-
tions. For multiplications will be required, a reduction by a factor of 100.

Example 7.33

Use Octave to calculate the pmf of where the are iid uniform dis-
crete random variables in the set 50, 1, Á , 96.
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FIGURE 7.16
FFT calculation of 10-fold convolution of discrete uniform random variable
50,1, Á , 96.

The commands below show the definition of the discrete uniform pmf and the calculation
of the FFT. This result is raised to the 10th power and the inverse transform is calculated. Figure
7.16 shows that the resulting pmf is starting to look very Gaussian in shape.

> P= [1,1,1,1,1,1,1,1,1,1]/10;
> bar (ifft (fft (P, 128).^;10))

So far, we have restricted X to be an integer-valued random variable that takes
on only a finite set of values We now consider the case where

Suppose that we know and that we obtain a pmf from
Eq. (7.51) using a finite set of sample points from 

(7.55)

To see what this calculation yields consider the points 
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œ£X1v2,SX = 50, 1, 2, Á 6. SX = 50, 1, Á ,N - 16.
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where we have used the fact that for h an integer, to obtain
the second equality and where for 

(7.57)

Equation (7.55) states that the inverse transform of the points will
yield which are equal to the desired value plus the error

Since the pmf must decay to zero as k increases, the error term can be made small by
making N sufficiently large. The following example carries out an evaluation of the
above error term in a case where the pmf is known. In practice, the pmf is not known so
the appropriate value of N is found by trial and error.

Example 7.34

Suppose that X is a geometric random variable. How large should N be so that the percent error
is 1%?

The error term for is given by

The percent error term for is

By solving for N, we find that the error is less than if

Thus for example if then the required N is 2, 7, and 44, respectively.These numbers
show how the required N depends strongly on the rate of decay of the pmf.

7.6.2 Continuous Random Variables

Let X be a continuous random variable, and suppose that we are interested in finding
the pdf of X from using a numerical method. We can take the inverse Fourier
transform formula and approximate it by a sum over intervals of width 

(7.58)

where the sum neglects the integral outside the range The above sum
takes on the form of a DFT if we consider the pdf in the range with3-2p>v0 , 2p>v02
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and

(7.59)

Equation (7.59) is a 2M-point DFT of the sequence

The FFT algorithm requires that n range from 0 to Equation (7.59) can be
cast into this form by recalling that the sequence is periodic with period N. An FFT
algorithm will then calculate Eq. (7.59) if we input the sequence

Three types of errors are introduced in approximating the pdf using Eq. (7.59).
The first error involves approximating the integral by a sum. The second error results
from neglecting the integral for frequencies outside the range The third
error results from neglecting the pdf outside the range The first and
third errors are reduced by reducing The second error can be decreased by increas-
ing M while keeping fixed.

Example 7.35

The Laplacian random variable with parameter has characteristic function

Figures 7.17(a) and 7.17(b) compare the pdf with the approximation obtained using Eq. (7.59)
with points and two values of It can be seen that decreasing increases the accu-
racy of the approximation.

The Octave code for obtaining the figure is shown below. The first part shows the com-
mands to generate the characteristic function and call the FFT function fft_pxs, which calcu-
lates the pdf. The function fft_pxs accepts a vector of values of the characteristic function from

M (negative frequencies) to (positive frequencies). The function forms a new vector
where the negative frequency terms are placed in the last M entries. It performs the FFT and
then shifts the results back.

(a) Interactive commands
>N=512
>M=N/2;
>w0=1;
>n=[-M:(M-1)];
>phix=1./1.+(w0^2*(n.*n)); % Evaluate the characteristic function.
>fx=zeros(size(n));
>[n1,x1,afx1]=fft_pxs(phix,w0,N); % Find inverse of characteristic function.
>fx1=laplace_pdf(x1); % Calculate exact pdf.
>plot(n1,afx1)
>hold on;
>plot (n1,fx1)

M-1-

v0v0 .N = 512

£X1v2 =
1

1 + v2 -q 6 v 6 q .

a = 1

v0

v0 .
3-2p>v0 , 2p>v02.
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cœm = b cm 0 … m … M - 1
cm-2M-1 M 6 m … 2M - 1.

cm

2M - 1.

cm =
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2p
£X1mv02.

fX1nd2 M
v0

2p a
M-1

m=-M
£X1mv02e-j2pnm/N -M … n … M - 1.

N = 2M:x = nd, d = 2p>Nv0 ,
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(b) Function definition
function [n,t,rx]=fft_pxs(sx,w0,N)
% Accepts N=2M samples of frequency spectrum from
% frequency range -M w0 to (M-1) w0;
% Performs periodic extension before 2M-point FFT;
% Performs FFT shift and returns time function
% in time range -M d to (M-1)d, where d=2pi/Nw0
M=N/2;
n=[-M:(M-1)];
d=2*pi/(N*w0);
t=n.*d;
sxc=zeros(size(n));
for j=1:M
sxc(j)=sx(j+M); % Positive frequency terms occupy first M entries.
sxc(j+M)=sx(j); % Move negative frequency terms to last M entries.
end
rx=zeros(size(n));
rx=fft(sxc); % Calculate the FFT.
rx=rx.*w0./(2.*pi);
rx=fftshift(rx); % Rearrange vector values so negative amplitude
endfunction % terms occupy first M entries.

SUMMARY

• The expected value of a sum of random variables is always equal to the sum of
the expected values of the random variables. In general, the variance of such a
sum is not equal to the sum of the individual variances.

• The characteristic function of the sum of independent random variables is equal
to the product of the characteristic functions of the individual random variables.

0.25
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(a) (b)
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FIGURE 7.17
(a) Comparison of exact pdf and pdf obtained by numerically inverting the characteristic function of a Laplacian random
variable. Approximation using and (b) Comparison of exact pdf and pdf obtained by numerically inverting
the characteristic function of a Laplacian random variable. Approximation using and N = 512.v0 = 1/2

N = 512.v0 = 1
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• The sample mean and the relative frequency estimators are used to estimate the
expected value of random variables and the probabilities of events. The laws of
large numbers state conditions under which these estimators approach the true
values of the parameters they estimate as the number of samples becomes large.

• The central limit theorem states that the cdf of a sum of iid finite-mean, finite-
variance random variables approaches that of a Gaussian random variable. This
result allows us to approximate the pdf of sums of random variables by that of a
Gaussian random variable.

• The Chernoff bound provides estimates of the probability of the tails of a
distribution.

• A sequence of random variables can be viewed as a sequence of functions of or as
a family of sample sequences, one sample sequence for each in S. Sure and almost-
sure convergence address the question of whether all or almost all sample se-
quences converge. Mean square convergence and convergence in probability do not
address the behavior of entire sample sequences but instead address the question of
whether the sample sequences are “close” to some X at some particular time instant.

• A counting process counts the number of occurrences of an event in a certain time
interval. When the times between occurrences of events are iid random variables,
the strong law of large numbers enables us to obtain results concerning the rate at
which events occur, and results concerning various long-term time averages.

• The discrete Fourier transform and the FFT algorithm allow us to compute numeri-
cally the pmf and pdf of random variables from their characteristic functions.

CHECKLIST OF IMPORTANT TERMS

z

z,

Almost-sure convergence
Arrival rate
Central limit theorem
Chernoff bound
Convergence in distribution
Convergence in probability
Discrete Fourier transform
Fast Fourier transform
iid random variables

Relative frequency
Renewal counting process
Sample mean
Sample variance
Sequence of random variables
Strong law of large numbers
Sure convergence
Weak law of large numbers
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See Chung [1, pp. 220–233] for an insightful discussion of the laws of large numbers and
the central limit theorem. Chapter 6 in Gnedenko [2] gives a detailed discussion of the
laws of large numbers. Chapter 7 in Ross [3] focuses on counting processes and their
properties. Cadzow [4] gives a good introduction to the FFT algorithm. Larson and Shu-
bert [ref 8] and Stark and Woods [ref 9] contain excellent discussions on sequences of
random variables.
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PROBLEMS

Section 7.1: Sums of Random Variables

7.1. Let where X, Y, and Z are zero-mean, unit-variance random variables
with , and and 
(a) Find the mean and variance of Z.
(b) Repeat part a assuming X, Y, and Z are uncorrelated random variables.

7.2. Let be random variables with the same mean and with covariance function:

where Find the mean and variance of 
7.3. Let be random variables with the same mean and with covariance function

where Find the mean and variance of 
7.4. Let X and Y be independent Cauchy random variables with parameters 1 and 4, respec-

tively. Let 
(a) Find the characteristic function of Z.
(b) Find the pdf of Z from the characteristic function found in part a.

7.5. Let where the are independent random variables, with a
chi-square random variable with degrees of freedom. Show that is a chi-square ran-
dom variable with degrees of freedom.

7.6. Let where the are iid zero-mean, unit-variance Gaussian ran-
dom variables.
(a) Show that is a chi-square random variable with n degrees of freedom. Hint: See

Example 4.34.
(b) Use the methods of Section 4.5 to find the pdf of

Tn = 2X1
2 + Á + Xn2 .

Sn

Xi’sSn = X1
2 + Á + Xn2 ,

n = n1 + Á + nk
Skni

XiXi’sSk = X1 + Á + Xk ,

Z = X + Y.

Sn = X1 + Á + Xn .ƒ r ƒ 6 1.

COV1Xi ,Xj2 = s2r ƒi- j ƒ,

X1 , Á ,Xn

Sn = X1 + Á + Xn .ƒ r ƒ 6 1.

COV1Xi ,Xj2 = c s2 if i = j
rs2 if ƒ i - j ƒ = 1,
0 otherwise,

X1 , Á ,Xn

COV1X, Z2 = 1/2.COV1Y, Z2 = -1/4COV1X, Y2 = 1/2
Z = X + Y + Z,
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(c) Show that is a Rayleigh random variable.
(d) Find the pdf for The random variable is used to model the speed of molecules

in a gas. is said to have the Maxwell distribution.
7.7. Let X and Y be independent exponential random variables with parameters 2 and 10, re-

spectively. Let 
(a) Find the characteristic function of Z.
(b) Find the pdf of Z from the characteristic function found in part a.

7.8. Let where X and Y are independent random variables.
(a) Find the characteristic function of Z.
(b) Find the mean and variance of Z by taking derivatives of the characteristic function

found in part a.
7.9. Let be the sample mean of n iid random variables Find the characteristic function

of in terms of the characteristic function of the 
7.10. The number of raffle winners in classroom j is a binomial random variable with para-

meter and p. Suppose that the school has K classrooms. Find the pmf of the total num-
ber of raffle winners in the school, assuming the are independent random variables.

7.11. The number of packet arrivals at port i in a router is a Poisson random variable with
mean Given that the router has k ports, find the pmf for the total number of packet ar-
rivals at the router. Assume that the are independent random variables.

7.12. Let be a sequence of independent integer-valued random variables, let N be
an integer-valued random variable independent of the and let

(a) Find the mean and variance of S.
(b) Show that

where is the generating function of each of the 
7.13. Let the number of smashed-up cars arriving at a body shop in a week be a Poisson ran-

dom variable with mean L. Each job repair costs dollars, the are iid random vari-
ables that are equally likely to be $500 or $1000.
(a) Find the mean and variance of the total revenue R arriving in a week.
(b) Find the 

7.14. Let the number of widgets tested in an assembly line in 1 hour be a binomial random
variable with parameters and p. Suppose that the probability that a widget is
faulty is a. Let S be the number of widgets that are found faulty in a 1-hour period.
(a) Find the mean and variance of S.
(b) Find

Section 7.2: The Sample Mean and the Laws of Large Numbers

7.15. Suppose that the number of particle emissions by a radioactive mass in t seconds is a Pois-
son random variable with mean Use the Chebyshev inequality to obtain a bound for
the probability that exceeds 

7.16. Suppose that 20% of voters are in favor of certain legislation. A large number n of voters
are polled and a relative frequency estimate for the above proportion is obtained.fA1n2

e.ƒN1t2/t - l ƒ
lt.

GS1z2 = E3zS4.

n = 600

GR1z2 = E3zR4.

Xj’sXj

Xk’s.GX1z2
GS1z2 = E1zS2 = GN1GX1z22,

S = a
N

k=1
Xk .

Xj,
X1 ,X2 , Á

Xi’s
ai .

Xi

Xi’s
nj

Xj

Xi’s.Mn

Xj .Mn

Z = 3X - 7Y,

Z = X + Y.

T3

T3T3 .
T2
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Use Eq. (7.20) to determine how many voters should be polled in order that the proba-
bility is at least .95 that differs from 0.20 by less than 0.02.

7.17. A fair die is tossed 20 times. Use Eq. (7.20) to bound the probability that the total num-
ber of dots is between 60 and 80.

7.18. Let be a sequence of independent zero-mean, unit-variance Gaussian random vari-
ables. Compare the bound given by Eq. (7.20) with the exact value obtained from the Q
function for and 

7.19. Does the weak law of large numbers hold for the sample mean if the have the co-
variance functions given in Problem 7.2? Assume the Xi have the same mean.

7.20. Repeat Problem 7.19 if the have the covariance functions given in Problem 7.3.
7.21. (The sample variance) Let be an iid sequence of random variables for which

the mean and variance are unknown. The sample variance is defined as follows:

where is the sample mean.
(a) Show that

(b) Use the result in part a to show that

(c) Use part b to show that Thus is an unbiased estimator for the
variance.

(d) Find the expected value of the sample variance if is replaced by n. Note that
this is a biased estimator for the variance.

Section 7.3: The Central Limit Theroem

7.22. (a) A fair coin is tossed 100 times. Estimate the probability that the number of heads is
between 40 and 60. Estimate the probability that the number is between 50 and 55.

(b) Repeat part a for and the intervals [400, 600] and [500, 550].
7.23. Repeat Problem 7.16 using the central limit theorem.
7.24. Use the central limit theorem to estimate the probability in Problem 7.17.
7.25. The lifetime of a cheap light bulb is an exponential random variable with mean 36

hours. Suppose that 16 light bulbs are tested and their lifetimes measured. Use the cen-
tral limit theorem to estimate the probability that the sum of the lifetimes is less than
600 hours.

7.26. A student uses pens whose lifetime is an exponential random variable with mean 1 week.
Use the central limit theorem to determine the minimum number of pens he should buy
at the beginning of a 15-week semester, so that with probability .99 he does not run out of
pens during the semester.

7.27. Let S be the sum of 80 iid Poisson random variables with mean 0.25. Compare the
exact value of to an approximation given by the central limit theorem as in
Eq. (7.30).
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n = 1000
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7.28. The number of messages arriving at a multiplexer is a Poisson random variable with
mean 15 messages/second. Use the central limit theorem to estimate the probability that
more than 950 messages arrive in one minute.

7.29. A binary transmission channel introduces bit errors with probability .15. Estimate the
probability that there are 20 or fewer errors in 100 bit transmissions.

7.30. The sum of a list of 64 real numbers is to be computed. Suppose that numbers are rounded
off to the nearest integer so that each number has an error that is uniformly distributed in
the interval Use the central limit theorem to estimate the probability that the
total error in the sum of the 64 numbers exceeds 4.

7.31. (a) A fair coin is tossed 100 times. Use the Chernoff bound to estimate the probability that
the number of heads is greater than 90. Compare to an estimate using the central limit
theorem.

(b) Repeat part a for and the probability that the number of heads is greater
than 650.

7.32. A binary transmission channel introduces bit errors with probability .01. Use the Cher-
noff bound to estimate the probability that there are more than 3 errors in 100 bit
transmissions. Compare to an estimate using the central limit theorem.

7.33. (a) When you play the rock/paper/scissors game against your sister you lose with prob-
ability 3/5. Use the Chernoff bound to estimate the probability that you win more
than half of 20 games played.

(b) Repeat for 100 games.
(c) Use trial and error to find the number of games n that need to be played so that the

probability that your sister wins more than 1/2 the games is 90%.
7.34. Show that the Chernoff bound for X, a Poisson random variable with mean is

for . Hint: Use
7.35. Redo Problem 7.26 using the Chernoff bound.
7.36. Show that the Chernoff bound for X, a Gaussian random variable with mean and

variance is , . Hint: Use
7.37. Compare the Chernoff bound for the Gaussian random variable with the estimates

provided by Eq. (4.54).
7.38. (a) Find the Chernoff bound for the exponential random variable with rate 

(b) Compare the exact probability of with the Chernoff bound.
7.39. (a) Generalize the approach in Problem 7.38 to find the Chernoff bound for a gamma

random variable with parameters and 
(b) Use the result of part a to obtain the Chernoff bound for a chi-square random

variable with k degrees of freedom.

Section7.4: Convergence of Sequences of Random Variables

7.40. Let and be the sequences of random variables defined in
Example 7.18.
(a) Plot the sequence of functions of associated with each sequence of random variables.
(b) For plot the associated sample sequence.

7.41. Let be selected at random from the interval and let the probability that 
is in a subinterval of S be given by the length of the subinterval. Define the following
sequences of random variables for 

Xn1z2 = zn, Yn1z2 = cos2 2pz, Zn1z2 = cosn 2pz.

n Ú 1:

zS = 30, 14,z

z = 1/4,
z

Zn1z2Un1z2,Wn1z2, Yn1z2,
*

a.l

P3X Ú k/l4
l.

E3esX4 = esm+ s2s2/2.a 7 mP3X Ú a4 … e-1a-m22/2s2
s2,

m

E3esX4 = ea1es-12.a 7 aP3X Ú a4 … e-a ln1a/a2+a-a a,

n = 1000

1-0.5, 0.52.
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Do the sequences converge, and if so, in what sense and to what limiting random variable?
7.42. Let be a sequence of iid, equiprobable Bernoulli random variables, and let be

the number between [0, 1] determined by the binary expansion

(a) Explain why is uniformly distributed in [0, 1].
(b) How would you use this definition of to generate the sample sequences that occur

in the urn problem of Example 7.20?
7.43. Let be a sequence of iid, equiprobable Bernoulli random variables, and let

(a) Plot a sample sequence. Does this sequence converge almost surely, and if so, to
what limit?

(b) Does this sequence converge in the mean square sense?
7.44. Let be a sequence of iid random variables with mean m and variance Let 

be the associated sequence of arithmetic averages,

Show that converges to m in the mean square sense.
7.45. Let and be two (possibly dependent) sequences of random variables that converge

in the mean square sense to X and Y, respectively. Does the sequence converge
in the mean square sense, and if so, to what limit?

7.46. Let be a sequence of iid zero-mean, unit-variance Gaussian random variables.A “low-
pass filter” takes the sequence and produces the sequence

(a) Does this sequence converge in the mean square sense?
(b) Does it converge in distribution?

7.47. Does the sequence of random variables introduced in Example 7.20 converge in the
mean square sense?

7.48. Customers arrive at an automated teller machine at discrete instants of time,
The number of customer arrivals in a time instant is a Bernoulli random variable with pa-
rameter p, and the sequence of arrivals is iid. Assume the machine services a customer in
less than one time unit. Let be the total number of customers served by the machine up
to time n. Suppose that the machine fails at time N, where N is a geometric random variable
with mean 100, so that the customer count remains at thereafter.
(a) Sketch a sample sequence for 
(b) Do the sample sequences converge almost surely, and if so, to what limit?
(c) Do the sample sequences converge in the mean square sense?

7.49. Show that the sequence defined in Example 7.18 converges in distribution.
7.50. Let be a sequence of Laplacian random variables with parameter Does this se-

quence converge in distribution?
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Yn1z2

Xn .
XN

Xn

n = 1, 2, Á .

Xn =
1
2
1Un + Un-12.

Un

Un

Xn + Yn
YnXn

Mn

Mn =
1
na
n

i=0
Xi .

Mns2 6 q .Xn

Yn = 2nX1X2 ÁXn .

Xn

z

z

z = a
q

i=1
bi 2

- i.

zbi , i Ú 1,



Pattern Codeword Probability

1 100 .1
01 101 .09
001 110 .081
0001 111 .0729
0000 0 .6521
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Section 7.5: Long-Term Arrival Rates and Associated Averages

7.51. The customer arrival times at a bus depot are iid exponential random variables with
mean 1 minute. Suppose that buses leave as soon as 30 seats are full. At what rate do
buses leave the depot?

7.52. A faulty clock ticks forward every minute with probability and it does not tick
forward with probability What is the rate at which this clock moves forward?

7.53. (a) Show that and are equivalent events.
(b) Use part a to find when the are iid exponential random variables

with mean 
7.54. Explain why the following are not equivalent events:

(a) and
(b) and

7.55. A communication channel alternates between periods when it is error free and periods
during which it introduces errors. Assuming that these periods are independent random
variables of means hours and minute, respectively, find the long-term
proportion of time during which the channel is error free.

7.56. A worker works at a rate when the boss is around and at a rate when the boss is not
present. Suppose that the sequence of durations of the time periods when the boss is
present and absent are independent random variables with means and respec-
tively. Find the long-term average rate at which the worker works.

7.57. A computer (repairman) continuously cycles through three tasks (machines). Suppose
that each time the computer services task i, it spends time doing so.
(a) What is the long-term rate at which the computer cycles through the three tasks?
(b) What is the long-term proportion of time spent by the computer servicing task i?
(c) Repeat parts a and b if a random time W is required for the computer (repairman)

to switch (walk) from one task (machine) to another.
7.58. Customers arrive at a phone booth and use the phone for a random time Y, with mean

3 minutes, if the phone is free. If the phone is not free, the customers leave immediately.
Suppose that the time between customer arrivals is an exponential random variable
with mean 10 minutes.
(a) Find the long-term rate at which customers use the phone.
(b) Find the long-term proportion of customers that leave without using the phone.

7.59. The lifetime of a certain system component is an exponential random variable with mean
months. Suppose that the component is replaced when it fails or when it reaches

the age of 3T months.
(a) Find the long-term rate at which components are replaced.
(b) Find the long-term rate at which working components are replaced.

7.60. A data compression encoder segments a stream of information bits into patterns as
shown below. Each pattern is then encoded into the codeword shown below.

T = 2

Xi

m2 ,m1

r2r1

m2 = 1m1 = 100

5Sn 6 t6.5N1t2 7 n6
5Sn Ú t6.5N1t2 … n6

1/a.
XiP[N1t2 … n]

5Sn … t65N1t2 Ú n6
1 - p.

p = 0.1

*
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(a) If the information source produces a bit every millisecond, find the rate at which
codewords are produced.

(b) Find the long-term ratio of encoded bits to information bits.
7.61. In Example 7.29 evaluate the proportion of time that the residual lifetime r(t) exceeds c

seconds for the following cases:
(a) iid uniform random variables in the interval [0, 2].
(b) iid exponential random variables with mean 1.
(c) iid Rayleigh random variables with mean 1.
(d) Calculate and compare the mean residual time in each of the above three cases.

7.62. Let the age a(t) of a cycle be defined as the time that has elapsed from the last arrival up
to an arbitrary time instant t. Show that the long-term proportion of time that a(t) ex-
ceeds c seconds is given by Eq. (7.48).

7.63. Suppose that the cost in each cycle grows at a rate proportional to the age a(t) of the
cycle, that is,

(a) Show that 
(b) Show that the long-term rate at which the cost grows is 
(c) Show that the result in part b is also the long-term time average of a(t), that is,

(d) Explain why the average residual life is also given by the above expression.
7.64. Calculate the mean age and mean residual life in Problem 7.63 in the following cases:

(a) iid uniform random variables in the interval [0, 2].
(b) iid exponential random variables with mean 1.
(c) iid Rayleigh random variables with mean 1.

7.65. (The Regenerative Method) Suppose that a queueing system has the property that when a
customer arrives and finds an empty system, the future behavior of the system is com-
pletely independent of the past. Define a cycle to consist of the time period between two
consecutive customer arrivals to an empty system. Let be the number of customers
served during the jth cycle and let be the total delay of all customers served during the
jth cycle.
(a) Use Theorem 2 to show that the average customer delay is given by E[T]/E[N], that is,

where is the delay of the kth customer.
(b) How would you use this result to estimate the average delay in a computer simula-

tion of a queueing system?

Section 7.6: Calculating Distributions Using the Discrete Fourier Transform

7.66. Let the discrete random variable X be uniformly distributed in the set 
(a) Find the DFT for X.
(b) Use the inverse DFT to recover P3X = 14.

N = 3
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7.67. Let where X and Y are iid random variables uniformly distributed in the set

(a) Find the DFT for S.
(b) Use the inverse DFT to find 

7.68. Let X be a binomial random variable with parameter and 
(a) Use the FFT to obtain the pmf of X from
(b) Use the FFT to obtain the pmf of where X and Y are iid binomial ran-

dom variables with and 
7.69. Let be a discrete random variable that is uniformly distributed in the set 

Use the FFT to find the pmf of for and Plot your re-
sults and compare them to Fig. 7.16.

7.70. Let X be the geometric random variable with parameter Use the FFT to evalu-
ate Eq. (7.55) to compute for and Compare the results to those given
by Eq. (7.57).

7.71. Let X be a Poisson random variable with mean 
(a) Use the FFT to obtain the pmf from Find the value of N for which the error

in Eq. (7.55) is less than 1%.
(b) Let where the are iid Poisson random variables with

mean Use the FFT to compute the pmf of S from
7.72. The probability generating function for the number N of customers in a certain queueing

system (the so-called M/D/1 system discussed in Chapter 12) is

where Use the FFT to obtain the pmf of N for
7.73. Use the FFT to obtain approximately the pdf of a Laplacian random variable from its

characteristic function. Use the same parameters as in Example 7.33 and compare your
results to those shown in Fig. 7.17.

7.74. Use the FFT to obtain approximately the pdf of where X and Y are inde-
pendent Laplacian random variables with parameters and respectively.

7.75. Use the FFT to obtain approximately the pdf of a zero-mean, unit-variance Gaussian
random variable from its characteristic function. Experiment with the values of N and
and compare the results given by the FFT with the exact values.

7.76. Figures 7.2 through 7.4 for the cdf of the sum of iid Bernoulli, uniform, and exponential ran-
dom variables were obtained using the FFT. Reproduce the results shown in these figures.

Problems Requiring Cumulative Knowledge

7.77. The number X of type 1 defects in a system is a binomial random variable with parame-
ters n and p, and the number Y of type 2 defects is binomial with parameters m and r.
(a) Find the probability generating function for the total number of defects in the system.
(b) Find an expression for the probability that the total number of defects is k.
(c) Let and Use the FFT to evaluate the pmf for the

total number of defects in the system.
7.78. Let be a sequence of iid zero-mean, unit-variance Gaussian random variables.A “low-

pass filter” takes the sequence and produces the sequence
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Symbol Probability Codeword

A 1/2 0
B 1/4 10
C 1/8 110
D 1/16 1110
E 1/16 1111
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(a) Find the mean and variance of 
(b) Find the characteristic function of What happens as n approaches infinity?
(c) Does this sequence of random variables converge? In what sense?

7.79. Let be the sum of a sequence of that are jointly Gaussian random variables with
mean and with the covariance function given in Problem 7.2.
(a) Find the characteristic function of 
(b) Find the mean and variance of 
(c) Find the joint characteristic function of and Hint: Assuming condi-

tion on the value of 
(d) Does converge in the mean square sense?

7.80. Repeat Problem 7.79 with the sequence of given as jointly Gaussian random vari-
ables with mean and covariance functions given in Problem 7.3.

7.81. Let be the sequence of random variables defined in the formulation of the central
limit theorem, Eq. (7.26a). Does converge in the mean square sense?

7.82. Let be the sequence of independent, identically distributed outputs of an information
source. At time n, the source produces symbols according to the following probabilities:
Xn

Zn

Zn

Xi’s
Sn

Sm .
n 7 m,Sm .Sn

Sn - Sm .
Sn .

m

Xi’sSn

Xn .
Xn .

(a) The self-information of the output at time n is defined by the random variable
Thus, for example, if the output is C, the self-information is

Find the mean and variance of Note that the expected value of
the self-information is equal to the entropy of X (cf. Section 4.10).

(b) Consider the sequence of arithmetic averages of the self-information:

Do the weak law and strong law of large numbers apply to 
(c) Now suppose that the outputs of the information source are encoded using the vari-

able-length binary codewords indicated above. Note that the length of the code-
words corresponds to the self-information of the corresponding symbol. Interpret
the result of part b in terms of the rate at which bits are produced when the above
code is applied to the information source outputs.
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Probability theory allows us to model situations that exhibit randomness in terms of
random experiments involving sample spaces, events, and probability distributions.
The axioms of probability allow us to develop an extensive set of tools for calculating
probabilities and averages for a wide array of random experiments. The field of statis-
tics plays the key role of bridging probability models to the real world. In applying
probability models to real situations, we must perform experiments and gather data to
answer questions such as:

• What are the values of parameters, e.g., mean and variance, of a random variable
of interest?

• Are the observed data consistent with an assumed distribution?
• Are the observed data consistent with a given parameter value of a random

variable?

Statistics is concerned with the gathering and analysis of data and with the drawing of
conclusions or inferences from the data. The methods from statistics provide us with
the means to answer the above questions.

In this chapter we first consider the estimation of parameters of random vari-
ables.We develop methods for obtaining point estimates as well as confidence intervals
for parameters of interest. We then consider hypothesis testing and develop methods
that allow us to accept or reject statements about a random variable based on observed
data. We will apply these methods to determine the goodness of fit of distributions to
observed data.

The Gaussian random variable plays a crucial role in statistics. We note that the
Gaussian random variable is referred to as the normal random variable in the statistics
literature.

8.1 SAMPLES AND SAMPLING DISTRIBUTIONS

The origin of the term “statistics” is in the gathering of data about the population in
a state or locality in order to draw conclusions about properties of the population,
e.g., potential tax revenue or size of pool of potential army recruits. Typically the

411
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size of a population was too large to make an exhaustive analysis, so statistical infer-
ences about the entire population were drawn based on observations from a sample
of individuals.

The term population is still used in statistics, but it now refers to the collection
of all objects or elements under study in a given situation. We suppose that the prop-
erty of interest is observable and measurable, and that it can be modeled by a random
variable X. We gather observation data by taking samples from the population. In
order for inferences about the population to be valid, it is important that the individ-
uals in the sample be representative of the entire population. In essence, we
require that the n observations be made from random experiments conducted
under the same conditions. For this reason we define a random sample

as consisting of n independent random variables with the same
distribution as X.

Statistical methods invariably involve performing calculations on the observed
data. For example, we might be interested in inferring the values of a certain parameter

of the population, that is, of the random variable X, such as the mean, variance, or
probability of a certain event. We may also be interested in drawing conclusions about

based on Typically we calculate a statistic based on the random sample

(8.1)

In other words, a statistic is simply a function of the random vector Clearly the 
statistic is itself a random variable, and so is subject to random variability. Therefore
estimates, inferences and conclusions based on the statistic must be stated in proba-
bilistic terms.

We have already encountered statistics to estimate important parameters of a
random variable. The sample mean is used to estimate the expected value of a random
variable X:

(8.2)

The relative frequency of an event A is a special case of a sample mean and is used to
estimate the probability of A:

(8.3)

Other statistics involve estimation of the variance of X, the minimum and maximum of
X, and the correlation between random variables X and Y.

The sampling distribution of a statistic is given by its probability distribu-
tion (cdf, pdf, or pmf). The sampling distribution allows us to calculate parameters
of e.g., mean, variance, and moments, as well as probabilities involving 

We will see that the sampling distribution and its parameters allow us to
determine the accuracy and quality of the statistic ®N .
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Example 8.1 Mean and Variance of the Sample Mean

Suppose that X has expected value and variance Find the mean and
variance of the sample mean.

The expected value of is given by:

(8.4)

The variance of is given by:

(8.5)

since the are iid random variables. Equation (8.4) asserts that the sample mean is centered
about the true mean m, and Eq. (8.5) states that the sample-mean estimates become clustered
about m as n is increased.The Chebyshev inequality then leads to the weak law of large numbers
which then asserts that converges to m in probability.

Example 8.2 Sampling Distribution for the Sample Mean of Gaussian Random
Variables

Let X be a Gaussian random variable with expected value and variance 
Find the distribution of the sample mean based on iid observations 

If the samples are iid Gaussian random variables, then from Example 6.24 is also a
Gaussian random variable with mean and variance given by Eqs. (8.4) and (8.5). We will see that
many important statistical methods involve the following “one-tail” probability for the sample
mean of Gaussian random variables:

(8.6)

Let be the critical value for the standard (zero-mean, unit-variance) Gaussian random variable
as shown in Fig. 8.1, so that

The desired value for the constant c in the one-tail probability is:

(8.7)c =
sX

1n za .

a = Q1za2 = Q¢ c

sX/1n ≤ .

za

= Q¢ c

sX/1n ≤ .

a = P CXn - m 7 c D = PBXn - m
sX/1n 7

c

sX/1nR
XnXi

X1 ,X2 , Á ,Xn .= sX2 .
VAR3X4E3X4 = m

®N 1Xn2 = Xn

Xi

VAR3Xn4 =
1
n2 VARBan

j=1
XjR =

sX
2

n
,

Xn

E3Xn4 =
1
n
EBan

j=1
XjR = m.

Xn

®N 1Xn2 = Xn ,

VAR3X4 = sX2 .E3X4 = m



414 Chapter 8 Statistics

Table 8.1 shows common critical values for the Gaussian random variable. Thus for the one-tail
probability with and 

In the “two-tail” case we are interested in:

Let then the desired value of constant c is:

(8.8)

For the two-tail probability with then and 

Example 8.3 Sampling Distribution for the Sample Mean, Large n

When X is not Gaussian but has finite mean and variance, then by the central limit theorem we
have that for large n,

(8.9)

has approximately a zero-mean, unit-variance Gaussian distribution. Therefore when the num-
ber of samples is large, the sample mean is approximately Gaussian. This allows us to compute
probabilities involving even though we do not know the distribution of X. This result finds
numerous applications in statistics when the number of samples n is large.

Example 8.4 Sampling Distribution of Binomial Random Variable

We wish to estimate the probability of error p in a binary communication channel. We transmit a
predetermined sequence of bits and observe the corresponding received sequence to determine the
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FIGURE 8.1
Critical value for standard Gaussian
random variable.

TABLE 8.1 Critical values for
standard Gaussian random variable.

a za

0.1000 1.2816
0.0500 1.6449
0.0250 1.9600
0.0100 2.3263
0.0050 2.5758
0.0025 2.8070
0.0010 3.0903
0.0005 3.2906
0.0001 3.7191
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sequence of transmission errors, where is the indicator function for the occurrence
of the event A that corresponds to an error in the jth transmission. Let be the total number
of errors.The relative frequency of errors is used to estimate the probability of error p:

Assuming that the outcomes of different transmissions are independent, then the number of errors
in the n transmissions, is a binomial random variable with parameters n and p. The mean
and variance of are then:

Using the approach from Example 7.10, we can bound the variance of by 1/4n, and use the
Chebyshev inequality to estimate the number of samples required so that there is some proba-
bility, say that is within of p.

For n large, we can apply the central limit theorem where

is approximately Gaussian with mean zero and unit variance. We then obtain:

For example, if then and 

8.2 PARAMETER ESTIMATION

In this section, we consider the problem of estimating a parameter of a random vari-
able X. We suppose that we have obtained a random sample
consisting of independent, identically distributed versions of X. Our estimator is given
by a function of 

(8.10)

After making our n observations, we have the values and evaluate the
estimate for by a single value For this reason is called a point
estimator for the parameter 

We consider the following three questions:

1. What properties characterize a good estimator?
2. How do we determine that an estimator is better than another?
3. How do we find good estimators?

In addressing the above questions, we also introduce a variety of useful estimators.

u.
®N 1Xn2g1x1 , x2 , Á , xn2.u

1x1 , x2 , Á , xn2
®N 1Xn2 = g1X1 ,X2 , Á ,Xn2.
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Xn = 1X1 ,X2 , Á ,Xn2
u
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.

NA1n2
IjI1 , I2 , Á , In ,
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8.2.1 Properties of Estimators

Ideally, a good estimator should be equal to the parameter on the average. We say
that the estimator is an unbiased estimator for if

(8.11)

The bias of any estimator is defined by

(8.12)

From Eq. (8.4) in Example 8.1, we see that the sample mean is an unbiased estimator for
the mean However, biased estimators are not unusual as illustrated by the following
example.

Example 8.5 The Sample Variance

The sample mean gives us an estimate of the center of mass of observations of a random vari-
able. We are also interested in the spread of these observations about this center of mass. An ob-
vious estimator for the variance of X is the arithmetic average of the square variation about
the sample mean:

(8.13)

where the sample mean is given by:

(8.14)

Let’s check whether is an unbiased estimator. First, we rewrite Eq. (8.13):

(8.15)=
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1Xj - Xn22
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The expected value of is then:

(8.16)

where we used Eq. (8.2) for the variance of the sample mean. Equation (8.16) shows that the
simple estimator given by Eq. (8.13) is a biased estimator for the variance. We can obtain an
unbiased estimator for by dividing the sum in Eq. (8.15) by instead of by n:

(8.17)

Equation (8.17) is used as the standard estimator for the variance of a random variable.

A second measure of the quality of an estimator is the mean square estimation error:

(8.18)

Obviously a good estimator should have a small mean square estimation error because
this implies that the estimator values are clustered close to If is an unbiased estimator 
of then and the mean square error is simply the variance of the estimator 
In comparing two unbiased estimators, we clearly prefer the one with the smallest
estimator variance.The comparison of biased estimators with unbiased estimators can
be tricky. It is possible for a biased estimator to have a smaller mean square error than
any unbiased estimator [Hardy]. In such situations the biased estimator may be
preferable.

The observant student will have noted that we already considered the problem of
finding minimum mean square estimators in Chapter 6. In that discussion we were
estimating the value of one random variable Y by a function of one or more observed
random variables In this section we are estimating a parameter that
is unknown but not random.

Example 8.6 Estimators for the Exponential Random Variable

The message interarrival times at a message center are exponential random variables with
rate messages per second. Compare the following two estimators for the mean
interarrival time:

u = 1/ll

uX1 ,X2 , Á ,Xn .

®N .B3®N 4 = 0u,
®Nu.

= VAR3®N 4 + B1®N 22.
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2 =

1
n - 1a
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1Xj - Xn22.

n - 1sX
2
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2

n
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n
sX

2

=
1
na
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j=1
3E31Xj - m224 - E31Xn - m2244

E3Sn 24 = EB 1
na
n

j=1
1Xj - m22 - 1Xn - m22RSn 2
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(8.19)

The first estimator is simply the sample mean of the observed interarrival times. The second es-
timator uses the fact from Example 6.10 that the minimum of n iid exponential random variables
is itself an exponential random variable with mean interarrival time 

is the sample mean so we know that it is an unbiased estimator and that its mean
square error is:

On the other hand, is an exponential random variable with mean interar-
rival time so

Therefore is also an unbiased estimator for The mean square error is:

Clearly, is the preferred estimator because it has the smaller mean square estimation error.

A third measure of quality of an estimator pertains to its behavior as the sample
size n is increased. We say that is a consistent estimator if converges to in prob-
ability, that is, as per Eq. (7.21), for every 

(8.20)

The estimator is said to be a strongly consistent estimator if converges to al-
most surely, that is, with probability 1, cf. Eqs. (7.22) and (7.37). Consistent estimators,
whether biased or unbiased, tend towards the correct value of as n is increased.

Example 8.7 Consistency of Sample Mean Estimator

The weak law of large numbers states that the sample mean converges to in prob-
ability. Therefore the sample mean is a consistent estimator. Furthermore, the strong law of large
numbers states the sample mean converges to with probability 1.Therefore the sample mean is
a strongly consistent estimator.

Example 8.8 Consistency of Sample Variance Estimator

Consider the unbiased sample variance estimator in Eq. (8.17). It can be shown (see Problem 8. 21)
that the variance of is:
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If the fourth central moment is finite, then the above variance term approaches zero as n in-
creases. By Chebyshev’s inequality we have that:

Therefore the sample variance estimator is consistent if is finite.

8.2.2 Finding Good Estimators

Ideally we would like to have estimators that are unbiased, have minimum mean
square error, and are consistent. Unfortunately, there is no guarantee that unbiased
estimators or consistent estimators exist for all parameters of interest.There is also no
straightforward method for finding the minimum mean square estimator for arbitrary
parameters. Fortunately we do have the class of maximum likelihood estimators
which are relatively easy to work with, have a number of desirable properties for n
large, and often provide estimators that can be modified to be unbiased and minimum
variance. The next section deals with maximum likelihood estimation.

8.3 MAXIMUM LIKELIHOOD ESTIMATION

We now consider the maximum likelihood method for finding a point estimator 
for an unknown parameter In this section we first show how the method works. We
then present several properties that make maximum likelihood estimators very useful
in practice.

The maximum likelihood method selects as its estimate the parameter value
that maximizes the probability of the observed data Before
introducing the formal method we use an example to demonstrate the basic
approach.

Example 8.9 Poisson Distributed Typos

Papers submitted by Bob have been found to have a Poisson distributed number of typos with
mean 1 typo per page, whereas papers prepared by John have a Poisson distributed number of
typos with mean 5 typos per page. Suppose that a page that was submitted by either Bob or John
has 2 typos. Who is the likely author?

In the maximum likelihood approach we first calculate the probability of obtaining the
given observation for each possible parameter value, thus:

We then select the parameter value that gives the higher probability for the observation. In this
case gives the higher probability, so the estimator selects Bob as the more likely au-
thor of the page.

®N 122 = 1
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2!
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2e5
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Let be the observed values of a random sample for the ran-
dom variable X and let be the parameter of interest. The likelihood function of the
sample is a function of defined as follows:

(8.21)

where and are the joint pmf and joint pdf
evaluated at the observation values if the parameter value is Since the samples

are iid, we have a simple expression for the likelihood function:

(8.22)

and

(8.23)

The maximum likelihood method selects the estimator value where is the
parameter value that maximizes the likelihood function, that is,

(8.24)

where the maximum is taken over all allowable values of Usually assumes a con-
tinuous set of values, so we find the maximum of the likelihood function over using
standard methods from calculus.

It is usually more convenient to work with the log likelihood function because we
then work with the sum of terms instead of the product of terms in Eqs. (8.22) and (8.23):

(8.25)

Maximizing the log likelihood function is equivalent to maximizing the likelihood
function since ln(x) is an increasing function of x. We obtain the maximum likelihood
estimate by finding the value for which:

(8.26)
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Example 8.10 Estimation of p for a Bernoulli random variable

Suppose we perform n independent observations of a Bernoulli random variable with probabil-
ity of success p. Find the maximum likelihood estimate for p.

Let be the observed outcomes of the n Bernoulli trials. The pmf for an
individual outcome can be written as follows:

The log likelihood function is:

(8.27)

We take the first derivative with respect to p and set the result equal to zero:

(8.28)

Solving for p, we obtain:

Therefore the maximum likelihood estimator for p is the relative frequency of successes, which is
a special case of the sample mean. From the previous section we know that the sample mean
estimator is unbiased and consistent.

Example 8.11 Estimation of for Poisson random variable

Suppose we perform n independent observations of a Poisson random variable with mean 
Find the maximum likelihood estimate for 

Let the counts in the n independent trials be given by The probability of
observing events in the jth trial is:

The log likelihood function is then
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To find the maximum, we take the first derivative with respect to and set it equal to zero:

(8.29)

Solving for we obtain:

The maximum likelihood estimator for is the sample mean of the event counts.

Example 8.12 Estimation of Mean and Variance for Gaussian Random Variable

Let be the observed values of a random sample for a Gaussian random
variable X for which we wish to estimate two parameters: the mean and variance

The likelihood function is a function of two parameters and and we must simul-
taneously maximize the likelihood with respect to these two parameters.

The pdf for the jth observation is given by:

where we have replaced the mean and variance by and respectively. The log likelihood
function is given by:

We take derivatives with respect to and and set the results equal to zero:

(8.30)

and

(8.31)

Equations (8.30) and (8.31) can be solved for and respectively, to obtain:
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and

(8.33)

Thus, is given by the sample mean and is given by the biased sample variance
discussed in Example 8.5. It is easy to show that as n becomes large, approaches the
unbiased

The maximum likelihood estimator possesses an important invariance property
that, in general, is not satisfied by other estimators. Suppose that instead of the para-
meter we are interested in estimating a function of say which we assume is
invertible. It can be shown then that if is the maximum likelihood estimate of then

is the maximum likelihood estimate for (See Problem 8.34.) As an exam-
ple, consider the exponential random variable. Suppose that is the maximum likeli-
hood estimate for the rate of an exponential random variable. Suppose we are
instead interested in the mean interarrival time of the exponential random
variable. The invariance result of the maximum likelihood estimate implies that the
maximum likelihood estimate is then 

8.3.1 Cramer-Rao Inequality1

In general, we would like to find the unbiased estimator with the smallest possi-
ble variance. This estimator would produce the most accurate estimates in the
sense of being tightly clustered around the true value The Cramer-Rao inequali-
ty addresses this question in two steps. First, it provides a lower bound to the mini-
mum possible variance achievable by any unbiased estimator. This bound provides
a benchmark for assessing all unbiased estimators of Second, if an unbiased esti-
mator achieves the lower bound then it has the smallest possible variance and
mean square error. Furthermore, this unbiased estimator can be found using the
maximum likelihood method.

Since the random sample is a vector random variable,we expect that the estimator
will exhibit some unavoidable random variation and hence will have nonzero

variance. Is there a lower limit to how small this variance can be? The answer is yes and
the lower bound is given by the reciprocal of the Fisher information which is defined as
follows:

(8.34)

The pdf in Eq. (8.34) is replaced by a pmf if X is a discrete random variable.The term
inside the braces is called the score function,which is defined as the partial derivative of the
log likelihood function with respect to the parameter Note that the score function is au.
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1As a reminder, we note that this section (and other starred sections) presents advanced material and can be
skipped without loss of continuity.
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function of the vector random variable Xn. We have already seen this function when find-
ing maximum likelihood estimators.The expected value of the score function is zero since:

(8.35)

where we assume that order of the partial derivative and integration can be exchanged.
Therefore is equal to the variance of the score function.

The score function measures the rate at which the log likelihood function changes
as varies. If tends to change quickly about the value for most observations
of we can expect that: (1) The Fisher information will tend to be large since the ar-
gument inside the expected value in Eq. (8.34) will be large; (2) small departures from
the value will be readily discernable in the observed statistics because the underlying
pdf is changing quickly. On the other hand, if the likelihood function changes slowly
about then the Fisher information will be small. In addition, significantly different
values of may have quite similar likelihood functions making it difficult to distinguish
among parameter values from the observed data. In summary, larger values of 
should allow for better performing estimators that will have smaller variances.

The Fisher information has the following equivalent but more useful form when the
pdf satisfies certain additional conditions (see Problem 8.35):

(8.36)

Example 8.13 Fisher Information for Bernoulli Random Variable

From Eqs. (8.27) and (8.28), the score and its derivative for the Bernoulli random variable are
given by:

and

The Fisher information, as given by Eq. (8.36), is then:
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Note that is smallest near and that it increases as p approaches 0 or 1, so p is easier
to estimate accurately at the extreme values of p. Note as well that the Fisher information is pro-
portional to the number of samples, that is, more samples make it easier to estimate p.

Example 8.14 Fisher Information for an Exponential Random Variable

The log likelihood function for the n samples of an exponential random variable is:

The score for n observations of an exponential random variable and its derivatives are given by:

and

The Fisher information is then:

Note that decreases with increasing 

We are now ready to state the Cramer-Rao inequality.

Theorem Cramer-Rao Inequality

Let be any unbiased estimator for the parameter of X, then under certain regularity 
conditions2 on the pdf 

(a) (8.37)

(b) with equality being achieved if and only if

(8.38)
0
0u

ln fX1x1 , x2 , Á , xn ; u2 = E®N 1x2 - uFk1u2.

VAR3®N 1Xn24 Ú
1
In1u2 ,

fX1x1 , x2 , Á , xn ƒ u2,
u®N 1Xn2

l.In1l2
In1l2 = EB n

l2R =
n

l2 .

02

0l2 ln l1x1 , x2 , Á , xn ; l2 = -
n

l2 .

0
0l

ln l1x1 , x2 , Á , xn ; l2 =
n

l
- a

n

j=1
xj

ln l1x1 , x2 , Á , xn ; l2 = a
n

j=1
 ln le-lxj = a

n

j=1
1ln l - lxj2.

p = 1/2,In1p2
=
np

p2 +
n - np
11 - p22 =

n

p11 - p2 .

=
1
p2EBan

j=1
IjR +

1
11 - p22EBanj=1

11 - Ij2R

2See [Bickel, p. 179].



426 Chapter 8 Statistics

The Cramer-Rao lower bound confirms our conjecture that the variance of unbi-
ased estimators must be bounded below by a nonzero value. If the Fisher information
is high, then the lower bound is small, suggesting that low variance, and hence accurate,
estimators are possible. The term serves as a reference point for the variance of
all unbiased estimators, and the ratio provides a measure of effi-
ciency of an unbiased estimator. We say that an unbiased estimator is efficient if it
achieves the lower bound.

Assume that Eq. (8.38) is satisfied. The maximum likelihood estimator must then
satisfy Eq. (8.26), and therefore

(8.39)

We discard the case and conclude that, in general, we must have 
Therefore, if an efficient estimator exists then it can be found using the maximum likelihood
method. If an efficient estimator does not exist, then the lower bound in Eq. (8.37) is not
achieved by any unbiased estimator.

In Examples 8.10 and 8.11 we derived unbiased maximum likelihood estima-
tors for Bernoulli and for Poisson random variables. We note that in these examples
the score function in the maximum likelihood equations (Eqs. 8.28 and 8.29) can be
rearranged to have the form given in Eq. (8.39). Therefore we conclude that these
estimators are efficient.

Example 8.15 Cramer-Rao Lower Bound for Bernoulli Random Variable

From Example 8.13, the Fisher information for the Bernoulli random variable is

Therefore the Cramer-Rao lower bound for the variance of the sample mean estimator for p is:

The relative frequency estimator for p achieves this lower bound.

8.3.2 Proof of Cramer-Rao Inequality

The proof of the Cramer-Rao inequality involves an application of the Schwarz in-
equality.We assume that the score function exists and is finite. Consider the covariance
of and the score function:
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where we used Eq. (5.30) and the fact that the expected value of the score is zero
(Eq. 8.35). Next we evaluate the above expected value:

In the last step we assume that the integration and the partial derivative with respect to can
be interchanged. (The regularity conditions required by the theorem are needed to ensure
that this step is valid.) Note that the integral in the last expression is so

Next we apply the Schwarz inequality to the covariance:

Taking the square of both sides we conclude that:

and finally

The last step uses the fact that the Fisher information is the variance of the score func-
tion. This completes the proof of part a.

Equality holds in the Schwarz inequality when the random variables in the vari-
ances are proportional to each other, that is:
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where we noted that the expected value of the score function is 0 and that the estima-
tor is unbiased. This completes the proof of part b.

8.3.3 Asymptotic Properties of Maximum Likelihood Estimators

Maximum likelihood estimators satisfy the following asymptotic properties that make
them very useful when the number of samples is large.

1. Maximum likelihood estimates are consistent:

2. For n large, the maximum likelihood estimate is asymptotically Gaussian dis-
tributed, that is, has a Gaussian distribution with zero mean and
variance

3. Maximum likelihood estimates are asymptotically efficient:

(8.40)

The consistency property (1) implies that maximum likelihood estimates will be
close to the true value for large n, a`nd asymptotic efficiency (3) implies that the vari-
ance becomes as small as possible. The asymptotic Gaussian distributed property (2) is
very useful because it allows us to evaluate the probabilities involving the maximum
likelihood estimator.

Example 8.16 Bernoulli Random Variable

Find the distribution of the sample mean estimator for p for n large.
If is the true value of the Bernoulli random variable, then 

Therefore, the estimation error has a Gaussian pdf with mean zero and variance
This is in agreement with Example 7.14 where we discussed the application of the

central limit theorem to the sample mean of Bernoulli random variables.

The asymptotic properties of the maximum likelihood estimator result from the
law of large numbers and the central limit theorem. In the remainder of this section we
indicate how these results come about. See [Cramer] for a proof of these results. Con-
sider the arithmetic average of the log likelihood function for n samples of the random
variable X:

(8.41)

We have intentionally written the log likelihood as a function of the random variables
Clearly this arithmetic average is the sample mean of n independent

observations of the following random variable:
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The random variable Y has mean given by:

(8.42)

Assuming that Y satisfies the conditions for the law of large numbers, we then have:

(8.43)

The function can be viewed as a limiting form of the log likelihood function. In par-
ticular, using the steps that led to Eq. (4.109), we can show that the maximum of 
occurs at the true value of that is, if is the true value of the parameter, then:

(8.44)

First consider the consistency property. Let be the maximum likelihood obtained from
maximizing or equivalently, According to Eq. (8.43), is a
sequence of functions of that converges to It then follows that the sequence of max-
ima of namely converge to the maximum of which from Eq. (8.43) is
the true value Therefore the maximum likelihood estimator is consistent.

Next we consider the asymptotic Gaussian property. To characterize the esti-
mation error, we apply the mean value theorem3 to the score function in the
interval

Note that the second term in the left-hand side is zero since is the maximum like-
lihood estimator for The estimation error is then:

(8.45)

Consider the arithmetic average of the denominator:
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where we used the alternative expression for the Fisher information of a single observa-
tion. From the consistency property we have that and consequently,
since Therefore the denominator approaches and Eq. (8.45)
becomes

(8.46)

The numerator in Eq. (8.46) is an average of score functions, so

(8.47)

We know that the score function for a single observation has zero mean and vari-
ance The denominator in Eq. (8.47) scales each by the factor so
Eq. (8.47) becomes the sample mean of zero-mean random variables with variance

The central limit theorem implies that

approaches a zero-mean, unit-variance Gaussian random variable. Therefore
approaches a zero-mean Gaussian random variable with variance

The asymptotic efficiency property also follows from this result.

8.4 CONFIDENCE INTERVALS

The sample mean estimator provides us with a single numerical value for the estimate
of namely,

(8.48)

This single number gives no indication of the accuracy of the estimate or the confi-
dence that we can place on it. We can obtain an indication of accuracy by computing
the sample variance, which is the average dispersion about 

(8.49)

If is small, then the observations are tightly clustered about and we can be confident
that is close to E[X]. On the other hand, if is large, the samples are widely dispersed
about and we cannot be confident that is close to E[X]. In this section we introduce
the notion of confidence intervals, which approach the question in a different way.
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Instead of seeking a single value that we designate to be the “estimate” of the pa-
rameter of interest (i.e., ), we attempt to specify an interval or set of values
that is highly likely to contain the true value of the parameter. In particular, we can
specify some high probability, say and pose the following problem: Find an in-
terval [l(X), u(X)] such that

(8.50)

In other words, we use the observed data to determine an interval that by design con-
tains the true value of the parameter with probability We say that such an in-
terval is a confidence interval.

This approach simultaneously handles the question of the accuracy and confi-
dence of an estimate. The probability is a measure of the consistency, and hence
degree of confidence, with which the interval contains the desired parameter: If we
were to compute confidence intervals a large number of times, we would find that
approximately of the time, the computed intervals would contain the
true value of the parameter. For this reason, is called the confidence level. The
width of a confidence interval is a measure of the accuracy with which we can pinpoint
the estimate of a parameter. The narrower the confidence interval, the more accurate-
ly we can specify the estimate for a parameter.

The probability in Eq. (8.50) clearly depends on the pdf of the In the
remainder of this section, we obtain confidence intervals in the cases where the 
are Gaussian random variables or can be approximated by Gaussian random variables.
We will use the equivalence between the following events:

The last event describes a confidence interval in terms of the observed data, and the
first event will allow us to calculate probabilities from the sampling distributions.

8.4.1 Case 1: Gaussian; Unknown Mean and Known Variance

Suppose that the are iid Gaussian random variables with unknown mean and
known variance From Example 7.3 and Eqs. (7.17) and (7.18), is then a Gaussian
random variable with mean and variance thus
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Equation (8.51) states that the interval contains with
probability If we let be the critical value such that then
the confidence interval for the mean is given by

(8.52)

The confidence interval in Eq. (8.52) depends on the sample mean the known
variance of the the number of measurements n, and the confidence level

Table 8.1 shows the values of corresponding to typical values of We can
use the Octave function normal_inv to find This function was intro-
duced in Example 4.51.

When X is not Gaussian but the number of samples n is large, the sample mean
will be approximately Gaussian if the central limit theorem applies. Therefore if n is

large, then Eq. (8.52) provides a good approximate confidence interval.

Example 8.17 Estimating Signal in Noise

A voltage X is given by

where v is an unknown constant voltage and N is a random noise voltage that has a Gaussian pdf
with zero mean, and variance Find the 95% confidence interval for v if the voltage X is
measured 100 independent times and the sample mean is found to be 

From Example 4.17, we know that the voltage X is a Gaussian random variable with mean
v and variance 1. Thus the 100 measurements are iid Gaussian random vari-
ables with mean v and variance 1.The confidence interval is given by Eq. (8.52) with 

8.4.2 Case 2: Gaussian; Mean and Variance Unknown

Suppose that the are iid Gaussian random variables with unknown mean and
unknown variance and that we are interested in finding a confidence interval
for the mean Suppose we do the obvious thing in the confidence interval given by
Eq. (8.52) by replacing the variance with its estimate, the sample variance as
given by Eq. (8.17):

(8.53)

The probability for the interval in Eq. (8.53) is
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The random variable involved in Eq. (8.54) is

(8.55)

In the end of this section we show that T has a Student’s t-distribution4 with
degrees of freedom:

(8.56)

Let be the cdf corresponding to then the probability in
Eq. (8.54) is given by

(8.57)

where we used the fact that is symmetric about To obtain a con-
fidence interval with confidence level we need to find the critical value

for which or equivalently,
The confidence interval for the mean is then

given by

(8.58)

The confidence interval in Eq. (8.58) depends on the sample mean and
the sample variance the number of measurements n, and Table 8.2
shows values of for typical values of and n. The Octave function t_inv

can be used to find the value 
For a given the confidence intervals given by Eq. (8.58) should be

wider than those given by Eq. (8.52), since the former assumes that the vari-
ance is unknown. Figure 8.2 compares the Gaussian pdf and the Student’s t
pdf. It can be seen that the Student’s t pdf’s are more dispersed than the
Gaussian pdf and so they indeed lead to wider confidence intervals. On the
other hand, since the accuracy of the sample variance increases with n, we can
expect that the confidence interval given by Eq. (8.58) should approach that
given by Eq. (8.52). It can be seen from Fig. 8.2 that the Student’s t pdf’s do
approach the pdf of a zero-mean, unit-variance Gaussian random variable
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4The distribution is named after W. S. Gosset, who published under the pseudonym, “A. Student.”
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TABLE 8.2 Critical values for Student’s t-distribution: Fn(tA, n) � 1 - a.

n A

0.1 0.05 0.025 0.01 0.005

1 3.0777 6.3137 12.7062 31.8210 63.6559
2 1.8856 2.9200 4.3027 6.9645 9.9250
3 1.6377 2.3534 3.1824 4.5407 5.8408
4 1.5332 2.1318 2.7765 3.7469 4.6041
5 1.4759 2.0150 2.5706 3.3649 4.0321
6 1.4398 1.9432 2.4469 3.1427 3.7074
7 1.4149 1.8946 2.3646 2.9979 3.4995
8 1.3968 1.8595 2.3060 2.8965 3.3554
9 1.3830 1.8331 2.2622 2.8214 3.2498
10 1.3722 1.8125 2.2281 2.7638 3.1693
15 1.3406 1.7531 2.1315 2.6025 2.9467
20 1.3253 1.7247 2.0860 2.5280 2.8453
30 1.3104 1.6973 2.0423 2.4573 2.7500
40 1.3031 1.6839 2.0211 2.4233 2.7045
60 1.2958 1.6706 2.0003 2.3901 2.6603

1000 1.2824 1.6464 1.9623 2.3301 2.5807

x

0.4

0.3

0.2

0.1

0 2 4�2�4

Gaussian
n � 8

n � 4

n � 4
n � 8

FIGURE 8.2
Gaussian pdf and Student’s t pdf for and n � 8.n � 4

with increasing n.This confirms that Eqs. (8.52) and (8.58) give the same confidence in-
tervals for large n. Thus the bottom row of Table 8.2 yields the same confi-
dence intervals as Table 8.1.

1n = 10002
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Example 8.18 Device Lifetimes

The lifetime of a certain device is known to have a Gaussian distribution. Eight devices are test-
ed and the sample mean and sample variance for the lifetime obtained are 10 days and 
Find the 99% confidence interval for the mean lifetime of the device.

For a 99% confidence interval and Table 8.2 gives Thus the con-
fidence interval is given by

8.4.3 Case 3: Non-Gaussian; Mean and Variance Unknown

Equation (8.58) can be misused to compute confidence intervals in experimental mea-
surements and in computer simulation studies.The use of the method is justified only if
the samples are iid and approximately Gaussian.

If the random variables are not Gaussian, the above method for computing
confidence intervals can be modified using the method of batch means. This method
involves performing a series of independent experiments in which the sample mean 
of the random variable is computed. If we assume that in each experiment each sample
mean is calculated from a large number n of iid observations, then the central limit the-
orem implies that the sample mean in each experiment is approximately Gaussian. We
can therefore compute a confidence interval from Eq. (8.58) using the set of sample
means as the 

Example 8.19 Method of Batch Means

A computer simulation program generates exponentially distributed random variables of unknown
mean. Two hundred samples of these random variables are generated and grouped into 10 batches
of 20 samples each.The sample means of the 10 batches are given below:

Xj’s.
X

X

Xj

Xj

Xj’s

B10 -
13.4992122
28

, 10 +
13.4992122
28

R = 37.53, 12.474.

ta/2,7 = 3.499.n - 1 = 7,

4 days2.

1.04190 0.64064 0.80967 0.75852 1.12439

1.30220 0.98478 0.64574 1.39064 1.26890

Find the 90% confidence interval for the mean of the random variable.
The sample mean and the sample variance of the batch sample means are calculated from

the above data and found to be

The 90% confidence interval is given by Eq. (8.58) with from Table 8.2:

[0.83709, 1.15639].

This confidence interval suggests that Indeed the simulation program used to generate
the above data was set to produce exponential random variables with mean one.

E3X4 = 1.

ta/2,9 = 1.833

X10 = 0.99674 sN 10
2 = 0.07586.
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8.4.4 Confidence Intervals for the Variance of a Gaussian Random Variable

In principle, confidence intervals can be computed for any parameter as long as the
sampling distribution of an estimator for the parameter is known. Suppose we wish to
find a confidence interval for the variance of a Gaussian random variable. Assume the
mean is not known. Consider the unbiased sample variance estimator:

Later in this section we show that

has a chi-square distribution with degrees of freedom. We use this to develop
confidence intervals for the variance of a Gaussian random variable.

The chi-square random variable was introduced in Example 4.34. It is easy to show
(see Problem 8.6a) that the sum of the squares of n iid zero-mean, unit-variance Gauss-
ian random variables results in a chi-square random variable of degree n. Figure 8.3
shows the pdf of a chi-square random variable with 10 degrees of freedom. We need to
find an interval that contains with probability We select two intervals, one for
small values of and one for large values of a chi-square random variable Y, each of
which have probability as shown in Fig. 8.3:

The above probability is equivalent to:
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Critical values of chi-square random variables
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and so we obtain the confidence interval for the variance

(8.59)

Tables for the critical values for which

can be found in statistics handbooks such as [Kokoska]. Table 8.3 provides a small set
of critical values for the chi-square distribution. These values can also be found using
the Octave function chisquare_inv

Example 8.20 The Sample Variance

The sample variance in 10 measurements of a noise voltage is 5.67 millivolts. Find a 90% confi-
dence interval for the variance. We need to find the critical values for and

From either Table 8.3 or Octave we find:

chisquare_inv chisquare_inv

The confidence interval for the variance is then:

8.4.5 Summary of Confidence Intervals for Gaussian Random Variables

In this section we have developed confidence intervals for the mean and variance of
Gaussian random variables. The choice of confidence interval method depends on which
parameters are known and on whether the number of samples is small or large. The cen-
tral limit theorem makes the confidence intervals presented here applicable in a broad
range of situations. Table 8.4 summarizes the confidence intervals developed in this sec-
tion.The assumptions for each case and the corresponding confidence intervals are listed.

8.4.6 Sampling Distributions for the Gaussian Random Variable

In this section we derive the joint sampling distribution for the sample mean and the
sample variance of the Gaussian random variables. Let consist
of independent, identically distributed versions of a Gaussian random variable with
mean and variance We will develop the following results:

1. The sample mean and the sample variance are independent random variables:
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2. The random variable has a chi-square distribution with 
degrees of freedom.

3. The statistic

(8.60)

has a Student’s t-distribution.

W =
Xn - m
sN n/1n

n - 11n - 12sN n2/sX
2

TABLE 8.3 Critical values for chi-square distribution,P3x2 7 xa, n-1
2 4 = a.

n\a 0.995 0.975 0.95 0.05 0.025 0.01 0.005

1 3.9271E-05 0.0010 0.0039 3.8415 5.0239 6.6349 7.8794
2 0.0100 0.0506 0.1026 5.9915 7.3778 9.2104 10.5965
3 0.0717 0.2158 0.3518 7.8147 9.3484 11.3449 12.8381
4 0.2070 0.4844 0.7107 9.4877 11.1433 13.2767 14.8602
5 0.4118 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496
6 0.6757 1.2373 1.6354 12.5916 14.4494 16.8119 18.5475
7 0.9893 1.6899 2.1673 14.0671 16.0128 18.4753 20.2777
8 1.3444 2.1797 2.7326 15.5073 17.5345 20.0902 21.9549
9 1.7349 2.7004 3.3251 16.9190 19.0228 21.6660 23.5893
10 2.1558 3.2470 3.9403 18.3070 20.4832 23.2093 25.1881
11 2.6032 3.8157 4.5748 19.6752 21.9200 24.7250 26.7569
12 3.0738 4.4038 5.2260 21.0261 23.3367 26.2170 28.2997
13 3.5650 5.0087 5.8919 22.3620 24.7356 27.6882 29.8193
14 4.0747 5.6287 6.5706 23.6848 26.1189 29.1412 31.3194
15 4.6009 6.2621 7.2609 24.9958 27.4884 30.5780 32.8015
16 5.1422 6.9077 7.9616 26.2962 28.8453 31.9999 34.2671
17 5.6973 7.5642 8.6718 27.5871 30.1910 33.4087 35.7184
18 6.2648 8.2307 9.3904 28.8693 31.5264 34.8052 37.1564
19 6.8439 8.9065 10.1170 30.1435 32.8523 36.1908 38.5821
20 7.4338 9.5908 10.8508 31.4104 34.1696 37.5663 39.9969
21 8.0336 10.2829 11.5913 32.6706 35.4789 38.9322 41.4009
22 8.6427 10.9823 12.3380 33.9245 36.7807 40.2894 42.7957
23 9.2604 11.6885 13.0905 35.1725 38.0756 41.6383 44.1814
24 9.8862 12.4011 13.8484 36.4150 39.3641 42.9798 45.5584
25 10.5196 13.1197 14.6114 37.6525 40.6465 44.3140 46.9280
26 11.1602 13.8439 15.3792 38.8851 41.9231 45.6416 48.2898
27 11.8077 14.5734 16.1514 40.1133 43.1945 46.9628 49.6450
28 12.4613 15.3079 16.9279 41.3372 44.4608 48.2782 50.9936
29 13.1211 16.0471 17.7084 42.5569 45.7223 49.5878 52.3355
30 13.7867 16.7908 18.4927 43.7730 46.9792 50.8922 53.6719
40 20.7066 24.4331 26.5093 55.7585 59.3417 63.6908 66.7660
50 27.9908 32.3574 34.7642 67.5048 71.4202 76.1538 79.4898
60 35.5344 40.4817 43.1880 79.0820 83.2977 88.3794 91.9518
70 43.2753 48.7575 51.7393 90.5313 95.0231 100.4251 104.2148
80 51.1719 57.1532 60.3915 101.8795 106.6285 112.3288 116.3209
90 59.1963 65.6466 69.1260 113.1452 118.1359 124.1162 128.2987

100 67.3275 74.2219 77.9294 124.3421 129.5613 135.8069 140.1697
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These three results are needed to develop confidence intervals for the mean and vari-
ance of Gaussian distributed observations.

First we show that the sample mean and the sample variance are indepen-
dent random variables. For the sample mean we have

which implies that

By replacing the last term in the sum that defines we obtain

(8.61)

Therefore is determined by for 
Next we show that and are uncorrelated:

(8.62)

Define the dimensional vector then
Y and are uncorrelated. Furthermore, Y and are defined by the following linearXnXn

Y = 1X1 - Xn ,X2 - Xn , Á ,Xn-1 - Xn2,n - 1

= 0.

=
1
n
c1n - 12m2 + E3X24 -

1
n
En1n - 12m2 + nE3X24F d

= EB 1
na
n

j=1
E3XjXi4R -

1

n2a
n

j=1
a
n

i=1
E3XjXi4

E3Xn1Xi - Xn24 = E3XnXi4 - E3Xn24
Yi = Xi - XnXn

i = 1, Á , n - 1.Yi = Xi - XnsN n
2

1n - 12sN n2 = a
n

j=1
1Xj - Xn22 = a

n-1

j=1
1Xj - Xn22 + ban-1

j=1
1Xj - Xn2 r2

.

sN n
2 ,

Xn - Xn = 1n - 12Xn - a
n-1

j=1
Xj = -a

n-1

j=1
1Xj - Xn2.

nXn = a
n

j=1
Xj = a

n-1

j=1
Xj + Xn ,

sN n
2Xn

TABLE 8.4 Summary of confidence intervals for Gaussian and non-Gaussian random variables.

Parameter Case Confidence Interval

m Gaussian random variable, knowns2 CXn - za/2s>1n ,Xn + za/2s>1n D
m Non-Gaussian random variable, n large, knowns2 CXn - za/2s>1n ,Xn + za/2s>1n D
m Gaussian random variable, unknowns2 CXn - ta/2,n-1sN n>1n ,Xn + ta/2,n-1sN n>1n D
m Non-Gaussian random variable, unknown, batch meanss2 CXn - ta/2,n-1sN n>1n ,Xn + ta/2, n-1sN n>1n D
s2 Gaussian random variable, unknownm B 1n - 12sN n2

xa/2, n-1
2

,
1n - 12sN n2
x1-a/2, n-1

2
R
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transformation:

(8.63)

The first equations correspond to the terms in Y and the last term corresponds to
We have shown that Y and are defined by a linear transformation of jointly

Gaussian random variables It follows that Y and are jointly
Gaussian. The fact that the components of Y and are uncorrelated implies that the
components of Y are independent of Recalling from Eq. (8.61) that is completely
determined by the components of Y, we conclude that and are independent ran-
dom variables.

We now show that has a chi-square distribution with degrees 
of freedom. Using Eq. (8.15), we can express as:

which can be rearranged as follows after dividing both sides by 

The left-hand side of the above equation is the sum of the squares of n zero-mean, unit-
variance independent Gaussian random variables. From Problem 7.6 we know that
this sum is a chi-square random variable with n degrees of freedom. The rightmost term
in the above equation is the square of a zero-mean, unit-variance Gaussian random vari-
able and hence it is chi square with one degree of freedom. Finally, the two terms on the
right-hand side of the equation are independent random variables since one depends on
the sample variance and the other on the sample mean. Let denote the characteris-
tic function of the sample variance term. Using characteristic functions, the above equa-
tion becomes:

where we have inserted the expression for the chi-square random variables of degree n
and degree 1. We can finally solve for the characteristic function of 

We conclude that is a chi-square random variable with degrees of
freedom.

n - 11n - 12sN n2/sX
2

£1v2 = a 1
1 - 2j�

b1n-12/2
.

1n - 12sN n2>sX2 :

a 1
1 - 2j�

bn/2

= £n1v2 = £1v2£11v2 = £1v2a 1
1 - 2j�

b1/2

,

£1v2

a
n

j=1
¢Xj - m
sX

≤2

=
1n - 12sN n2
sX

2 + ¢Xn - m
sX/1n ≤2

.

sX
2 :

1n - 12sN n2 = a
n

j=1
1Xj - Xn22 = a

n

j=1
1Xj - m22 - n1Xn - m22,

1n - 12sN n2
n - 11n - 12sN n2>sX2

XnsN n
2

sN n
2Xn .

Xn

XnXn = 1X1 ,X2 , Á ,Xn2.
XnXn .

n - 1

Yn = Xn = X1/n + X2/n + Á + Xn/n.

Yn-1 = Xn-1 - Xn =  - X1 - X2 - Á + 11 - 1/n2Xn-1 - Xn
..
.

Y2 = X2 - Xn = - X1 + 11 - 1/n2X2 - Á - Xn

Y1 = X1 - Xn = 11 - 1/n2X1 - X2 - Á - Xn
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Finally we consider the statistic:

(8.64)

The numerator in Eq. (8.64) is a zero-mean, unit-variance Gaussian random variable.
We have just shown that is chi square with degrees of free-
dom. The numerator and denominator in the above expression are independent ran-
dom variables since one depends on the sample mean and the other on the sample
variance. In Example 6.14, we showed that given these conditions, T then has a
Student’s t-distribution with degrees of freedom.

8.5 HYPOTHESIS TESTING

In some situations we are interested in testing an assertion about a population based
on a random sample This assertion is stated in the form of a hypothesis about the
underlying distribution of X, and the objective of the test is to accept or reject the
hypothesis based on the observed data Examples of such assertions are:

• A given coin is fair.
• A new manufacturing process produces “new and improved” batteries that last

longer.
• Two random noise signals have the same mean.

We first consider significance testing where the objective is to accept or reject a given
“null” hypothesis Next we consider the testing of against an alternative
hypothesis We develop decision rules for determining the outcome of each test and
introduce metrics for assessing the goodness or quality of these rules.

In this section we use the traditional approach to hypothesis testing where we
assume that the parameters of a distribution are unknown but not random. In the next
section we use Bayesian models where the parameters of a distribution are random
variables with known a priori probabilities.

8.5.1 Significance Testing

Suppose we want to test the hypothesis that a given coin is fair.We perform 100 flips of
the coin and observe the number of heads N. Based on the value of N we must decide
whether to accept or reject the hypothesis. Essentially, we need to divide the set of pos-
sible outcomes of the coin flips into a set of values for which we accept
the hypothesis and another set of values for which we reject it. If the coin is fair we
expect the value of N to be close to 50, so we include the numbers close to 50 in the set
that accept the hypothesis. But exactly at what values do we start rejecting the hypoth-
esis? There are many ways of partitioning the observation space into two regions, and
clearly we need some criterion to guide us in making this choice.

In the general case we wish to test a hypothesis about a parameter of the
random variable X. We call the null hypothesis. The objective of a significance testH0

uH0

50, 1, Á , 1006

H1 .
H0H0 .

Xn .

Xn .

n - 1

n - 1E1n - 12sN n2/sX
2 F

T =
Xn - m
sN n/1n =

1n1Xn - m2/sX
2sN n2/sX

2
=

1Xn - m2/1sX/1n2
2E1n - 12sN n2/sX

2 F /1n - 12 .
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is to accept or reject the null hypothesis based on a random sample
In particular we are interested in whether the observed data

is significantly different from what would be expected if the null hypothesis is true.
To specify a decision rule we partition the observation space into a rejection or critical
region R

~
where we reject the hypothesis and an acceptance region where we accept the

hypothesis.The decision rule is then:

(8.65)

Two kinds of errors can occur when executing this decision rule:

(8.66)

If the hypothesis is true, then we can evaluate the probability of a Type I error:

(8.67)

If the null hypothesis is false, we have no information about the true distribution of the
observations and hence we cannot evaluate the probability of Type II errors.

We call the significance level of a test, and this value represents our tolerance
for Type I errors, that is, of rejecting when in fact it is true. The level of significance
of a test provides an important design criterion for testing. Specifically, the rejection re-
gion is chosen so that the probability of Type I error is no greater than a specified level

Typical values of are 1% and 5%.

Example 8.21 Testing a Fair Coin

Consider the significance test for coin is fair, that is, Find a test at a significance
level of 5%.

We count the number of heads N in 100 flips of the coin.To find the rejection region R
~

, we
need to identify a subset of that has probability when the coin is fair. For
example, we can let R

~
be the set of integers outside the range 

where we have used the Gaussian approximation to the binomial cdf. The two-sided critical
value is where The desired value of c is then 
which gives and the acceptance region and rejection region

Note, however, that the choice of R
~

is not unique. As long as we meet the desired signifi-
cance level, we could let R

~
be integers greater than 

0.05 = P3N Ú 50 + c ƒH04 L P cN - 50
5

Ú
c

5
d = Qa c

5
b .

50 + c.

R
~ = 5k: ƒk - 50 ƒ 7 106.

R
~c = 540, 41, Á , 606c = 10

c/5 = 1.96,Q1z0.0252 = 0.05/2 = 0.025.z0.025 = 1.96

= 1 - a
50+c

j=50-c
¢100
j
≤ a1

2
b100

L PB ` N - 50

210011/2211/22 ` 7 cR = 2Qa c
5
b

a = 0.05 = 1 - P350 - c … N … 50 + c ƒH04
50 ; c:

a,S = 50, 1, Á , n6

p = 1/2.H0:

aa.

H0

a

Xn

a ! P[Type I error] = 3xnHR~ fX1xn ƒH02 dxn .

Type I error: RejectH0 when H0 is true.
Type II error: AcceptH0 when H0 is false.

AcceptH0 if Xn H R
~c

RejectH0 if Xn H R
~

.

R
~c

Xn
Xn = 1X1 ,X2 , Á ,Xn2.



Section 8.5 Hypothesis Testing 443

The value gives which implies and the correspond-
ing acceptance region is and rejection region

Either of the above two choices of rejection region satisfies the significance level require-
ment. Intuitively, we have reason to believe that the two-sided choice of rejection region is more
appropriate since deviations on the high or low side are significant insofar as judging the fairness
of the coin is concerned. However, we need additional criteria to justify this choice.

The previous example shows rejection regions that are defined in terms of either
two tails or one tail of the distribution. We say that a test is two-tailed or two-sided if it
involves two tails, that is, the rejection region consists of two intervals. Similarly, we
refer to one-tailed or one-sided regions where the rejection region consists of a single
interval.

Example 8.22 Testing an Improved Battery

A manufacturer claims that its new improved batteries have a longer lifetime. The old batteries
are known to have a lifetime that is Gaussian distributed with mean 150 hours and variance 16.
We measure the lifetime of nine batteries and obtain a sample mean of 155 hours. We assume
that the variance of the lifetime is unchanged. Find a test at a 1% significance level.

Let be “battery lifetime is unchanged.” If is true, then the sample mean is Gauss-
ian with mean 150 and variance 16/9. We reject the null hypothesis if the sample mean is signifi-
cantly greater than 150. This leads to a one-sided test of the form We
select the constant c to achieve the desired significance level:

The critical value corresponds to Thus or 

The rejection region is then The observed sample mean
155 is in the rejection region and so we reject the null hypothesis. The data suggest that the
lifetime has improved.

An alternative approach to hypothesis testing is to not set the level ahead of
time and thus not decide on a rejection region. Instead, based on the observation, e.g.,

we ask the question, “Assuming is true, what is the probability that the statistic
would assume a value as extreme or more extreme than ” We call this probability
the p-value of the test statistic. If is close to one, then there is no reason to reject
the null hypothesis, but if is small, then there is reason to reject the null hypothesis.

For example, in Example 8.22, the sample mean of 155 hours for batteries
has a p-value:

Note that an observation value of 153.10 would yield a p-value of 0.01. The p-value for
155 is much smaller, so clearly this observation calls for the null hypothesis to be rejected
at 1% and even lower levels.

P3XN 9 7 155 ƒH04 = PBXN 9 - 150

216/9
7

5

216/9
R = Qa 5

4/3
b = 8.84 * 10-5.

n = 9
p1Xn2

p1Xn2
Xn?

H0Xn ,

a

XN 9 Ú 150 + 3.10 = 153.10.c = 3.10.

3c/4 = 2.326,Q1z0.012 = 0.01 = a.z0.01 = 2.326

a = 0.01 = P3XN 9 7 150 + c ƒH04 = PBX9 - 150

216/9
7

c

216/9
R = Qa c

4/3
b .

R
~ = 5X9 7 150 + c6.

X9H0H0

R
~ = 5k 7 586.R

~c = 50, 1, Á , 586
c = 5 * 1.64 L 8Q1z0.052 = 0.05,z0.05 = 1.64
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8.5.2 Testing Simple Hypotheses

A hypothesis test involves the testing of two or more hypotheses based on observed data.
We will focus on the binary hypothesis case where we test a null hypothesis against an
alternative hypothesis The outcome of the test is: accept or reject and accept

A simple hypothesis specifies the associated distribution completely. If the distribu-
tion is not specified completely (e.g., a Gaussian pdf with mean zero and unknown vari-
ance), then we say that we have a composite hypothesis. We consider the testing of two
simple hypotheses first. This case appears frequently in electrical engineering in the
context of communications systems.

When the alternative hypothesis is simple, we can evaluate the probability of
Type II errors, that is, of accepting when is true.

(8.68)

The probability of Type II error provides us with a second criterion in the design of a
hypothesis test.

Example 8.23 The Radar Detection Problem

A radar system needs to distinguish between the presence or absence of a target. We pose the
following simple binary hypothesis test based on the received signal X:

Unlike the case of significance testing, the pdf for the observation is given for both
hypotheses:

Figure 8.4 shows the pdf of the observation under each of the hypotheses. The rejection
region should be clearly of the form for some suitable constant The decision ruleg.5X 7 g6

fX1x ƒH12 =
1

22p
e-1x-122/2.

fX1x ƒH02 =
1

22p
e-x

2/2

H1: target present, X is Gaussian with m = 1 and sX
2 = 1.

H0: no target present, X is Gaussian with m = 0 and sX
2 = 1

b ! P[Type II error] = LxnHR
~ c 

     fX1Xn ƒH12 dXn .

H1H0

H1 .
H0H0 ;H1 .
H0

x
0 γ 1

Rejection region R

fX (x � H0) fX (x � H1)

FIGURE 8.4
Rejection region.
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is then:

(8.69)

The Type I error corresponds to a false alarm and is given by:

(8.70)

The Type II error corresponds to a miss and is given by:

(8.71)

where is the probability of detection when the target is present. Note the tradeoff between
the two types of errors:As increases, the Type I error probability decreases from 1 to 0, while
the Type II error probability increases from 0 to 1. The choice strikes a balance between the
two types of errors.

The following example shows that the number of observation samples n provides
an additional degree of freedom in designing a hypothesis test.

Example 8.24 Using Sample Size to Select Type I and Type II Error Probabilities

Select the number of samples n in the radar detection problem so that the probability of false
alarm is and the probability of detection is 

If is true, then the sample mean of n independent observations is Gaussian with
mean zero and variance 1/n. If is true, then is Gaussian with mean 1 and variance 1/n. The
false alarm probability is:

(8.72)

and the detection probability is:

(8.73)

We pick to meet the significance level requirement and we
pick to meet the detection probability requirement. We then
obtain and 

Different criteria can be used to select the rejection region for rejecting the null
hypothesis. A common approach is to select so the Type I error is This approach,
however, does not completely specify the rejection region, for example, we may have a

a.g

n = 16.g = 0.41
1n1g - 12 = Q-110.992 = -2.33
1ng = Q-11a2 = Q-110.052 = 1.64
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22p
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XnH0
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1

22p
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choice between one-sided and two-sided tests. The Neyman-Pearson criterion identi-
fies the rejection region in a simple binary hypothesis test in which the Type I error is
equal to and where the Type II error is minimized. The following result shows how
to obtain the Neyman-Pearson test.

Theorem Neyman-Pearson Hypothesis Test

Assume that X is a continuous random variable.The decision rule that minimizes the Type II error
probability subject to the constraint that the Type I error probability is equal to is given by:

(8.74)

where is chosen so that:

(8.75)

Note that terms where can be assigned to either or We prove the theo-
rem at the end of the section. is called the likelihood ratio function and is given by
the ratio of the likelihood of the observation x given to the likelihood given The
Neyman-Pearson test rejects the null hypothesis whenever the likelihood ratio is equal
or exceeds the threshold A more compact form of writing the test is:

(8.76)

Since the log function is an increasing function, we can equivalently work with the log
likelihood ratio:

(8.77)

Example 8.25 Testing the Means of Two Gaussian Random Variables

Let be iid samples of Gaussian random variables with known variance
For find the Neyman-Pearson test for:

H1: X is Gaussian with m = m1 and sX
2  known.

H0: X is Gaussian with m = m0 and sX
2  known
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2 .
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The likelihood functions for the observation vector x are:

and so the likelihood ratio is:

The log likelihood ratio test is then:

(8.78)

Note the change in the direction of the inequality when we divided both sides by the negative
number The threshold value is selected so that the significance level is 

and thus and 
The radar detection problem is a special case of this problem, and after substituting for

the appropriate variables, we see that the Neyman-Pearson test leads to the same choice of
rejection region. Therefore we know that the test in Example 8.24 also minimizes the Type II
error probability, and maximizes the detection probability PD = 1 - b.
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The Neyman-Pearson test also applies when X is a discrete random variable, with
the likelihood function defined as follows:

(8.79)

where the threshold is the largest value for which

(8.80)

Note that equality cannot always be achieved in the above equation when dealing with
discrete random variables.

The maximum likelihood test for a simple binary hypothesis can be obtained as
the special case where in Eq. (8.76). In this case, we have:

which is equivalent to

(8.81)

The test simply selects the hypothesis with the higher likelihood. Note that this decision
rule can be readily generalized to the case of testing multiple simple hypotheses.

We conclude this subsection by proving the Neyman-Pearson result. We wish
to minimize given by Eq. (8.68), subject to the constraint that the Type I error
probability is Eq. (8.75). We use Lagrange multipliers to perform this constrained
minimization:
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6
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For any we minimize G by including in all points for which the term in
braces is negative, that is,

We choose to meet the constraint:

where is the pdf of the likelihood function The likelihood function is
the ratio of two pdfs, so it is always positive. Therefore the integral on the right-hand
side will range over positive values of y, and the final choice of will be positive as re-
quired above.

8.5.3 Testing Composite Hypotheses

Many situations in practice lead to the testing of a simple null hypothesis against a
composite alternative hypothesis. This happens because frequently one hypothesis is
very well specified and the other is not. Examples are not hard to find. In the testing of
a “new longer lasting” battery, the natural null hypothesis is that the mean of the life-
time is unchanged, that is and the alternative hypothesis is that the mean has
increased, that is In another example, we may wish to test whether a certain
voltage signal has a dc component. In this case, the null hypothesis is and the al-
ternative hypothesis is In a third example, we may wish to determine whether
response times in a certain system have become more variable. The null hypothesis is
now and the alternative hypothesis is 

All the above examples test a simple null hypothesis, against a composite
alternative hypothesis such as or We now consider the design
of tests for these scenarios. As before, we require that the rejection region R

~
be select-

ed so that the Type I error probability is We are now interested in the power
of the test. is the probability that a test accepts the null hypothesis when

the true parameter is The power is then the probability of rejecting the null
hypothesis when the true parameter is Therefore, we want to be near 1
when and small when 

Example 8.26 One-Sided Test for Mean of a Gaussian Random Variable 
(Known Variance)

Revisit Example 8.22 where we developed a test to decide whether a new design yields longer-
lasting batteries. Plot the power of the test as a function of the true mean Assume a significance
level of and consider the cases where the test uses and 100 observations.n = 4, 9, 25,a = 0.01

m.

u = u0 .u Z u0

1 - b1u2u.
1 - b1u2u.

b1u21 - b1u2 a.

u 6 u0 .u Z u0 , u 7 u0 ,
u = u0 ,

sX
2 7 u0 .sX

2 = u0

m Z 0.
m = 0

m 7 u0 .
m = u0 ,

l

¶1x2.f¶1y ƒH02

fX1xn ƒH02 dxn =3
 

q

l
 

f¶1y ƒH02 dyfX1xn ƒH02 dxn = L5xn: ¶1xn27l6 a = Lexn: fX1xn ƒH1
2

fX1xn ƒH027lf

l

R
~c = 5xn :fX1xn ƒH12 - lfX1xn ƒH02 6 06 = bxn :

fX1xn ƒH12
fX1xn ƒH02 6 l r .

xnR
~cl 7 0,
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This test involves a simple hypothesis with a Gaussian random variable with known mean
and variance, and a composite alternative hypothesis with a Gaussian random variable with
known variance but unknown mean:

The rejection region has the form where c is chosen so:

Letting be the critical value for then and:

The Type II error probability depends on the true mean and is given by:

If the true pdf of X has mean and variance 16, then the sample mean is Gaussian with mean
and variance 16/n. We need to rearrange the expression in the probability in terms of the stan-

dard Gaussian random variable 

For The power function is then:

The ideal curve for the power function in this case is equal to when which is when
null hypothesis is true, and then increases quickly as the true mean increases beyond 150.
Figure 8.5 shows that the power curve for the test under consideration does drop near 
and that the curve approaches the ideal shape as the number of observations n is increased.

If we have two tests for a simple binary hypothesis that achieve a significance level
choosing between two tests is simple. We choose the test with the smaller Type II

error probability which is equivalent to picking the test with higher power. Selecting
between two tests is not quite as simple when we test a simple null hypothesis against a
composite alternative hypothesis.The power of a test will now vary with the true
value of the alternative The perfect hypothesis test would be one that achieves the
significance level and that gives the highest power for each value of the alternativea,

ua .
1 - b

b,
a,

m = 150,
m

m = 150,a
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≤ = Q¢2.326 -
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Xnm
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… za ` mR .

m

R
~ = 5x : xn - 150 7 4za /1n6.

c = 4za /1n ,a,za

a = P3XN n - 150 7 c ƒH04 = PBXN n - 150

216/n
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≤ .

R
~ = 5x : xn - 150 7 c6

H1: X is Gaussian with m 7 150 and sX
2 = 16.

H0: X is Gaussian with m = 150 and sX
2 = 16
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hypothesis. We call such a test the uniformly most powerful (UMP) test. The following
example shows that the one-sided test developed in Example 8.25 is uniformly most
powerful.

Example 8.27 One-Sided Test for Gaussian Means is UMP

In Example 8.25 we developed a test for two simple hypotheses:

We used the Neyman-Pearson result to obtain the most powerful test for comparing 
and The rejection region of the test is:

(8.82)

Note that in this test, the rejection region does not depend on the value of the alternative 
Therefore the Neyman-Pearson test for against for any will
lead to the same test specified by Eq. (8.82). It then follows that Eq. (8.82) is the uniformly most
powerful test for

H1: X is Gaussian with m 7 m0 and sX
2  known.

H0: X is Gaussian with m = m0 and sX
2  known

m1 7 m0 ,H1: m = m1H0: m = m0

m1 .

Xn 7 m0 + zas/1n .

H1: m = m1 .
H0: m = m0

H1: X is Gaussian with m = m1 and sX
2  known.

H0: X is Gaussian with m = m0 and sX
2  known
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FIGURE 8.5
Power curve for one-sided test of Gaussian means.
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By following the same development of the previous example, we can readily
show that the test of against has rejection region

(8.83)

and is uniformly most powerful as well. On the other hand, the above results are not
useful in finding a uniformly most powerful test for against 
where we need to deal with both and and hence with tests that have
different rejection regions. (See Problem 8.62.)

Example 8.28 Two-Sided Test for Mean of a Gaussian Random Variable (Known
Variance)

Develop a test to decide whether a certain voltage signal has a dc component. Assume that
the signal is Gaussian distributed and is known to have unit variance. Assuming that

how many samples are required so that a dc voltage of 0.25 volts would be rejected
with probability 0.90?

This test involves the mean of a Gaussian random variable with known variance:

When is true, the sample mean is Gaussian with mean 0 and variance 1/n. The rejection
region involves two tails and has form where c is chosen so:

(8.84)

Letting be the rejection value for then and the rejection region is:

When the true mean is the sample mean has mean and variance 1/n, so the Type II error
probability is given by:

For The Type II error probability for is then:

The above equation can be solved for n by trial and error. Since Q(x) is a decreasing function,
and since the arguments of the two Q functions differ by more than 5, we can neglect the second

b10.252 = Q1-2.576 - 0.251n2 - Q1+2.576 - 0.251n2.
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term so that

Letting be the critical value for then and

If then and the required number of samples is 

In Examples 8.27 and 8.28 we have developed hypothesis tests involving the
means of Gaussian random variables where the variances are known. The definition of
the rejection regions in these tests depends on the fact that the sample mean is a
Gaussian random variable. Therefore, these hypothesis tests can also be used in situations
where the individual observations are not Gaussian, but where the number of samples n is
sufficiently large to apply the central limit theorem and approximate by a Gaussian
random variable.

Example 8.29 Two-Sided Test for Mean of a Gaussian Random Variable 
(Unknown Variance)

Develop a test to decide whether a certain voltage signal has a dc component equal to
Assume that the signal samples are Gaussian but the variance is unknown.Apply

the test at a 5% level in an experiment where a set of 9 measurements has resulted in a sample
mean of 1.75 volts and a sample variance of 2.25 volts.

We now are considering two composite hypotheses:

We proceed by emulating the solution in the case where the variance is known. We approximate
the statistic by one that uses the sample variance given by Eq. (8.17):

. (8.85)

From the previous section (Eq. 8.64), we know that T has a Student’s t-distribution. For the
rejection region we use:

The threshold c is chosen to provide the desired significance level:

a = 1 - PB -c …
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sN n/1n … cR = 1 - 1Fn-11c2 - Fn-11-c22 = 2Fn-11-c2

R
~ = bx : ` 1x - m02

sN n/1n ` 7 c r .
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1Xn - m02
sN n/1n

1Xn - m02/1sX/1n2

H1:X is Gaussian with m Z m0 and sX
2  unknown.

H0:X is Gaussian with m = m0 and sX
2  unknown

m0 = 1.5 volts.

Xn

Xn

n = 238.zb = 1.282,b = 1 - 0.90 = 0.10,

n = ¢ 2.576 + zb
0.25

≤2

.

zb = -2.576 - 0.251n ,b,zb

b10.252 L Q1-2.576 - 0.251n2.
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where is the cdf of the Student’s t random variable with degrees of freedom. Let
be the value for which then The

decision rule is then:

(8.86)

The threshold for and is The test statistic is
which is less than 2.306.Therefore the null hypothesis is accepted;

the data support the assertion that the dc voltage is 1.5 volts.

One-sided tests for testing the mean of Gaussian random variables when the variance
is unknown can be developed using the approach in the previous example. Recall from
Table 8.2 that the critical values of the Student’s t-distribution approach those of a Gaussian
random variable as the number of samples is increased. Thus the Student’s t hypothesis
tests are only necessary when dealing with a small number of Gaussian observations.

Example 8.30 Testing the Variance of a Gaussian Random Variable

We wish to determine whether the variability of the response times in a certain system has changed
from the past value of We measure a sample variance of for mea-
surements of the response time. Determine whether the null hypothesis, should be re-
jected against the alternative hypothesis, at a 5% significance level.

We now have:

In the previous section we showed that the statistic is a chi-square random vari-
able with degrees of freedom if X has variance We consider a rejection region in which

is rejected if the ratio of the statistic relative to is too large:

We choose the threshold values a and b as we did in Eq. (8.59) to provide the desired significance
level:

where and are critical values of the chi-square distribution.The decision rule is
then:

(8.87)
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n = 3037 sec2sX
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Table 8.3 gives the required critical values and so the accep-
tance region is:

The sample variance is and the statistic is This statis-
tic is inside the acceptance region so we accept the null hypothesis.The data do not suggest an in-
crease in the variability of response times.

8.5.4 Confidence Intervals and Hypothesis Testing

Before concluding this section, we discuss the relationship between confidence inter-
vals and hypothesis testing. Consider the acceptance region for a two-sided test involv-
ing the mean of a Gaussian random variable with known variance (Example 8.29):

In Section 8.4 we found the equivalence of the following
events:

The null hypothesis is accepted when the sample mean is inside the interval in the event
on the left-hand side.The endpoints of the event have been selected so that the probabil-
ity of the event is when is true. Now, when is true we have so the
event on the right-hand side states that we accept when is inside the interval

Thus we conclude that the hypothesis test will not
reject in favor of if is in the confidence interval for Similar relation-
ships exist between one-sided hypothesis tests and confidence intervals that attempt to
find lower or upper bounds for parameters of interest.

8.5.5 Summary of Hypothesis Tests

This section has developed many of the most common hypothesis tests used in prac-
tice. We developed the tests in the context of specific examples. Table 8.5 summarizes
the basic hypothesis tests that were developed in this section. The table presents the
tests with the general test statistics and parameters.

8.6 BAYESIAN DECISION METHODS

In the previous sections we developed methods for estimating and for drawing infer-
ences about a parameter assuming that is unknown but not random. In this section,
we explore methods that assume that is a random variable and that we have a priori
knowledge of its distribution. This new assumption leads to new methods for address-
ing estimation and hypothesis testing problems.

8.6.1 Bayes Hypothesis Testing

Consider a simple binary hypothesis problem where we are to decide between two hy-
potheses based on a random sample Xn = 1X1 ,X2 , Á ,Xn2:

u

uu

m.1 - am0H1H0

3Xn - za/2sX/1n ,Xn + za/2sX/1n4. m0H0

m = m0 ,H0H01 - a

b -za/2 …
Xn - m
sX/1n … za/2 r = bXn -

za/2sX

1n … m … Xn +
za/2sX

1n r .

H0: m = m0 vs. H1: m Z m0 .

1n - 12sN n2/s0
2 = 291372/35 = 30.66.37 sec2

16.04 6
1n - 12sN n2
s2 6 45.72.

x0.975, 29
2 = 16.04,x0.025, 29

2 = 45.72
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and we assume that we know that occurs with probability and with probabil-
ity There are four possible outcomes of the hypothesis test, and we assign
a cost to each outcome as a measure of its relative importance:

1. true and decide 
2. true and decide (Type I error)
3. true and decide (Type II error)
4. true and decide 

It is reasonable to assume that the cost of a correct decision is less than that of an
erroneous decision, that is and Our objective is to find the
decision rule that minimizes the average cost C:

(8.88)

Each time we carry out this hypothesis test we can imagine that the following random
experiment is performed.The parameter is selected at random from the set with
probabilities and The value of determines which hypothesis is true.We
cannot observe directly, but we can collect the random sample 
in which the observations are distributed as per the true hypothesis. Let correspond
to the subset of the observation space that is mapped into the value 1 (decide H1).
corresponds to the rejection region in the previous section. Similarly, let correspond
to the subset that is mapped into the value 0 (decide ). The following theorem iden-
tifies the decision rule that minimizes the average cost.
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R
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R
~

R~
Xn = 1X1 ,X2 , Á ,Xn2®

®p1 = 1 - p0 .p0

50, 16®

+ C10P3decideH0 ƒH14p1 + C11P3decideH1 ƒH14p1 .

C = C00P3decideH0 ƒH04p0 + C01P3decideH1 ƒH04p0

C11 6 C10 .C00 6 C01

Cost = C11H1H1

Cost = C10H0H1

Cost = C01H1H0

Cost = C00H0H0

p1 = 1 - p0 .
H1p0H0

H1: fX1x ƒH12
H0: fX1x ƒH02

TABLE 8.5 Summary of basic hypothesis tests for Gaussian and non-Gaussian random variables.

Hypothesis Test Case Statistic Rejection Region

H0: m = m0 vs. H1: m 6 m0

H0: m = m0 vs. H1: m 7 m0

H0: m = m0 vs. H1: m Z m0 Gaussian random variable, known; or 
non-Gaussian random variable, n large,
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Theorem Minimum Cost Hypothesis Test

The decision rule that minimizes the average cost is given by:

(8.89)

if X is a continuous random variable, and by 

(8.90)

if X is a discrete random variable.
We will prove the theorem at the end of the section.

We already encountered the likelihood ratio function, in our discussion
of the Neyman-Pearson rule. The above decision rules are of threshold type and can
involve the likelihood ratio function or the log likelihood ratio function:

Example 8.31 Binary Communications

A binary transmission system accepts a binary input from an information source.The transmit-
ter sends a or signal according to whether or The received signal is equal to
the transmitted signal plus a Gaussian noise voltage that has zero mean and unit variance. Sup-
pose that each information bit is transmitted n times. Find a decision rule for the receiver that
minimizes the probability of error.

An error occurs if and we decide 1, or if and we decide 0. If we let
and then the average cost is the probability of error:

Each channel output is a Gaussian random variable with mean given by the input signal and
unit variance. Each input signal is transmitted n times and we assume that the noise values are
independent. The pdf’s of the n observations are given by:

C = P3decideH1 ƒH04p0 + P3decideH0 ƒH14p1 = P[error].

C01 = C10 = 1,C00 = C11 = 0
® = 1® = 0

® = 1.® = 0+1-1
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7
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.

¶1x2,
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The likelihood ratio is:

The log likelihood ratio test is then:

which reduces to:

It is interesting to see how the decision threshold varies with the a priori probabilities and
the number of transmissions. If the inputs are equiprobable, then and the threshold is
always zero. However, if we know 1’s are much more frequent, i.e., then the threshold 

decreases, thereby expanding the rejection region Thus this a priori knowl-
edge biases the decision mechanism in favor of As we increase the number of transmissions
n, the information from the observations becomes more important than the a priori knowledge.
This effect is evident in the decrease of to zero as n is increased.

Example 8.32 MAP Receiver for Binary Communications

The Maximum A Posteriori (MAP) receiver selects the input that has the larger a posteriori
probability given the observed output. The MAP receiver uses the following decision rule:

(8.91)

The receiver in the previous example is the MAP receiver. To see this, note that the likelihood
function and threshold are:
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which is equivalent to

The decision rule in the previous example minimizes the probability of error. Therefore we con-
clude that the MAP receiver minimizes the probability of error.

Example 8.33 Server Allocation

Jobs arrive at a service station at rate jobs per minute or rate jobs per minute. A
supervisor counts the number of arrivals in the first minute to decide which arrival rate is present,
and based on that count decides whether to allocate one processor or two processors to the service
station. Find a minimum cost rule for this problem.

We assume that the number of arrivals is a Poisson random variable with one of the two
means, so we are testing the following hypotheses:

Let the costs be given as follows:

where S is the cost of each server and r is a unit of revenue. The term indicates that no revenue
is earned when the arrival rate is and there is only one server.

The minimum cost test is obtained from the likelihood ratio:

The log likelihood ratio is then:

It is interesting to examine how the parameter values affect the threshold. The term is
the average cost when the lower rate is present and contains an extra cost of S due to false
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alarms. The term is the average cost when the higher rate is present and it contains a
loss in revenue due to not detecting the presence of the higher arrival rate. If the false alarm cost is
higher than the miss cost, then the threshold increases, thus expanding the acceptance region.This
makes sense since we are motivated to have fewer false alarms. Conversely, the rejection region
expands when the miss cost is higher.

8.6.2 Proof of Minimum Cost Theorem

To prove the minimum cost theorem we evaluate the probabilities in Eq. (8.88) by not-
ing, for example, that P[decide ] is the probability that is in when is
true. Proceeding in such fashion, we obtain:

(8.92)

Since and cover the entire observation space, we have

Therefore

(8.93)

We can deduce the minimum cost function from Eq. (8.93). The first two terms
are fixed-cost components. The term inside the brace is the difference of two positive
terms:

(8.94)

We claim that the minimum cost decision rule always selects an observation point x to
be in if the above term is negative. By doing so, it minimizes the overall cost. Includ-
ing in points x for which the above term is positive would only increase the overallR
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cost and contradict the claim that the cost is minimum. Therefore, the minimum cost
decision functions selects if

and otherwise. This is equivalent to the decision rule in the theorem.

8.6.3 Bayes Estimation

The framework for hypothesis testing that we described above can also be applied to
parameter estimation. To estimate a parameter we assume the following situation. We
suppose that the parameter is a random variable with a known a priori distribution.
A random experiment is performed by “nature” to determine the value of that
is present. We cannot observe directly, but we can observe the random sample

which is distributed according to the active value of Our
objective is to obtain an estimator which minimizes a cost function that depends
on and 

(8.95)

If the cost function is the squared error, we have the
mean square estimation problem. In Chapter 6 we showed that the optimum estimator
is the conditional expected value of given 

Another cost function of interest is for which it can be 
shown that the optimum estimator is the median of the a posteriori pdf A
third cost function of interest is:

(8.96)

This cost function is analogous to the cost function in Example 8.31 in that the cost is always
equal to 1 except when the estimate is within of the true parameter value It can be
shown that the best estimator for this cost function is the MAP estimator which maximizes
the a posteriori probability We examine these estimators in the Problems.

We conclude with an estimator discovered by Bayes and which gave birth to the
approach developed in this section. The approach was quite controversial because the
use of an a priori distribution leads to two different interpretations of the meaning of
probability. See [Bulmer, p. 169] for an interesting discussion on this controversy. In prac-
tice, we do encounter many situations where we have a priori knowledge of the parame-
ters of interest. In such cases, Bayes’ methods have proved to be very useful.

Example 8.34 Estimating p in n Bernoulli Trials

Let be the outcomes of n Bernoulli trials. Find the Bayes estimator for the
probability of success p, assuming that p is a random variable that is uniformly distributed in the
unit interval. Use the squared error cost function.
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The probability for the sequence of outcomes is:

where k is the number of successes in the n trials. The probability of the sequence 
over all possible values of p is:

where the a priori pdf of p. In Problem 8.92, we show that:

(8.97)

The a posteriori pdf of p, given the observation is then:

The a posteriori pdf for the parameter p depends on the observations only through the
total number of heads k.The best estimator for p in the mean square sense is given by the condi-
tional expected value of p given

(8.98)

This estimator differs from the maximum likelihood estimator which we found to be given
by the relative frequency in Example 8.10. For large n, the two estimators are in agreement
if k is also large. Problem 8.92 considers the more general case where p has a beta a priori
distribution.

8.7 TESTING THE FIT OF A DISTRIBUTION TO DATA

How well does the model fit the data? Suppose you have postulated a probability
model for some random experiment, and you are now interested in determining how
well the model fits your experimental data. How do you test this hypothesis? In this
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section we present the chi-square test, which is widely used to determine the goodness
of fit of a distribution to a set of experimental data.

The natural first test to carry out is an “eyeball” comparison of the postulated
pmf, pdf, or cdf and an experimentally determined counterpart. If the outcome of the
experiment, X, is discrete, then we can compare the relative frequency of outcomes
with the probability specified by the pmf, as shown in Fig 8.6. If X is continuous, then
we can partition the real axis into K mutually exclusive intervals and determine the rel-
ative frequency with which outcomes fall into each interval. These numbers would be
compared to the probability of X falling in the interval, as shown in Fig 8.7. If the rela-
tive frequencies and corresponding probabilities are in good agreement, then we have
established that a good fit exists.

We now show that the approach outlined above leads to a test involving the
multinomial distribution. Suppose that there are K intervals. Let be the probability
that X falls in the ith interval. Since the intervals are selected to be a partition of the
range of X, we have that Suppose we perform the experi-
ment n independent times and let be the number of times the outcome is in the ith
interval. Let be the vector of interval counts, then 
has a multinomial pmf:

where nj Ú 0 and n1 + n2 + Á + nK = n.
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First we show that the relative frequencies of the interval counts are a maximum
likelihood estimator for the independent parameters Note
that is determined by the other probabilities. Suppose we perform the ex-
periment n times and observe a sequence of outcomes with counts 
The likelihood of this sequence is:

and the log likelihood is:

We take derivatives with respect to and set the result equal to zero:
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where we have noted that depends on The above equation implies that
which in turn implies that the maximum likelihood estimates must satisfy

This last equation implies that and for 
Therefore the relative frequencies of the counts provide maximum likelihood estimates
for the interval probabilities. As n increases we expect that the relative frequency esti-
mates will approach the true probabilities.

We next consider a test statistic that measures the deviation from the expected
count for each interval, that is,

The purpose of the term is to ensure that the terms in the sum have good asymptotic
properties as n becomes large. The choice of results in the above sum
approaching a chi-square distribution with degrees of freedom as n becomes
large.We will not present the proof of this result, which can be found in [Cramer, p. 417].
The chi-square goodness-of-fit test involves calculating the and using an associated
significance test. A threshold is selected to provide the desired significance level. The
chi-square test is performed as follows:

1. Partition the sample space into the union of K disjoint intervals.
2. Compute the probability that an outcome falls in the kth interval under the as-

sumption that X has the postulated distribution. Then is the expected
number of outcomes that fall in the kth interval in n repetitions of the experi-
ment. (To see this, imagine performing Bernoulli trials in which a “success” corre-
sponds to an outcome in the kth interval.)

3. The chi-square statistic is defined as the weighted difference between the observed
number of outcomes, that fall in the kth interval, and the expected number 

(8.99)

4. If the fit is good, then will be small.Therefore the hypothesis is rejected if is
too large, that is, if where is a threshold determined by the significance
level of the test.

The chi-square test is based on the fact that for large n, the random variable 
has a pdf that is approximately a chi-square pdf with degrees of freedom. Thus
the threshold can be computed by finding the point at which

where is a chi-square random variable with degrees of freedom (see Fig. 8.8).
The thresholds for 1% and 5% significance levels and various degrees of freedom are
given in Table 8.3.
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Example 8.35

The histogram over the set in Fig. 8.6 was obtained by taking the last digit of 114
telephone numbers in one column in a telephone directory. Are these observations consistent
with the assumption that they have a discrete uniform pmf?

If the outcomes are uniformly distributed, then each has probability 1/10.The expected num-
ber of occurrences of each outcome in 114 trials is The chi-square statistic is then

The number of degrees of freedom is so from Table 8.3 the threshold for
a 1% significance level is 21.7. does not exceed the threshold, so we conclude that the data
are consistent with that of a uniformly distributed random variable.

Example 8.36

The histogram in Fig. 8.7 was obtained by generating 1000 samples from a program designed
to generate exponentially distributed random variables with parameter 1. The histogram was
obtained by dividing the positive real line into 20 intervals of equal length 0.2. The exact num-
bers are given in Table 8.6. A second histogram was also taken using 20 intervals of equal
probability. The numbers for this histogram are given in Table 8.7.

From Table 8.3 we find that the threshold for a 5% significance level is 30.1. The chi-
square values for the two histograms are 14.2 and 11.6, respectively. Both histograms pass the
goodness-of-fit test in this case, but it is apparent that the method of selecting the intervals can
significantly affect the value of the chi-square measure.

Example 8.36 shows that there are many ways of selecting the intervals in the
partition, and that these can yield different results. The following rules of thumb are
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recommended. First, to the extent possible the intervals should be selected so that they
are equiprobable. Second, the intervals should be selected so that the expected number
of outcomes in each interval is five or more. This improves the accuracy of approxi-
mating the cdf of by a chi-square cdf.

The discussion so far has assumed that the postulated distribution is completely
specified. In the typical case, however, one or two parameters of the distribution, namely
the mean and variance, are estimated from the data. It is often recommended that if r of
the parameters of a cdf are estimated from the data, then is better approximated by a
chi-square distribution with degrees of freedom. See [Allen, p. 308]. In effect,
each estimated parameter decreases the degrees of freedom by 1.

Example 8.37

The histogram in Table 8.8 was reported by Rutherford, Chadwick, and Ellis in a famous paper
published in 1920. The number of particles emitted by a radioactive mass in a time period of
7.5 seconds was counted. A total number of 2608 periods were observed. It is postulated that
the number of particles emitted in a time period is a random variable with a Poisson distribu-
tion. Perform the chi-square goodness-of-fit test.

In this case, the mean of the Poisson distribution is unknown, so it is estimated from the
data to be 3.870. for of freedom is then 12.94. The threshold at a
1% significance level is 23.2. does not exceed this, so we conclude that the data are in good
agreement with the Poisson distribution.

D2
12 - 1 - 1 = 10 degreesD2

K - r - 1
D2

D2

TABLE 8.6 Chi-square test for exponential random variable,
equal-length intervals.

Interval Observed Expected (O � E)2/E

0 190 181.3 0.417484
1 144 148.4 0.130458
2 102 121.5 3.129629
3 96 99.5 0.123115
4 86 81.44 0.255324
5 67 66.7 0.001349
6 59 54.6 0.354578
7 43 44.7 0.064653
8 51 36.6 5.665573
9 28 30 0.133333

10 28 24.5 0.5
11 19 20.1 0.060199
12 15 16.4 0.119512
13 12 13.5 0.166666
14 11 11 0
15 7 9 0.444444
16 9 7.4 0.345945
17 5 6 0.166666
18 8 5 1.8

719 20 22.4 0.257142

Chi-square value = 14.13607
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TABLE 8.8 Chi-square test for Poisson 
random variable.

Count Observed Expected (O � E)2/E

0 76,757.00 54.40 0.12
1 203.00 210.50 0.27
2 383.00 407.40 1.46
3 525.00 525.50 .00
4 532.00 508.40 1.10
5 408.00 393.50 .053
6 273.00 253.80 1.45
7 139.00 140.30 0.01
8 45.00 67.80 7.67
9 27.00 29.20 0.17
10 10.00 11.30 0.15

711 6.00 5.80 0.01

12.94

Based on [Cramer, p. 436].

TABLE 8.7 Chi-square test for exponential random variable,
equiprobable intervals.

Interval Observed Expected (O � E)2/E

0 49 50 0.02
1 61 50 2.42
2 50 50 0
3 50 50 0
4 40 50 2
5 52 50 0.08
6 48 50 0.08
7 40 50 2
8 45 50 0.5
9 46 50 0.32
10 50 50 0
11 51 50 0.02
12 55 50 0.5
13 49 50 0.02
14 54 50 0.32
15 52 50 0.08
16 62 50 2.88
17 46 50 0.32
18 49 50 0.02
19 51 50 0.02

Chi-square value = 11.6
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SUMMARY

• A statistic is a function of a random sample that consists of n iid observations of
a random variable of interest. The sampling distribution is the pdf or pmf of the
statistic. The critical values of a given statistic are the interval endpoints at which
the complementary cdf achieves certain probabilities.

• A point estimator is unbiased if its expected value equals the true value of the pa-
rameter of interest, and it is consistent if it is asymptotically unbiased. The mean
square error of an estimator is a measure of its accuracy. The sample mean and
the sample variance are consistent estimators.

• Maximum likelihood estimators are obtained by working with the likelihood and
log likelihood functions. Maximum likelihood estimators are consistent and their
estimation error is asymptotically Gaussian and efficient.

• The Cramer-Rao inequality provides a way of determining whether an unbiased
estimator achieves the minimum mean square error. An estimator that achieves
the lower bound is said to be efficient.

• Confidence intervals provide an interval that is determined from observed data
and that by design contains a parameter interest with a specified probability
level. We developed confidence intervals for binomial, Gaussian, Student’s t, and
chi-square sampling distributions.

• When the number of samples n is large, the central limit theorem allows us to use
estimators and confidence intervals for Gaussian random variables even if the
random variable of interest is not Gaussian.

• The sample mean and sample variance for independent Gaussian random variables
are independent random variables. The chi-square and Student’s t-distribution are
derived from statistics involving Gaussian random variables.

• A significance test is used to determine whether observed data are consistent
with a hypothesized distribution. The level of significance of a test is the proba-
bility that the hypothesis is rejected when it is actually true.

• A binary hypothesis tests decides between a null hypothesis and an alternative hy-
pothesis based on observed data. A hypothesis is simple if the associated distribu-
tion is specified completely. A hypothesis is composite if the associated
distribution is not specified completely.

• Simple binary hypothesis tests are assessed in terms of their significance level and
their Type II error probability or, equivalently, their power. The Neyman-Pearson
test leads to a likelihood ratio test that meets a target Type I error probability
while maximizing the power of the test.

• Bayesian models are based on the assumption of an a priori distribution for the
parameters of interest, and they provide an alternative approach to assessing and
deriving estimators and hypothesis tests.

• The chi-square distribution provides a significance test for the fit of observed
data to a hypothetical distribution.
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ANNOTATED REFERENCES

Bulmer [1] is a classic introductory textbook on statistics. Ross [2] and Wackerly [3]
provide excellent and up-to-date introductions to statistics. Bickel [4] provides a more
advanced treatment. Cramer [5] is a classic text that provides careful development of
many traditional statistical methods.Van Trees [6] has influenced the application of sta-
tistical methods in modern communications. [10] provides a very useful online resource
for learning probability and statistics.
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Acceptance region
Alternative hypothesis
Bayes decision rule
Bayes estimator
Chi-square goodness-of-fit test
Composite hypothesis
Confidence interval
Confidence level
Consistent estimator
Cramer-Rao inequality
Critical region
Critical value
Decision rule
Efficiency
False alarm probability
Fisher information
Invariance property
Likelihood function
Likelihood ratio function
Log likelihood function
Maximum likelihood method
Maximum likelihood test

Mean square estimation error
Method of batch means
Neyman-Pearson test
Normal random variable
Null hypothesis
Point estimator
Population
Power
Probability of detection
Random sample
Rejection region
Sampling distribution
Score function
Significance level
Significance test
Simple hypothesis
Statistic
Strongly consistent estimator
Type I error
Type II error
Unbiased estimator

CHECKLIST OF IMPORTANT TERMS
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PROBLEMS

Note: Statistics involves working with data. For this reason the problems in this section incor-
porate exercises that involve the generation of random samples of random variables using the
methods introduced in Chapters 3, 4, 5, and 6. These exercises can be skipped without loss of
continuity.

Section 8.1: Samples and Sampling Distributions

8.1. Let X be a Gaussian random variable with mean 10 and variance 4. A sample of size 9 is
obtained and the sample mean, minimum, and maximum of the sample are calculated.
(a) Find the probability that the sample mean is less than 9.
(b) Find the probability that the minimum is greater than 8.
(c) Find the probability that the maximum is less than 12.
(d) Find n so the sample mean is within 1 of the true mean with probability 0.95.
(e) Generate 100 random samples of size 9. Compare the probabilities obtained in parts

a, b, and c to the observed relative frequencies.
8.2. The lifetime of a device is an exponential random variable with mean 50 months. A sam-

ple of size 25 is obtained and the sample mean, maximum, and minimum of the sample
are calculated.
(a) Estimate the probability that the sample mean differs from the true mean by more

than 1 month.
(b) Find the probability that the longest-lived sample is greater than 100 months.
(c) Find the probability that the shortest-lived sample is less than 25 months.
(d) Find n so the sample mean is within 5 months of the true mean with probability

0.9.
(e) Generate 100 random samples of size 25. Compare the probabilities obtained in

parts a, b, and c to the observed relative frequencies.
8.3. Let the signal X be a uniform random variable in the interval and suppose that a

sample of size 50 is obtained.
(a) Estimate the probability that the sample mean is outside the interval 
(b) Estimate the probability that the maximum of the sample is less than 2.5.
(c) Estimate the probability that the sample mean of the squares of the samples is

greater than 3.
(d) Generate 100 random samples of size 50. Compare the probabilities obtained in

parts a, b, and c to the observed relative frequencies.
8.4. Let X be a Poisson random variable with mean and suppose that a sample of size

16 is obtained.
(a) Estimate the probability that the sample mean is greater than 2.5.
(b) Estimate the probability that the sample mean differs from the true mean by more

than 0.5.

a = 2,

3-0.5, 0.54.
3-3, 34,

www.math.uah.edu/stat
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(c) Find n so the sample mean differs from the true mean by more than 0.5 with
probability 0.95.

(d) Generate 100 random samples of size 16. Compare the probabilities obtained in
parts a and b to the observed relative frequencies.

8.5. The interarrival time of queries at a call center are exponential random variables with
mean interarrival time Suppose that a sample of size 9 is obtained.

(a) The estimator is used to estimate the arrival rate. Find the probability that
the estimator differs from the true arrival rate by more than 1.

(b) Suppose the estimator is used to estimate the arrival
rate. Find the probability that the estimator differs from the true arrival rate by
more than 1.

(c) Generate 100 random samples of size 9. Compare the probabilities obtained in parts
a and b to the observed relative frequencies.

8.6. Let the sample consist of iid versions of the random variable X. The
method of moments involves estimating the moments of X as follows:

(a) Suppose that X is a uniform random variable in the interval Use to find an
estimator for 

(b) Find the mean and variance of the estimator in part a.
8.7. Let X be a gamma random variable with parameters and 

(a) Use the first two moment estimators and of X (defined in Problem 8.6) to es-
timate the parameters and 

(b) Describe the behavior of the estimators in part a as n becomes large.
8.8. Let be a pair of random variables with known means, and Consider

the following estimator for the covariance of X and Y:

(a) Find the expected value and variance of this estimator.
(b) Explain the behavior of the estimator as n becomes large.

8.9. Let be a pair of random variables with unknown means and covariances.
Consider the following estimator for the covariance of X and Y:

(a) Find the expected value of this estimator.
(b) Explain why the estimator approaches the estimator in Problem 8.8 for n large. Hint:

See Eq. (8.15).
8.10. Let the sample consist of iid versions of the random variable X. Consider

the maximum and minimum statistics for the sample:

(a) Show that the pdf of Z is

(b) Show that the pdf of W is fW1x2 = n31 - FX1x24n-1 fX1x2.
fZ1x2 = n3FX1x24n-1 fX1x2.

W = min1X1 , Á ,Xn2 and Z = max1X1 , Á ,Xn2.
X1 ,X2 , Á ,Xn

KnX,Y =
1

n - 1a
n

j=1
1Xj - Xn21Yj - Yn2.

X = 1X, Y2

CnX,Y =
1
na
n

j=1
1Xj - m121Yj - m22.

m2 .m1X = 1X, Y2
b.a

mn 2mn 1

b = 1/l.a

u.
mn 130, u4.

mn k =
1
na
n

j=1
Xj
k .

X1 ,X2 , Á ,Xn

lN 2 = 1/9 min1X1 , Á ,X92
lN 1 = 1/X9

1/4.
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Section 8.2: Parameter Estimation
8.11. Show that the mean square estimation error satisfies 
8.12. Let the sample consist of iid versions of a Poisson random variable X with

mean Find the mean and variance of the following estimators for and determine
whether they are biased or unbiased.
(a)

(b)

(c)

(d)

8.13. (a) Let and be unbiased estimators for the parameter Show that the estimator 

is also an unbiased estimator for where 
(b) Find the value of p in part a that minimizes the mean square error.
(c) Find the value of p that minimizes the mean square error if and are the esti-

mators in Problems 8.12a and 8.12b.
(d) Repeat part c for the estimators in Problems 8.12a and 8.12d.
(e) Let and be unbiased estimators for the first and second moments of X. Find

an estimator for the variance of X. Is it biased?
8.14. The output of a communication system is where is an input signal and N is

a noise signal that is uniformly distributed in the interval [0, 2]. Suppose the signal is
transmitted n times and that the noise terms are iid random variables.
(a) Show that the sample mean of the outputs is a biased estimator for 
(b) Find the mean square error of the estimator.

8.15. The number of requests at a Web server is a Poisson random variable X with mean 
requests per minute. Suppose that n 1-minute intervals are observed and that the number

of intervals with zero arrivals is counted. The probability of zero arrivals is then esti-
mated by To estimate the arrival rate is set equal to the probability of
zero arrivals in one minute:

(a) Solve the above equation for to obtain an estimator for the arrival rate.
(b) Show that is biased.
(c) Find the mean square error of 
(d) Is a consistent estimator?

8.16. Generate 100 samples size 20 of the Poisson random variables in Problem 8.15.
(a) Estimate the arrival rate using the sample mean estimator and the estimator from

Problem 8.15.
(b) Compare the bias and mean square error of the two estimators.

8.17. To estimate the variance of a Bernoulli random variable X, we perform n iid trials and
count the number of successes k and obtain the estimate We then estimate the
variance of X by

(a) Show that is a biased estimator for the variance of X.
(b) Is a consistent estimator for the variance of X?sN 2

sN 2

sN 2 = pn11 - pn2 =
k
n
a1 -

k
n
b .

pn = k/n.

a

aN

aN .
aN

aN

pn0 = N0/n = P3X = 04 =
a0

0!
e-a = e-a.

a, pnpn0 = N0/n.
N0

a = 2

u.

uY = u + N,

®N 2®N 1

®N 2®N 1

0 … p … 1.u,®N = p®N 1 + 11 - p2®N 2

u.®N 2®N 1

aN 4 = 1X1 + X2 + X3 + X42/4.

aN 3 = 1X1 + 2X22/3.

aN 2 = 1X3 + X42/2.

aN 1 = 1X1 + X22/2.

aa = 4.
X1 ,X2 ,X3 ,X4

E31®N - u224 = VAR3®N 4 + B1®N 22.
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(c) Find a constant c, so that is an unbiased estimator for the variance of X.
(d) Find the mean square errors of the estimators in parts b and c.

8.18. Let be a random sample of a uniform random variable that is uniformly
distributed in the interval Consider the following estimator for 

(a) Find the pdf of using the results of Problem 8.10.
(b) Show that is a biased estimator.
(c) Find the variance of and determine whether it is a consistent estimator.
(d) Find a constant c so that is an unbiased estimator.
(e) Generate a random sample of 20 uniform random variables with Compare

the values provided by the two estimators in 100 separate trials.
(f) Generate 1000 samples of the uniform random variable, updating the estimator

value every 50 samples. Can you discern the bias of the estimator?

8.19. Let be a random sample of a Pareto random variable:

with Consider the estimator for 

(a) Show that is a biased estimator and find the bias.
(b) Find the mean squared error of 
(c) Determine whether is a consistent estimator.
(d) Use Octave to generate 1000 samples of the Pareto random variable. Update the

estimator value every 50 samples. Can you discern the bias of the estimator?
(e) Repeat part d with What changes?

8.20. Generate 100 samples of sizes 5, 10, 20 of exponential random variables with mean 1.
Compare the histograms of the estimates given by the biased and unbiased estimators for
the sample variance.

8.21. Find the variance of the sample variance estimator in Example 8.8. Hint:

8.22. Generate 100 samples of size 20 of pairs of zero-mean, unit-variance jointly Gaussian
random variables with correlation coefficient Compare the histograms of the
estimates given by the estimators for the sample covariance in Problems 8.8 and 8.9.

8.23. Repeat the scenario in Problem 8.22 for the following estimator for the correlation coef-
ficient between two random variables X and Y:

Section 8.3: Maximum Likelihood Estimation

8.24. Let X be an exponential random variable with mean 
(a) Find the maximum likelihood estimator for 

(b) Find the maximum likelihood estimator for u = l.®N ML

u = 1/l.®N ML
1/l.

rn
X,Y

=
a
n

j=1
1Xj - Xn21Yj - Yn2

Aa
n

j=1
1Xj - Xn22a

n

j=1
1Yj - Yn22

.

r = 0.50.

Assumem = 0.

k = 1.5.

®N
®N .

®N

®N = min5X1 ,X2 , ÁXn6.
u:k = 2.5.

fX1x2 = k
uk

xk+1
 for u … x

X1 ,X2 , Á ,Xn

u = 5.
c®N

®N
®N

®N
®N = max5X1 ,X2 , Á ,Xn6.

u:30, u4.
X1 ,X2 , Á ,Xn

csN 2
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(c) Find the pdfs of the estimators in part a.
(d) Is the estimator in part a unbiased and consistent?
(e) Repeat 20 trials of the following experiment: Generate a sample of 16 observa-

tions of the exponential random variable with and find the values given
by the estimators in parts a and b. Show a histogram of the values produced by
the estimators.

8.25. Let be the output of a noisy channel where the input is the parameter and
N is a zero-mean, unit-variance Gaussian random variable. Suppose that the output is
measured n times to obtain the random sample for 
(a) Find the maximum likelihood estimator for 
(b) Find the pdf of 
(c) Determine whether is unbiased and consistent.

8.26. Show that the maximum likelihood estimator for a uniform random variable that is dis-
tributed in the interval is Hint: You will need to show
that the maximum occurs at an endpoint of the interval of parameter values.

8.27. Let X be a Pareto random variable with parameters and 
(a) Find the maximum likelihood estimator for assuming is known.
(b) Show that the maximum likelihood estimators for and are:

(c) Discuss the behavior of the estimators in parts a and b as n becomes large and de-
termine whether they are consistent.

(d) Repeat five trials of the following experiment: Generate a sample of 100 observa-
tions of the Pareto random variable with and and obtain the values
given by the estimators in part b. Repeat for and and and

8.28. (a) Show that the maximum likelihood estimator for the parameter of the
Rayleigh random variable is 

(b) Is the estimator is unbiased?

(c) Repeat 50 trials of the following experiment: Generate a sample of 16 observations
of the Rayleigh random variable with and find the values given by the estima-
tor in part a. Show a histogram of the values produced by the estimator.

8.29. (a) Show that the maximum likelihood estimator for  of the beta random variable
with is 

(b) Generate a sample of 100 observations of the beta random variable with and
to obtain the estimate for a. Repeat for and 

8.30. Let X be a Weibull random variable with parameters and (see Eq. 4.102).

(a) Assuming that is known, show that the maximum likelihood estimator for is:

aNML = B 1
na
n

j=1
Xj
bR-1

.

u = ab

ba

a = 3.a = 1, a = 2,a = 0.5
b = 1

anML = B 1
na
n

j=1
 log XjR-1

.

b = 1
u = a

a = 2

aNML
2 =

1
2n a

n

j=1
Xj

2 .

u = a2

xm = 1.
a = 0.5xm = 1,a = 1.5

xm = 1a = 2.5

aNML = nBan
j=1

 log¢ Xj
xnm ,ML

≤ R-1

and xnm ,ML = min1X1 ,X2 , Á ,Xn2.
xma

xma

xm .a

®N = max5X1,X2 , Á ,Xn6.30, u4
®N ML

®N ML .
u.®N ML

i = 1 , Á , n.Xi = u + Ni

uX = u + N

l = 1/2
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(b) Generate a sample of 100 observations of the Weibull random variable with 
and to obtain the estimate for Repeat for 

8.31. A certain device is known to have an exponential lifetime.

(a) Suppose that n devices are tested for T seconds, and the number of devices that fail
within the testing period is counted. Find the maximum likelihood estimator for the
mean lifetime of the device. Hint: Use the invariance property.

(b) Repeat ten trials of the following experiment: Generate a sample of 16 observations
of the exponential random variable with and testing period Find
the estimates for the mean lifetime using the method in part a and compare these
with the estimates provided by Problem 8.24a.

8.32. Let X be a gamma random variable with parameters and 

(a) Find the maximum likelihood estimator for assuming is known.
(b) Find the maximum likelihood estimators and for and Assume that the

function is known.

8.33. Let be a jointly Gaussian random vector with zero means, unit variances,
and unknown correlation coefficient Consider a random sample of n such vectors.

(a) Show that the ML estimator for involves solving a cubic eqation.
(b) Show that Problem 8.23 gives the ML estimator if the mean and variances are unknown.
(c) Repeat 5 trials of the following: Generate a sample of 100 observations of the pairs

of zero-mean, unit-variance Gaussian random variables and estimate using parts a
and b for the cases: and 

8.34. (Invariance Property.) Let be the maximum likelihood estimator for the parameter 
of X. Suppose that we are interested instead in finding the maximum likelihood estima-

tor for which is an invertible function of Explain why this maximum likelihood 

estimator is given by 
8.35. Show that the Fisher information is also given by Eq. (8.36). Assume that the first two

partial derivatives of the likelihood function exist and that they are absolutely integrable
so that differentiation and integration with respect to can be interchanged.

8.36. Show that the following random variables have the given Cramer-Rao lower bound and
determine whether the associated maximum likelihood estimator is efficient:
(a) Binomial with parameters n and unknown 
(b) Gaussian with known variance and unknown mean:
(c) Gaussian with unknown variance: Consider two cases: mean known; mean

unknown. Does the standard unbiased estimator for the variance achieve the
Cramer-Rao lower bound? Note that 

(d) Gamma with parameters known and unknown 
(e) Poisson with parameter unknown 

8.37. Let be the maximum likelihood estimator for the mean of an exponential random
variable. Suppose we estimate the variance of this exponential random variable using the 

estimator What is the probability that is within 5% of the true value of the
variance? Assume that the number of samples is large.

8.38. Let be the maximum likelihood estimator for the mean of a Poisson random vari-
able. Suppose we estimate the probability of no arrivals with the estimator 

Find the probability that this estimator is within 10% of the true value of 
Assume that the number of samples is large.

P3X = 04.e-®N ML.

P3X = 04 = e-a
a®N ML

®N ML2®N ML2 .

®N ML
a: a/n.

b = 1/l: b2/na.a

E31X - m244 = 3s4.

2s4/n.
s2/n.s2

p: p11 - p2/n2.

u

h1®N ML2.
u.h1u2,

u

®N ML
r = 0.r = 0.9,r = 0.5,

r.

r.

r.
X = 1X, Y2

≠¿1a2/≠1a2
l.alNMLaNML

allNML

l.a

T = 15.l = 1/10

b = 2 and b = 4.a.b = 1
a = 1
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Section 8.4: Confidence Intervals

8.39. A voltage measurement consists of the sum of a constant unknown voltage and a Gauss-
ian-distributed noise voltage of zero mean and variance Thirty independent mea-
surements are made and a sample mean of is obtained. Find the corresponding
95% confidence interval.

8.40. Let be a Gaussian random variable with unknown mean and variance 1.
(a) Find the width of the 95% confidence intervals for for 16, 100.
(b) Repeat for 99% confidence intervals.

8.41. The lifetime of 225 light bulbs is measured and the sample mean and sample variance are
found to be 223 hr and 100 hr, respectively.
(a) Find a 95% confidence interval for the mean lifetime.
(b) Find a 95% confidence interval for the variance of the lifetime.

8.42. Let X be a Gaussian random variable with unknown mean and unknown variance. A set
of 10 independent measurements of X yields

(a) Find a 90% confidence interval for the mean of X.
(b) Find a 90% confidence interval for the variance of X.

8.43. Let X be a Gaussian random variable with unknown mean and unknown variance.A set of 10
independent measurements of X yields a sample mean of 57.3 and a sample variance of 23.2.
(a) Find the 90%, 95%, and 99% confidence intervals for the mean.
(b) Repeat part a if a set of 20 measurements had yielded the above sample mean and

sample variance.
(c) Find the 90%, 95%, and 99% confidence intervals for the variance in parts a and b.

8.44. A computer simulation program is used to produce 150 samples of a random variable.
The samples are grouped into 15 batches of ten samples each. The batch sample means
are listed below:

a
10

j=1
Xj = 350 and a

10

j=1
Xj

2 = 12,645.

n = 4,m

E3X4 = mXj

100 mV
10 mV2.

0.228 -1.941 0.141 1.979 -0.224

0.501 -5.907 -1.367 -1.615 -1.013

-0.397 -3.360 -3.330 -0.033 -0.976

(a) Find the 90% confidence interval for the sample mean.
(b) Repeat this experiment by generating beta random variables with parameters 

and
(c) Repeat part b using gamma random variables with and 
(d) Repeat part b using Pareto random variables with and and

8.45. A coin is flipped a total of 500 times, in 10 batches of 50 flips each. The number of heads
in each of the batches is as follows:

24, 27, 22, 24, 25, 24, 28, 26, 23, 26.

a = 1.5.
a = 3; xm = 1xm = 1

a = 2.l = 1
b = 3.

a = 2
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(a) Find the 95% confidence interval for the probability of heads p using the method of
batch means.

(b) Simulate this experiment by generating Bernoulli random variables with 

8.46. This exercise is intended to check the statement: “If we were to compute confidence
intervals a large number of times, we would find that approximately 
of the time, the computed intervals would contain the true value of the parameter.”

(a) Assuming that the mean is unknown and that the variance is known, find the 90%
confidence interval for the mean of a Gaussian random variable with 

(b) Generate 500 batches of 10 zero-mean, unit-variance Gaussian random variables,
and determine the associated confidence intervals. Find the proportion of confi-
dence intervals that include the true mean (which by design is zero). Is this in agree-
ment with the confidence level 

(c) Repeat part b using exponential random variables with mean one. Should the pro-
portion of intervals including the true mean be given by Explain.

8.47. Generate 160 that are uniformly distributed in the interval 
(a) Suppose that 90% confidence intervals for the mean are to be produced. Find the

confidence intervals for the mean using the following combinations:

4 batches of 40 samples each,
8 batches of 20 samples each,
16 batches of 10 samples each, and
32 batches of 5 samples each.

(b) Redo the experiment in part a 500 times. In each repetition of the experiment, com-
pute the four confidence intervals defined in part a. Calculate the proportion of time
in which the above four confidence intervals include the true mean. Which of the
above combinations of the batch size and number of batches are in better agreement
with the results predicted by the confidence level? Explain why.

8.48. This exercise explores the behavior of confidence intervals as the number of samples is
increased. Generate 1000 samples of independent Gaussian random variables with mean
25 and variance 36. Update and plot the confidence intervals for the mean and variance
every 50 samples.

Section 8.5: Hypothesis Testing

8.49. A new Web page design is intended to increase the rate at which customers place orders.
Prior to the new design, the number of orders in an hour was a Poisson random variable
with mean 30. Eight one-hour measurements with the new design find an average of 32
orders completed per hour.
(a) At a 5% significance level, do the data support the claim that the order placement

rate has increased?
(b) Repeat part a at a 1% significance level.

8.50. Carlos and Michael play a game where each flips a coin once: If the outcomes of the tosses
are the same, then no one wins; but if the outcome is different the player with “heads” wins.
Michael uses a fair coin but he suspects that Carlos is using a biased coin.
(a) Find a 10% significance level test for an experiment that counts how many times Car-

los wins in 6 games to test whether Carlos is cheating. Repeat for 
(b) Now design a 10% significance level test based on the number of times Carlos,

tosses come up heads. Which test is more effective?
(c) Find the probability of detection if Carlos uses a coin with p = 0.55.p = 0.75;

n = 12 games.

3-1, 14.Xi

1 - a?

1 - a = .90?

n = 10.

11 - a2 * 100%

p = 0.01.
p = 0.25;
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8.51. The output of a receiver is the sum of the input voltage and a Gaussian random vari-
able with zero mean and variance A scientist suspects that the receiver input is
not properly calibrated and has a nonzero input voltage in the absence of a true input
signal.
(a) Find a 1% significance level test involving n independent measurements of the out-

put to test the scientist’s hunch.
(b) What is the outcome of the test if 10 measurements yield a sample mean of 
(c) Find the probability of a Type II error if there is indeed an input voltage of 1 volt; of

10 millivolts.

8.52. (a) Explain the relationship between the p-value and the significance level of a test.
(b) Explain why the p-value provides more information about the test statistic than sim-

ply stating the outcome of the hypothesis test.
(c) How should the p-value be calculated in a one-sided test?
(d) How should the p-value be calculated in a two-sided test?

8.53. The number of photons counted by an optical detector is a Poisson random variable with
known mean in the absence of a target and known mean when a target
is present. Let the null hypothesis correspond to “no target present.”
(a) Use the Neyman-Pearson method to find a hypothesis test where the false alarm

probability is set to 5%.
(b) What is the probability of detection?
(c) Suppose that n independent measurements of the input are taken. Use trial and

error to find the value of n required to achieve a false alarm probability of 5% and a
probability of detection of 90%.

8.54. The breaking strength of plastic bags is a Gaussian random variable. Bags from company 1
have a mean strength of 8 kilograms and a variance of bags from company 2 have a
mean strength of 9 kilograms and a variance of We are interested in determining
whether a batch of bags comes from company 1 (null hypothesis). Find a hypothesis test
and determine the number of bags that needs to be tested so that is 1% and the proba-
bility of detection is 99%.

8.55. Light Internet users have session times that are exponentially distributed with mean 2
hours, and heavy Internet users have session times that are exponentially distributed with
mean 4 hours.
(a) Use the Neyman-Pearson method to find a hypothesis test to determine whether a

given user is a light user. Design the test for 

(b) What is the probability of detecting heavy users?
8.56. Normal Internet users have session times that are Pareto distributed with mean 3 hours

and , and heavy peer-to-peer users have session times that are Pareto distributed
with and mean 16 hours.
(a) Use the Neyman-Pearson method to find a hypothesis test to determine whether a

given user is a normal user. Design the test for 

(b) What is the probability of detecting heavy peer-to-peer users?
8.57. Coin factories A and B produce coins for which the probability of heads p is a beta-

distributed random variable. Factory A has parameters and factory B has

(a) Design a hypothesis test for to determine whether a batch is from factory A.
(b) What is the probability of detecting factory B coins? Hint: Use the Octave function

beta_inv. Assume that the probability of heads in the batch can be determined
accurately.

a = 5%
a = b = 5.

a = b = 10,

a = 1%

a = 8/7
a = 3

a = 5%.

a

1 kg2.
1 kg2;

b = 6 7 a = 2a

a

-0.75 volts?

4 volt2.
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8.58. When operating correctly (null hypothesis), wires from a production line have a mean diam-
eter of 2 mm, but under a certain fault condition the wires have a mean diameter of 1.75 mm.
The diameters are Gaussian distributed with variance A batch of 10 sample wires
is selected and the sample mean is found to be 1.82 mm.
(a) Design a test to determine whether the line is operating correctly. Assume a false

alarm probability of 5%.
(b) What is the probability of detecting the fault condition?
(c) What is the p-value for the above observation?

8.59. Coin 1 is fair and coin 2 has probability of heads A test involves flipping a coin repeatedly
until the first occurrence of heads.The number of tosses is observed.
(a) Can you design a test to determine whether the fair coin is in use? Assume 

What is the probability of detecting the biased coin?
(b) Repeat part a if the biased coin has probability 

8.60. The output of a radio signal detection system is the sum of an input voltage and a zero-
mean, unit-variance Gaussian random variable.
(a) Design a hypothesis test, at a significance level to determine whether

there is a nonzero input assuming n independent measurements of the receiver out-
put (so the additive noise terms are iid random variables).

(b) Find expressions for the Type II error probability and the power of the test in
part a.

(c) Plot the power of the test in part a as the input voltage varies from to for

8.61. (a) In Problem 8.60, design a hypothesis test, at a significance level to determine
whether there is a positive input assuming n independent measurements.

(b) Find expressions for the Type II error probability and the power of the test in part a.
(c) Plot the power of the test in part a as the input voltage varies from to for

8.62. Compare the power curves obtained in Problems 8.60 and 8.61. Explain why the test in
Problem 8.61 is uniformly most powerful, while the test in Problem 8.60 is not.

8.63. Consider Example 8.27 where we considered

Let For perform the following experiment:
Generate 500 batches of size 25 of the Gaussian random variable with mean and unit
variance. For each batch determine whether the hypothesis test accepts or rejects the
null hypothesis. Count the number of Type I errors and Type II errors. Plot the empiri-
cally obtained power function as a function of 

8.64. Repeat Problem 8.63 for the following hypothesis test:

Let and run the experiments for 

8.65. Consider the following three tests for a fair coin:

(i) H0: p = 0.5 vs. H1: p Z 0.5

k = 0, 1, 2, Á , 5.m = ;k/2,a = 5%,n = 25,

H1:X is Gaussian with m Z 0 and sX
2 = 1.

H0:X is Gaussian with m = 0 and sX
2 = 1

m.

m

k = 0, 1, 2, Á , 5m = k/2,a = 5%.n = 25,

H1:X is Gaussian with m 7 0 and sX
2 = 1.

H0:X is Gaussian with m = 0 and sX
2 = 1

n = 4, 16, 64, 256.
+q-q

a,

n = 4, 16, 64, 256.
+q-q

a = 10%,

1/4.

a = 5%.

3/4.

.04 mm2.



Problems 481

(ii)
(iii)
Assume coin tosses in each test and that the rejection regions for the above tests
are selected for 
(a) Find the power curves for the three tests as a function of p.
(b) Explain the power curve of the two-sided test in comparison to those of the one-

sided tests.
8.66. (a) Consider hypothesis test (i) of Problem 8.65 with For 

perform the following experiment: Generate 500 batches of 100 tosses of a
coin with probability of heads p. For each batch determine whether the hypothesis
test accepts or rejects the null hypothesis. Count the number of Type I errors and
Type II errors. Plot the empirically obtained power function as a function of 

(b) Repeat part a for hypothesis test (ii) of Problem 8.65.
8.67. Consider the hypothesis test developed in Example 8.26 to test 

Suppose we use this test, that is, the associated rejection and acceptance region, for the fol-
lowing hypothesis testing problem:

Show that the test achieves significance level or better. Hint: Consider the power func-
tion of the test in Example 8.26.

8.68. A machine produces disks with mean thickness 2 mm.To test the machine after undergoing
routine maintenance, 10 sample disks are selected and the sample mean of the thickness is
found to be 2.2 mm and the sample variance is found to be 
(a) Find a test to determine if the machine is working properly for 
(b) Find the p-value of the observation.

8.69. A manufacturer claims that its new improved tire design increases tire lifetime from
50,000 km to 55,000 km. A test of 8 tires gives a sample mean lifetime of 52,500 km and a
sample standard deviation of 3000 km.
(a) Find a test to determine if the claim can be supported at a level of 
(b) Find the p-value of the observation.

8.70. A class of 100 engineering freshmen is provided with new laptop computers. The manu-
facturer claims the charge in the batteries will last four hours. The frosh run a test and
find a sample mean of 3.3 hours and a sample standard deviation of 0.5 hours.
(a) Find a test to determine if the manufacturer’s claim can be supported at a signifi-

cance level of 
(b) Find the p-value of the observation.

8.71. Consider the hypothesis test considered in Example 8.29:

Let For perform the following
experiment: Generate 500 batches of size 9 of the Gaussian random variable with mean 
and unit variance. For each batch determine whether the hypothesis test accepts or rejects
the null hypothesis. Count the number of Type I errors and Type II errors. Plot the empiri-
cally obtained power function as a function of Compare to the expected results.m.

m

k = 0, 1, 2, Á , 5m = ;k/2,sX = 1.a = 5%,n = 9,

H1:X is Gaussian with m Z 0 and sX
2  unknown.

H0:X is Gaussian with m = 0 and sX
2  unknown

a = 5%.a = 1%;

a = 5%.a = 1%;

a = 5%.a = 1%;
0.04 mm2.

a

H1:X is Gaussian with mean m 7 m and known variance s2.

H0:X is Gaussian with mean m … m and known variance s2

H0:m = m vs. H1:m 7 m.

m.

2, Á , 9
k = 1,p = k/10,a = 5%.

a = 1%.
n = 100

H0: p = 0.5 vs. H1: p 6 0.5.
H0: p = 0.5 vs. H1: p 7 0.5
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8.72. Repeat Problem 8.71 for the following hypothesis test:

Let and 

8.73. Consider using the hypothesis test in Example 8.29 when the random variable is not Gauss-
ian. Design tests for and for For per-
form the following experiment: Let X be a uniform random variable in the interval

Generate 500 batches of size n of the uniform random variable with mean 
For each batch determine whether the hypothesis test accepts or rejects the null hypoth-
esis. Count the number of Type I errors and Type II errors. Plot the empirically obtained
power function as a function of Compare the empirical data to the values expected for
the Gaussian random variable.

8.74. Consider using the hypothesis test in Problem 8.73 when the random variable is an
exponential random variable. Design tests for and for 
Repeat the experiment for Compare the empirical data to
the values expected for the Gaussian random variable.

8.75. A stealth alarm system works by sending noise signals:A “situation normal” signal is sent
by transmitting voltages that are Gaussian iid random variables with mean zero and vari-
ance 4; an “alarm” signal is sent by transmitting iid Gaussian voltages with mean zero and
variance less than 4.
(a) Find a 1% level hypothesis test to determine whether the situation is normal

(null hypothesis) based on the calculation of the sample variance from n voltage
samples.

(b) Find the power of the hypothesis test for as the variance of the alarm
signal is varied.

8.76. Repeat Problem 8.75 if the alarm signal uses iid Gaussian voltages that have variance
greater than 4.

8.77. A stealth system summons Agent 00111 by sending a sequence of 71 Gaussian iid random
variables with mean zero and variance Find a hypothesis test (to be implemented
in Agent’s 00111 wristwatch) to determine, at a 1% level, that she is being summoned. Plot
the probability of Type II error.

8.78. Consider the hypothesis test in Example 8.30 for testing the variance:

Let For perform the following experi-
ment: Generate 500 batches of size 16 of the Gaussian random variable with zero mean
and variance For each batch determine whether the hypothesis test accepts or rejects
the null hypothesis. Count the number of Type I errors and Type II errors. Plot the power
function as a function of Compare to the expected results.

8.79. Consider using the hypothesis test in Problem 8.78 when the random variable is a uni-
form random variable. Repeat the experiment where X is now a uniform random vari-
able in the interval Compare the empirical data to the values expected for
the Gaussian random variable. Repeat the experiment for and 

8.80. In this exercise we explore the relation between confidence intervals and hypothesis test-
ing. Consider the hypothesis test in Example 8.28 but with a level of a = 5%.

n = 36.n = 9
3-1/2 , 1/24.

m.

sX
2 .

sX
2 = k/3, k = 1, 2, Á , 6n = 16, a = 5%, m = 0.

H1:X is Gaussian with sX
2 Z 1 and m unknown.

H0:X is Gaussian with sX
2 = 1 and m unknown

m0 = 7.

n = 8, 64, 256

m = k/2, k = 1, 2, Á , 5.
n = 25.a = 5%, m = 1, n = 9

m.

m.3-1/2, 1/24.
m = ;k/2, k = 0, 1, 2, Á , 5n = 25.a = 5%, n = 9

m = k/2, k = 0, 1, 2, Á , 5.n = 9, a = 5%, sX = 1,

H1:X is Gaussian with m 7 0 and sX
2  unknown.

H0:X is Gaussian with m = 0 and sX
2  unknown
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(a) Run 200 trials of the following experiment: Generate 10 samples of X given that 
is true; determine the confidence interval; determine if the interval includes 0; deter-
mine if the null hypothesis is accepted.

(b) Is the relative frequency of Type I error as expected?

Section 8.6: Bayesian Decision Methods
8.81. The Premium Pen Factory tests one pen in each batch of 100 pens. The ink-filling ma-

chine is bipolar, so pens can write continuously for an exponential duration of mean ei-
ther hour or 5 hours. The machine is in the short-life production mode 10% of the
time. A batch of short-life pens sold as long-life pens results in a loss of $5, while a batch
of long-life pens mistakenly sold as short-life results in a loss of $3. Find the Bayes deci-
sion rule to decide whether a batch is long-life or short-life based on the measured life-
time of the test pen.

8.82. Suppose we send binary information over an erasure channel. If the input to the channel
is “0”, then the output is equally likely to be “0” or “e” for “erased”; and if the input is “1”
then the outputs are equally likely to be “1” or “e.” Assume that 

and that the cost functions are: and 
(a) For and 6, find the maximum likelihood decision rule, which picks the

input that maximizes the likelihood probability for the observed output. Find the av-
erage cost for each case.

(b) For the three cases in part a, find the Bayes decision rule that minimizes the average
cost. Find the average cost for each case.

8.83. For the channel in Problem 8.82, suppose we transmit each input twice. The receiver
makes its decision based on the observed pair of outputs. Find and compare the maxi-
mum likelihood and the Bayes’ decision rules.

8.84. When Bob throws a dart the coordinates of the landing point are a Gaussian pair of in-
dependent random variables (X, Y) with zero mean and variance 1. When Rick throws
the dart the coordinates are also a Gaussian independent pair but with zero mean and
variance 4. Bob and Rick are asked to draw a circle centered about the origin with the
inner disk assigned to Bob and the outer ring assigned to Rick.
(a) Whenever either player lands on the other player’s area, he must pay a $1 to the

house. Find the disk radius that minimizes the players’ average cost.
(b) Repeat part a if Bob must pay $2 when he lands in Rick’s area.

8.85. A binary communications system accepts which is “0” or “1”, as input and outputs X,
“0” or “1”, with probability of error Suppose the sender uses a
repetition code whereby each “0” or “1” is transmitted n independent times, and the re-
ceiver makes its decision based on the corresponding outputs. Assume that

(a) Find the maximum likelihood decision rule that selects the input which is more like-
ly for the given n outputs. Find the probability of Type I and Type II errors, as well as
the overall probability of error 

(b) Find the Bayes decision rule that minimizes the probability of error. Find the proba-
bility of Type I and Type II errors, as well as 

(c) For the decision rules in parts a and b find n so that 
8.86. A binary communications system accepts which is or as input and outputs

where N is a zero-mean Gaussian random variable with variance The
sender uses a repetition code where each or is transmitted n times, and the re-
ceiver makes its decision based on the n outputs.Assume P3® = 14 = a = 1 - P3® = 04.

“-1”“+1”
s2.X = ® + N,

“-1”,“+1”®,
Pe = 10-9.

Pe .

Pe .

1/5 = P3® = 14 = a = 1 - P3® = 04.
n = 8

P3® Z X4 = p = 10-3.
®,

b = 1/6, 1,
C01 = bC10 .C00 = C11 = 0= 1 - P3® = 04,
P3® = 14 = 1/4

1/2

H0
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(a) Find the maximum likelihood decision rule and evaluate its Type I and Type II error
probabilities as well as its overall probability of error.

(b) Find the Bayes decision rule and compare its error probabilities to part a.
(c) Suppose is such that Find the value of n in part b,so that

8.87. A widely used digital radio system transmits pairs of bits at a time. The input to the sys-
tem is a pair where can be or and where the output of the channel
is a pair of independent Gaussian random variables (X, Y) with variance and means

and respectively. Assume and that the input
bits are independent of each other. The receiver observes the pair (X, Y) and based on
their values decides on the input pair 
(a) Plot for the four possible input pairs.
(b) Let the cost be zero if the receiver correctly identifies the input pair, and let the cost

be one otherwise. Show that the Bayes’ decision rule selects the input pair 
that maximizes:

(c) Find the four decision regions in the plane when the inputs are equally likely. Show
that this corresponds to the maximum likelihood decision rule.

8.88. Show that the Bayes estimator for the cost function is given 
by the median of the a posteriori pdf Hint: Write the integral for the average
cost as the sum of two integrals over the regions and and then dif-
ferentiate with respect to g(X).

8.89. Show that the Bayes’ estimator for the cost function in Eq. (8.96) is given by the MAP es-
timator for 

8.90. Let the observations be iid Gaussian random variables with unit variance
and unknown mean Suppose that is itself a Gaussian random variable with mean 
and variance Find the following estimators:
(a) The minimum mean square estimator for 
(b) The minimum mean absolute error estimator for 
(c) The MAP estimator for 

8.91. Let X be a uniform random variable in the interval where has a gamma distri-
bution for 
(a) Find the estimator that minimizes the mean absolute error.
(b) Find the estimator that minimizes the mean square error.

8.92. Let X be a binomial random variable with parameters n and Suppose that has a
beta distribution with parameters and 
(a) Show that is a beta pdf with parameters and 
(b) Show that the minimum mean square estimator is then 

8.93. Let X be a binomial random variable with parameters n and Suppose that is uniform
in the interval [0, 1]. Consider the following cost function which emphasizes the errors at
the extreme values of 

C1g1X2, u2 =
1u - g1X222
u11 - u2 .

u:

®®.
1a + k2/1a + b + n2.

b + n - k.a + kf®1u ƒX = k2
b.a

®®.

u 7 0.f®1u2 = ue-u
®10, ®2,

®.
®.

®.
s2.

0®®.
X1 ,X2 , Á ,Xn

u.

g1X2 6 u,g1X2 7 u
f®1u ƒ X2.

C1g1X2, ®2 = ƒ g1X2 - ® ƒ ,

fX,Y1x, y ƒ u1 , u22P3®1 , = u1 , ®2 = u24.

1u1 , u22
fX,Y1x, y ƒ ®1 , ®22

1®1 , ®22.
P3®i = 14 = a = 1 - P3®i = 04®2 ,®1

s2
-1+ 1®i1®1 , ®22

Pe = 10-9.P3N 7 14 = 10-3.s
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k 1 2 3 4 5 6

nk 25 8 17 20 13 13

Show that the Bayes estimator is given by

Section 8.7: Testing the Fit of a Distribution to Data

8.94. The following histogram was obtained by counting the occurrence of the first digits in
telephone numbers in one column of a telephone directory:

g1k2 =
≠1n2

≠1k2≠1n - k2
k
n

.

digit 0 1 2 3 4 5 6 7 8 9

observed 0 0 24 2 25 3 32 15 2 2

Test the goodness of fit of this data to a random variable that is uniformly distributed in
the set at a 1% significance level. Repeat for the set 

8.95. A die is tossed 96 times and the number of times each face occurs is counted:
52, 3, Á , 96.50, 1, Á , 96

(a) Test the goodness of fit of the data to the pmf of a fair die at a 5% significance level.
(b) Run the following experiment 100 times: Generate 50 iid random variables from

the discrete pmf Test the goodness of fit of this data to
tosses from a fair die. What is the relative frequency with which the null hypothesis
is rejected?

(c) Repeat part b using a sample size of 100 iid random variables.
8.96. (a) Show that the statistic when is:

(b) Explain why approaches a chi-square random variable with 1 degree of freedom
as n becomes large.

8.97. (a) Repeat the following experiment 500 times: Generate 100 samples of the sum of X
of 10 iid uniform random variables from the unit interval. Perform a goodness-of-fit
test of the random samples of X to the Gaussian random variable with the same
mean and variance. What is the relative frequency with which the null hypothesis is
rejected at a 5% level?

(b) Repeat part a for sums of 20 iid uniform random variables.
8.98. Repeat Problem 8.97 for the sum of exponential random variables with mean 1.
8.99. A computer simulation program gives pairs of numbers (X, Y) that are supposed to be

uniformly distributed in the unit square. Use the chi-square test to assess the goodness of
fit of the computer output.

8.100. Use the approach in Problem 8.99 to develop a test for the independence between two
random variables X and Y.

D2

D2 =
1n1 - np122
np111 - p12 = B 1n1 - np12

2np111 - p12R2

K = 2D2

51/6, 1/6, 1/6, 1/6, 3/24, 5/246.
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Problems Requiring Cumulative Knowledge

8.101. You are asked to characterize the behavior of a new binary communications system in
which the inputs are and the outputs are Design a series of tests to charac-
terize the errors introduced in transmissions using the system. How would you estimate
the probability of error p? How would you determine whether the p is fixed or whether
it varies? How would you determine whether errors introduced by the system are inde-
pendent of each other? How would you determine whether the errors introduced by the
system are dependent on the input?

8.102. You are asked to characterize the behavior of a new binary communications system in
which the inputs are and the outputs assume a continuum of real values.What tests
would you change and what tests would you keep from Problem 8.101?

8.103. Your summer job with the local bus company entails sitting at a busy intersection and
recording the bus arrival times for several routes in a table next to their scheduled times.
How would you characterize the arrival time behavior of the buses?

8.104. Your friend Khash has a summer job with an Internet access provider that involves char-
acterizing the packet transit times to various key sites on the Internet.Your friend has ac-
cess to some nifty hardware for generating test packets, including GPS systems, to
provide accurate timestamps. How would your friend go about characterizing these tran-
sit times?

8.105. Leigh’s summer job is with a startup testing a new optical device. Leigh runs a standard
test on these devices to determine their failure rates and failure root causes. He looks at
the dependence of failures on the supplier, on impurities in the devices, and on different
approaches to preparing the devices. How should Leigh go about characterizing failure
rate behavior? How should he identify root causes for failures?

50, 16

50, 16.50, 16



In certain random experiments, the outcome is a function of time or space. For exam-
ple, in speech recognition systems, decisions are made on the basis of a voltage wave-
form corresponding to a speech utterance. In an image processing system, the intensity
and color of the image varies over a rectangular region. In a peer-to-peer network, the
number of peers in the system varies with time. In some situations, two or more func-
tions of time may be of interest. For example, the temperature in a certain city and the
demand placed on the local electric power utility vary together in time.

The random time functions in the above examples can be viewed as numerical
quantities that evolve randomly in time or space. Thus what we really have is a family
of random variables indexed by the time or space variable. In this chapter we begin the
study of random processes. We will proceed as follows:

• In Section 9.1 we introduce the notion of a random process (or stochastic
process), which is defined as an indexed family of random variables.

• We are interested in specifying the joint behavior of the random variables within
a family (i.e., the temperature at two time instants). In Section 9.2 we see that this
is done by specifying joint distribution functions, as well as mean and covariance
functions.

• In Sections 9.3 to 9.5 we present examples of stochastic processes and show how
models of complex processes can be developed from a few simple models.

• In Section 9.6 we introduce the class of stationary random processes that can be
viewed as random processes in “steady state.”

• In Section 9.7 we investigate the continuity properties of random processes and
define their derivatives and integrals.

• In Section 9.8 we examine the properties of time averages of random processes
and the problem of estimating the parameters of a random process.

• In Section 9.9 we describe methods for representing random processes by Fouri-
er series and by the Karhunen-Loeve expansion.

• Finally, in Section 9.10 we present methods for generating random processes.

487
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X(t, z1)

t
tkt3t2t1

X(t, z2)

t
tkt2 t3t1

X(t, z3)

t
tkt2 t3

t1

FIGURE 9.1
Several realizations of a random process.

9.1 DEFINITION OF A RANDOM PROCESS

Consider a random experiment specified by the outcomes from some sample space S,
by the events defined on S, and by the probabilities on these events. Suppose that to
every outcome we assign a function of time according to some rule:

The graph of the function versus t, for fixed, is called a realization, sample
path, or sample function of the random process. Thus we can view the outcome of the
random experiment as producing an entire function of time as shown in Fig. 9.1. On the
other hand, if we fix a time from the index set I, then is a random variable
(see Fig. 9.1) since we are mapping onto a real number. Thus we have created a fam-
ily (or ensemble) of random variables indexed by the parameter 
This family is called a random process. We also refer to random processes as stochastic
processes. We usually suppress the and use X(t) to denote a random process.

A stochastic process is said to be discrete-time if the index set I is a countable set
(i.e., the set of integers or the set of nonnegative integers). When dealing with discrete-
time processes, we usually use n to denote the time index and to denote the random
process. A continuous-time stochastic process is one in which I is continuous (i.e., the
real line or the nonnegative real line).

The following example shows how we can imagine a stochastic process as result-
ing from nature selecting at the beginning of time and gradually revealing it in time
throughX1t, z2. z

Xn

z

t, 5X1t, z2, t H I6.z

X1tk , z2tk

zX1t, z2
X1t, z2 t H I.

z H S,

z
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Example 9.1 Random Binary Sequence

Let be a number selected at random from the interval and let be the binary
expansion of 

Define the discrete-time random process by

The resulting process is sequence of binary numbers, with equal to the nth number in
the binary expansion of 

Example 9.2 Random Sinusoids

Let be selected at random from the interval Define the continuous-time random
process by

The realizations of this random process are sinusoids with amplitude as shown in Fig. 9.2(a).
Let be selected at random from the interval and let 

The realizations of are phase-shifted versions of as shown in Fig 9.2(b).cos 2ptY1t, z2
Y1t, z2 = cos12pt + z2.1-p, p2z

z,

X1t, z2 = z cos12pt2 -q 6 t 6 q.

X1t, z2
3-1, 14.z

z.
X1n, z2

X1n, z2 = bn n = 1, 2, Á .

X1n, z2

z = a
q

i=1
bi2

-i where bi H 50, 16.
z:

b1b2 ÁS = 30, 14,z

(a)

z � 0.6 z� 0.9

z � �0.2

t

t

(b)

z � p/4 z � 0

FIGURE 9.2
(a) Sinusoid with random amplitude, (b) Sinusoid with random
phase.
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The randomness in induces randomness in the observed function In
principle, one can deduce the probability of events involving a stochastic process at
various instants of time from probabilities involving by using the equivalent-event
method introduced in Chapter 4.

Example 9.3

Find the following probabilities for the random process introduced in Example 9.1:
and

The probabilities are obtained by finding the equivalent events in terms of 

since all points in the interval begin with and all points in begin
with and Clearly, any sequence of k bits has a corresponding subinterval of length
(and hence probability) 

Example 9.4

Find the pdf of and in Example 9.2.
If is such that then for all and the pdf of is a delta

function of unit weight at Otherwise, is uniformly distributed in the interval
since is uniformly distributed in (see Fig. 9.3a). Note that the pdf

of depends on 
The approach used in Example 4.36 can be used to show that has an arcsine dis-

tribution:

(see Fig. 9.3b). Note that the pdf of does not depend on 
Figure 9.3(c) shows a histogram of 1000 samples of the amplitudes at 

which can be seen to be approximately uniformly distributed in Figure 9.3(d) shows the
histogram for the samples of the sinusoid with random phase. Clearly there is agreement with
the arcsine pdf.

In general, the sample paths of a stochastic process can be quite complicated
and cannot be described by simple formulas. In addition, it is usually not possible to
identify an underlying probability space for the family of observed functions of time.
Thus the equivalent-event approach for computing the probability of events involving

in terms of the probabilities of events involving does not prove useful inzX1t, z2

3-1, 14.
t0 = 0,X1t0 , z2

t0 .Y1t0 , z2

fY1y2 =
1

p21 - y2
, ƒy ƒ 6 1

Y1t0 , z2
t0 .X1t0 , z2

3-1, 14z1-cos 2pt0 , cos 2pt02
X1t0 , z2x = 0.

X1t02zX1t0 , z2 = 0cos12pt02 = 0,t0

Y1t0 , z2X0 = X1t0 , z2

2-k.
b2 = 1.b1 = 0

31/4, 1/22b1 = 030 … z … 14
P3X11, z2 = 0 and X12, z2 = 14 = P c1

4
… z 6

1
2
d =

1
4

,

P3X11, z2 = 04 = P c0 … z 6
1
2
d =

1
2

z:
P3X11, z2 = 0 and X12, z2 = 14.P3X11, z2 = 04

z

X1t, z2.z
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FIGURE 9.3
(a) pdf of sinusoid with random amplitude. (b) pdf of sinusoid with random phase. (c) Histogram of samples from
uniform amplitude sinusoid at (d) Histogram of samples from random phase sinusoid at t = 0.t = 0.

practice. In the next section we show an alternative method for specifying the proba-
bilities of events involving a stochastic process.

9.2 SPECIFYING A RANDOM PROCESS

There are many questions regarding random processes that cannot be answered with
just knowledge of the distribution at a single time instant. For example, we may be in-
terested in the temperature at a given locale at two different times. This requires the
following information:

In another example, the speech compression system in a cellular phone predicts the
value of the speech signal at the next sampling time based on the previous k samples.
Thus we may be interested in the following probability:

P3a 6 X1tk+12 … b ƒX1t12 = x1 ,X1t22 = x2 , Á ,X1tk2 = xk4.

P3x1 6 X1t12 … x1 , x2 6 X1t22 … x24.

fY(t0)(x)

y

fX(t0)(x)

1/2 cos 2πt0

� cos 2πt0 cos 2πt0
x

0 0 1�1

(a)

(c)

(b)

(d)

0

0.02

0.04

0.06

0.08

0.1

0�1 �0.5 0.5 1
0

0.05

0.1

0.15

0.2
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It is clear that a general description of a random process should provide probabilities
for vectors of samples of the process.

9.2.1 Joint Distributions of Time Samples

Let be the k random variables obtained by sampling the random
process at the times 

as shown in Fig. 9.1. The joint behavior of the random process at these k time instants
is specified by the joint cumulative distribution of the vector random variable

The probabilities of any event involving the random process at all or
some of these time instants can be computed from this cdf using the methods devel-
oped for vector random variables in Chapter 6.Thus, a stochastic process is specified by
the collection of kth-order joint cumulative distribution functions:

(9.1)

for any k and any choice of sampling instants Note that the collection of cdf’s
must be consistent in the sense that lower-order cdf’s are obtained as marginals of
higher-order cdf’s. If the stochastic process is continuous-valued, then a collection of
probability density functions can be used instead:

(9.2)

If the stochastic process is discrete-valued, then a collection of probability mass
functions can be used to specify the stochastic process:

(9.3)

for any k and any choice of sampling instants
At first glance it does not appear that we have made much progress in specifying

random processes because we are now confronted with the task of specifying a vast
collection of joint cdf’s! However, this approach works because most useful models of
stochastic processes are obtained by elaborating on a few simple models, so the meth-
ods developed in Chapters 5 and 6 of this book can be used to derive the required cdf’s.
The following examples give a preview of how we construct complex models from sim-
ple models. We develop these important examples more fully in Sections 9.3 to 9.5.

Example 9.5 iid Bernoulli Random Variables

Let be a sequence of independent, identically distributed Bernoulli random variables with
The joint pmf for any k time samples is then

P3X1 = x1 ,X2 = x2 , Á ,Xk = xk4 = P3X1 = x14Á P3Xk = xk4 = a1
2
bk

p = 1/2.
Xn

n1 , Á , nk .

pX1,Á ,Xk1x1 , x2 , Á , xk2 = P3X1t12 = x1 ,X1t22 = x2 , Á ,X1tk2 = xk4

= P5x1 6 X1t12 … x1 + dx1 , Á , xk 6 X1tk2 … xk + dxk4.
fX1,Á ,Xk1x1 , x2 , Á , xk2 dx1 Á dxn

t1 , Á , tk .

FX1,Á ,Xk1x1 , x2 , Á , xk2 = P3X1t12 … x1 ,X1t22 … x2 , Á ,X1tk2 … xk4,

X1 ,X2 , Á ,Xk .

X1 = X1t1 , z2,X2 = X1t2 , z,2, Á ,Xk = X1tk , z2,
t1 , t2 , Á , tk:X1t, z2

X1 ,X2 , Á ,Xk
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where for all i. This binary random process is equivalent to the one discussed in
Example 9.1.

Example 9.6 iid Gaussian Random Variables

Let be a sequence of independent, identically distributed Gaussian random variables with
zero mean and variance The joint pdf for any k time samples is then

The following two examples show how more complex and interesting processes
can be built from iid sequences.

Example 9.7 Binomial Counting Process

Let be a sequence of independent, identically distributed Bernoulli random variables with
Let be the number of 1’s in the first n trials:

is an integer-valued nondecreasing function of n that grows by unit steps after a random num-
ber of time instants. From previous chapters we know that is a binomial random variable with
parameters n and In the next section we show how to find the joint pmf’s of using
conditional probabilities.

Example 9.8 Filtered Noisy Signal

Let be a sequence of independent, identically distributed observations of a signal voltage 
corrupted by zero-mean Gaussian noise with variance 

Consider the signal that results from averaging the sequence of observations:

From previous chapters we know that is the sample mean of an iid sequence of Gaussian ran-
dom variables. We know that itself is a Gaussian random variable with mean and variance

and so it tends towards the value as n increases. In a later section, we show that is an
example from the class of Gaussian random processes.

9.2.2 The Mean, Autocorrelation, and Autocovariance Functions

The moments of time samples of a random process can be used to partially specify the
random process because they summarize the information contained in the joint cdf’s.

Snms2/n,
mSn

Sn

Sn = 1X1 + X2 + Á + Xn2/n for n = 0, 1, Á .

Xj = m + Nj for j = 0, 1, Á .

s2:Nj

mXj

Snp = 1/2.
Sn

Sn

Sn = X1 + X2 + Á + Xn for n = 0, 1, Á .

Snp = 1/2.
Xn

fX1,X2, Á ,Xk1x1 , x2 , Á , xk2 =
1

12ps 22k/2
e-1x1

2+x2
2+Á+xk22/2s2

.

sX
2 .

Xn

xi H 50, 16
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The mean function and the variance function VAR[X(t)] of a continuous-time
random process X(t) are defined by

(9.4)

and

(9.5)

where is the pdf of X(t). Note that and VAR[X(t)] are deterministic
functions of time. Trends in the behavior of X(t) are reflected in the variation of 
with time. The variance gives an indication of the spread in the values taken on by X(t)
at different time instants.

The autocorrelation of a random process X(t) is defined as the joint
moment of and 

(9.6)

where is the second-order pdf of X(t). In general, the autocorrelation
is a function of and Note that 

The autocovariance of a random process X(t) is defined as the covari-
ance of and 

(9.7)

From Eq. (5.30), the autocovariance can be expressed in terms of the autocorrelation
and the means:

(9.8)

Note that the variance of X(t) can be obtained from 

(9.9)

The correlation coefficient of X(t) is defined as the correlation coefficient of
and (see Eq. 5.31):

(9.10)

From Eq. (5.32) we have that Recall that the correlation coefficient is
a measure of the extent to which a random variable can be predicted as a linear func-
tion of another. In Chapter 10, we will see that the autocovariance function and the au-
tocorrelation function play a critical role in the design of linear methods for analyzing
and processing random signals.

ƒrX1t1 , t22 ƒ … 1.

rX1t1 , t22 =
CX1t1 , t22

2CX1t1 , t122CX1t2 , t22 .

X1t22X1t12

VAR3X1t24 = E31X1t2 - mX1t2224 = CX1t, t2.
CX1t1 , t22:

CX1t1 , t22 = RX1t1 , t22 - mX1t12mX1t22.

CX1t1 , t22 = E35X1t12 - mX1t1265X1t22 - mX1t2264.
X1t22:X1t12

CX(t1 , t2)
RX1t, t2 = E3X21t24.t2 .t1

fX1t12,X1t221x, y2

RX1t1 , t22 = E3X1t12X1t224 = L
q

-qL
q

-q
xyfX1t12,X1t221x, y2 dx dy,

X1t22:X1t12
RX(t1 , t2)

mX1t2
mX1t2fX1t21x2

VAR3X1t24 = L
q

-q
1x - mX1t222 fX1t21x2 dx,

mX1t2 = E3X1t24 = L
q

-q
xfX1t21x2 dx,

mX1t2
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The mean, variance, autocorrelation, and autocovariance functions for discrete-
time random processes are defined in the same manner as above. We use a slightly dif-
ferent notation for the time index. The mean and variance of a discrete-time random
process are defined as:

(9.11)

The autocorrelation and autocovariance functions of a discrete-time random process
are defined as follows:

(9.12)

and

(9.13)

Before proceeding to examples, we reiterate that the mean, autocorrelation,
and autocovariance functions are only partial descriptions of a random process. Thus
we will see later in the chapter that it is possible for two quite different random
processes to have the same mean, autocorrelation, and autocovariance functions.

Example 9.9 Sinusoid with Random Amplitude

Let where A is some random variable (see Fig. 9.2a). The mean of X(t) is
found using Eq. (4.30):

Note that the mean varies with t. In particular, note that the process is always zero for values of t
where

The autocorrelation is

and the autocovariance is then

Example 9.10 Sinusoid with Random Phase

Let where is uniformly distributed in the interval (see Fig.
9.2b). The mean of X(t) is found using Eq. (4.30):

1-p, p2®X1t2 = cos1vt + ®2,

= VAR3A4 cos 2pt1 cos 2pt2 .

= 5E3A24 - E3A426 cos 2pt1 cos 2pt2

CX1t1 , t22 = RX1t1 , t22 - mX1t12mX1t22

= E3A24 cos 2pt1 cos 2pt2 ,

RX1t1 , t22 = E3A cos 2pt1 A cos 2pt24

cos 2pt = 0.

mX1t2 = E3A cos 2pt4 = E3A4 cos 2pt.

X1t2 = A cos 2pt,

= RX1n1 , n22 - mX1n12mX1n22.
CX1n1 , n22 = E35X1n12 - mX1n1265X1n22 - mX1n2264

RX1n1 , n22 = E3X1n12X1n224
Xn

mX1n2 = E3Xn4 and VAR3Xn4 = E31Xn - mX1n2224.
Xn
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The autocorrelation and autocovariance are then

where we used the identity cos(a) Note that 
is a constant and that depends only on Note as well that the samples at time

and are uncorrelated if where k is any integer.

9.2.3 Multiple Random Processes

In most situations we deal with more than one random process at a time. For example,
we may be interested in the temperatures at city a, X(t), and city b, Y(t). Another very
common example involves a random process X(t) that is the “input” to a system and
another random process Y(t) that is the “output” of the system. Naturally, we are inter-
ested in the interplay between X(t) and Y(t).

The joint behavior of two or more random processes is specified by the collec-
tion of joint distributions for all possible choices of time samples of the processes.
Thus for a pair of continuous-valued random processes X(t) and Y(t) we must speci-
fy all possible joint density functions of and for all
k, j, and all choices of and For example, the simplest joint pdf
would be:

.

Note that the time indices of X(t) and Y(t) need not be the same. For example, we may
be interested in the input at time and the output at a later time 

The random processes X(t) and Y(t) are said to be independent random processes
if the vector random variables and are
independent for all k, j, and all choices of and 

.

The cross-correlation of X(t) and Y(t) is defined by

(9.14)

The processes X(t) and Y(t) are said to be orthogonal random processes if

(9.15)RX,Y1t1 , t22 = 0 for all t1 and t2 .

RX,Y1t1 , t22 = E3X1t12Y1t224.
RX,Y(t1 , t2)

FX,Y (x1, Á ,xk, y1, Á ,yj) = FX (X1, Á ,Xk)FY (y1, Á ,yj)

t¿1 , Á , t¿j:t1 , Á , tk
Y = 1Y1t¿12, Á , Y1t¿j22X = 1X1t12, Á ,X1tk22

t2 .t1

fX1t12,Y1t221x, y2 dxdy = P5x 6 X1t12 … x + dx, y 6 Y1t22 … y + dy4

t¿1 , Á , t¿j .t1 , Á , tk
Y1t¿12, Á , Y1t¿j2X1t12, Á ,X1tk2

v1t1 - t22 = kpt2t1

ƒ t1 - t2 ƒ .CX1t1 , t22
mX1t2cos1b2 = 1/2 cos1a + b2 + 1/2 cos1a - b2.

=
1
2

cos1v1t1 - t222,

=
1

2pL
p

-p

1
2
5cos1v1t1 - t22 + cos1v1t1 + t22 + 2u26 du

CX1t1 , t22 = RX1t1 , t22 = E3cos1vt1 + ®2 cos1vt2 + ®24

mX1t2 = E3cos1vt + ®24 =
1

2pL
p

-p
 cos1vt + u2 du = 0.
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The cross-covariance of X(t) and Y(t) is defined by

(9.16)

The processes X(t) and Y(t) are said to be uncorrelated random processes if

(9.17)

Example 9.11

Let and where is a random variable uniformly
distributed in Find the cross-covariance of X(t) and Y(t).

From Example 9.10 we know that X(t) and Y(t) are zero mean. From Eq. (9.16), the cross-
covariance is then equal to the cross-correlation:

since X(t) and Y(t) are not uncorrelated random processes be-
cause the cross-covariance is not equal to zero for all choices of time samples. Note, however,
that and are uncorrelated random variables for and such that 
where k is any integer.

Example 9.12 Signal Plus Noise

Suppose process Y(t) consists of a desired signal X(t) plus noise N(t):

Find the cross-correlation between the observed signal and the desired signal assuming that X(t)
and N(t) are independent random processes.

From Eq. (8.14), we have

where the third equality followed from the fact that X(t) and N(t) are independent.

= RX1t1 , t22 + mX1tl2mN1t22,
= RX1t1 , t22 + E3X1t124E3N1t224
= E3X1t125X1t22 + N1t2264

RXY1t1 , t22 = E3X1t12Y1t224

Y1t2 = X1t2 + N1t2.

v1t1 - t22 = kpt2t1Y1t22X1t12
E3sin1v1t1 + t22 + 2®24 = 0.

= -
1
2

sin1v1t1 - t222,
= E c - 1

2
sin1v1t1 - t222 +

1
2

sin1v1t1 + t22 + 2®2 d
CX,Y1t1 , t22 = RX,Y1t1 , t22 = E3cos1vt1 + ®2 sin1vt2 + ®24

3-p, p4.
®Y1t2 = sin1vt + ®2,X1t2 = cos1vt + ®2

CX,Y1t1 , t22 = 0 for all t1 and t2 .

= RX,Y1t1 , t22 - mX1t12mX1t22.
CX,Y1t1 , t22 = E35X1t12 - mX1t1265Y1t22 - mX1t2264

CX,Y(t1 , t2)
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9.3 DISCRETE-TIME PROCESSES: SUM PROCESS, BINOMIAL COUNTING 
PROCESS, AND RANDOM WALK

In this section we introduce several important discrete-time random processes. We
begin with the simplest class of random processes—independent, identically distrib-
uted sequences—and then consider the sum process that results from adding an iid se-
quence.We show that the sum process satisfies the independent increments property as
well as the Markov property. Both of these properties greatly facilitate the calculation
of joint probabilities. We also introduce the binomial counting process and the random
walk process as special cases of sum processes.

9.3.1 iid Random Process

Let be a discrete-time random process consisting of a sequence of independent,
identically distributed (iid) random variables with common cdf mean m, and
variance The sequence is called the iid random process.

The joint cdf for any time instants is given by

(9.18)

where, for simplicity, denotes Equation (9.18) implies that if is discrete-
valued, the joint pmf factors into the product of individual pmf’s, and if is continu-
ous-valued, the joint pdf factors into the product of the individual pdf’s.

The mean of an iid process is obtained from Eq. (9.4):

(9.19)

Thus, the mean is constant.
The autocovariance function is obtained from Eq. (9.6) as follows. If then

since and are independent random variables. If then

We can express the autocovariance of the iid process in compact form as follows:

(9.20)

where if and 0 otherwise. Therefore the autocovariance function is
zero everywhere except for The autocorrelation function of the iid process is
found from Eq. (9.7):

(9.21)RX1n1 , n22 = CX1n1 , n22 + m2.

n1 = n2 .
n1 = n2 ,dn1n2

= 1

CX1n1 , n22 = s2dn1n2
,

CX1n1 , n22 = E31Xn - m224 = s2.

n1 = n2 = n,Xn2
Xn1

= E31Xn1
- m24E31Xn2

- m24 = 0,

CX1n1 , n22 = E31Xn1
- m21Xn2

- m24
n1 Z n2 ,

mX1n2 = E3Xn4 = m for all n.

Xn

XnXnk .Xk

= FX1x12FX1x22Á FX1xk2,
FX1, Á ,Xk1x1 , x2 , Á , xk2 = P3X1 … x1 ,X2 … x2 , Á ,Xk … xk4

n1 , Á , nk
Xns2.

FX1x2,
Xn
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Example 9.13 Bernoulli Random Process

Let be a sequence of independent Bernoulli random variables. is then an iid random
process taking on values from the set A realization of such a process is shown in Fig.
9.4(a). For example, could be an indicator function for the event “a light bulb fails and is re-
placed on day n.”

Since is a Bernoulli random variable, it has mean and variance

The independence of the makes probabilities easy to compute. For example, the prob-
ability that the first four bits in the sequence are 1001 is

Similarly, the probability that the second bit is 0 and the seventh is 1 is

Example 9.14 Random Step Process

An up-down counter is driven by or pulses. Let the input to the counter be given by
where is the Bernoulli random process, then

For example, might represent the change in position of a particle that moves along a straight
line in jumps of every time unit. A realization of is shown in Fig. 9.5(a).Dn;1

Dn

Dn = b +1 if In = 1
-1 if In = 0.

InDn = 2In - 1,
-1+1

P3I2 = 0, I7 = 14 = P3I2 = 04P3I7 = 14 = p11 - p2.

= p211 - p22.
= P3I1 = 14P3I2 = 04P3I3 = 04P3I4 = 14
P3I1 = 1, I2 = 0, I3 = 0, I4 = 14

In’s

mI1n2 = p VAR3In4 = p11 - p2.
In

In

50, 16.
InIn

0

1
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n

In

(a)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8
n

Sn

(b)

FIGURE 9.4
(a) Realization of a Bernoulli process. indicates that a light bulb fails and is replaced on day n. (b) Realization of a binomial
process. denotes the number of light bulbs that have failed up to time n.Sn

In = 1
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The mean of is

The variance of is found from Eqs. (4.37) and (4.38):

The probabilities of events involving are computed as in Example 9.13.

9.3.2 Independent Increments and Markov Properties of Random Processes

Before proceeding to build random processes from iid processes, we present two very
useful properties of random processes. Let X(t) be a random process and consider two
time instants, The increment of the random process in the interval is
defined as A random process X(t) is said to have independent increments
if the increments in disjoint intervals are independent random variables, that is, for any k
and any choice of sampling instants the associated increments

are independent random variables. In the next subsection, we show that the joint pdf
(pmf) of is given by the product of the pdf (pmf) of and
the marginal pdf’s (pmf’s) of the individual increments.

Another useful property of random processes that allows us to readily obtain the
joint probabilities is the Markov property. A random process X(t) is said to be Markov
if the future of the process given the present is independent of the past; that is, for any k
and any choice of sampling instants and for any 

(9.22)= fX1tk21xk ƒX1tk-12 = xk-12
fX1tk21xk ƒX1tk-12 = xk-1 , Á ,X1t12 = x12

x1 , x2 , Á ,xk ,t1 6 t2 6 Á 6 tk

X1t12X1t12,X1t22, Á ,X1tk2

X1t22 - X1t12,X1t32 - X1t22, Á ,X1tk2 - X1tk-12
t1 6 t2 6 Á 6 tk ,

X1t22 - X1t12.
t1 6 t … t2t1 6 t2 .

Dn

VAR3Dn4 = VAR32In - 14 = 22 VAR3In4 = 4p11 - p2.
Dn

mD1n2 = E3Dn4 = E32In - 14 = 2E3In4 - 1 = 2p - 1.

Dn
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n

Sn

(b)

FIGURE 9.5
(a) Realization of a random step process. implies that the particle moves one step to the right at time n. (b) Realization
of a random walk process. denotes the position of a particle at time n.Sn

Dn � 1



Section 9.3 Discrete-Time Processes: Sum Process, Binomial Counting Process, and Random Walk 501

if X(t) is continuous-valued, and

(9.23)

if X(t) is discrete-valued. The expressions on the right-hand side of the above two
equations are called the transition pdf and transition pmf, respectively. In the next sec-
tions we encounter several processes that satisfy the Markov property. Chapter 11 is
entirely devoted to random processes that satisfy this property.

It is easy to show that a random process that has independent increments is also
a Markov process.The converse is not true; that is, the Markov property does not imply
independent increments.

9.3.3 Sum Processes: The Binomial Counting and Random Walk Processes

Many interesting random processes are obtained as the sum of a sequence of iid ran-
dom variables,

(9.24)

where We call the sum process. The pdf or pmf of is found using the convo-
lution or characteristic-equation methods presented in Section 7.1. Note that depends
on the “past,” only through that is, is independent of the past
when is known.This can be seen clearly from Fig. 9.6, which shows a recursive pro-
cedure for computing in terms of and the increment Thus is a Markov
process.

Example 9.15 Binomial Counting Process

Let the be the sequence of independent Bernoulli random variables in Example 9.13, and let
be the corresponding sum process. is then the counting process that gives the number of

successes in the first n Bernoulli trials. The sample function for corresponding to a particular
sequence of is shown in Fig. 9.4(b). Note that the counting process can only increase over
time. Note as well that the binomial process can increase by at most one unit at a time. If indi-
cates that a light bulb fails and is replaced on day n, then denotes the number of light bulbs
that have failed up to day n.

Sn

In

Ii’s
Sn

SnSn

Ii

SnXn .Sn-1Sn

Sn-1

SnSn-1 ,S1 , Á , Sn-1 ,
Sn

SnSnS0 = 0.

= Sn-1 + Xn ,

Sn = X1 + X2 + Á + Xn n = 1, 2, Á

X1 ,X2 , Á :

= P3X1tk2 = xk ƒX1tk-12 = xk-14
P3X1tk2 = xk ƒX1tk-12 = xk-1 , Á ,X1t12 = x14

Xn

Sn�1

Sn � Sn�1 
 Xn


Unit
delay

FIGURE 9.6
The sum process can be
generated in this way.

Sn � X1 � Á � Xn , S0 � 0,
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Since is the sum of n independent Bernoulli random variables, is a binomial random
variable with parameters n and

and zero otherwise. Thus has mean np and variance Note that the mean and vari-
ance of this process grow linearly with time. This reflects the fact that as time progresses, that is,
as n grows, the range of values that can be assumed by the process increases. If then we
also know that has a tendency to grow steadily without bound over time.

The Markov property of the binomial counting process is easy to deduce. Given that the
current value of the process at time is the process at the next time instant will
be k with probability or with probability p. Once we know the value of the process
at time the values of the random process prior to time are irrelevant.

Example 9.16 One-Dimensional Random Walk

Let be the iid process of random variables in Example 9.14, and let be the correspond-
ing sum process. can represent the position of a particle at time n. The random process is an
example of a one-dimensional random walk. A sample function of is shown in Fig. 9.5(b). Un-
like the binomial process, the random walk can increase or decrease over time.The random walk
process changes by one unit at a time.

The pmf of is found as follows. If there are k in the first n trials, then there are
and Conversely, if the number of is
If is not an integer, then cannot equal j. Thus

Since k is the number of successes in n Bernoulli trials, the mean of the random walk is:

As time progresses, the random walk can fluctuate over an increasingly broader range of posi-
tive and negative values. has a tendency to either grow if or to decrease if 
The case provides a precarious balance, and we will see later, in Chapter 12, very inter-
esting dynamics. Figure 9.7(a) shows the first 100 steps from a sample function of the random
walk with Figure 9.7(b) shows four sample functions of the random walk process with

for 1000 steps. Figure 9.7(c) shows four sample functions in the asymmetric case where
Note the strong linear growth trend in the process.

The sum process has independent increments in nonoverlapping time inter-
vals. To see this consider two time intervals: and where

The increments of in these disjoint time intervals are given by

(9.25)Sn3
- Sn2

= Xn2+1 + Á + Xn3
.

Sn1
- Sn0

= Xn0+1 + Á + Xn1

Snn1 … n2 .
n2 6 n … n3 ,n0 6 n … n1

Sn

p = 3/4.
p = 1/2

p = 1/2.

p = 1/2
p 6 1/2.p 7 1/2,Sn

E3Sn4 = 2np - n = n12p - 12.

P3Sn = 2k - n4 = ¢n
k
≤pk11 - p2n-k for k H 50, 1, Á , n6.

Sn1j + n2/2k = 1j + n2/2.
+1’sSn = jSn = k - 1n - k2 = 2k - n.“-1”s,n - k

“+1”sSn

Sn

SnSn

Sn;1Dn

n - 1n - 1,
k + 11 - p

Sn-1 = k,n - 1

Sn

p 7 0

np11 - p2.Sn

P3Sn = j4 = ¢n
j
≤pj11 - p2n- j for 0 … j … n,

p = P3I = 14:
SnSn
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(a) Random walk process with (b) Four sample functions of

symmetric random walk process with (c) Four sample functions

of asymmetric random walk with p � 3/4.
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The above increments do not have any of the in common, so the independence of
the implies that the increments and are independent ran-
dom variables.

For the increment is the sum of iid random variables, so
it has the same distribution as the sum of the first that is,

(9.26)

Thus increments in intervals of the same length have the same distribution regardless of
when the interval begins. For this reason, we also say that has stationary increments.

Example 9.17 Independent and Stationary Increments of Binomial Process 
and Random Walk

The independent and stationary increments property is particularly easy to see for the binomial
process since the increments in an interval are the number of successes in the corresponding
Bernoulli trials. The independent increment property follows from the fact that the numbers of
successes in disjoint time intervals are independent. The stationary increments property follows
from the fact that the pmf for the increment in a time interval is the binomial pmf with the cor-
responding number of trials.

The increment in a random walk process is determined by the same number of successes
as a binomial process. It then follows that the random walk also has independent and stationary
increments.

The independent and stationary increments property of the sum process 
makes it easy to compute the joint pmf/pdf for any number of time instants. For sim-
plicity, suppose that the are integer-valued, so is also integer-valued.We compute
the joint pmf of at times and 

(9.27)

since the process is equal to and at times and if and only if it is
equal to at time and the subsequent increments are and The
independent increments property then implies that

(9.28)

Finally, the stationary increments property implies that the joint pmf of is given by:

Clearly, we can use this procedure to write the joint pmf of at any time instants
in terms of the pmf at the initial time instant and the pmf’s of the

subsequent increments:
n1 6 n2 6 Á 6 nk

Sn

= P3Sn1
= y14P3Sn2-n1

= y2 - y14P3Sn3-n2
= y3 - y24.
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Sn
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- Sn1
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- Sn2
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P3Sn1
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- Sn1
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- Sn2
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SnXn

Sn

Sn

P3Sn¿ - Sn = y4 = P3Sn¿ -n = y4.
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(9.29)

If the are continuous-valued random variables, then it can be shown that the joint
density of at times is:

(9.30)

Example 9.18 Joint pmf of Binomial Counting Process

Find the joint pmf for the binomial counting process at times and Find the probability that
that is, the first trials are failures and the remaining trials are all

successes.
Following the above approach we have

The requested probability is then:

which is what we would obtain from a direct calculation for Bernoulli trials.

Example 9.19 Joint pdf of Sum of iid Gaussian Sequence

Let be a sequence of iid Gaussian random variables with zero mean and variance Find
the joint pdf of the corresponding sum process at times and 

From Example 7.3, we know that is a Gaussian random variable with mean zero and
variance The joint pdf of at times and is given by

Since the sum process is the sum of n iid random variables, it has mean and
variance:

(9.31)

(9.32) VAR3Sn4 = n VAR3X4 = ns2.

mS1n2 = E3Sn4 = nE3X4 = nm

Sn
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1y1 , y22 = fSn2 - n1
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The property of independent increments allows us to compute the autocovariance in
an interesting way. Suppose so then

Since and the increment are independent,

since Similarly, if we would have obtained 
Therefore the autocovariance of the sum process is

(9.33)

Example 9.20 Autocovariance of Random Walk

Find the autocovariance of the one-dimensional random walk.
From Example 9.14 and Eqs. (9.32) and (9.33), has mean and variance

Thus its autocovariance is given by

Cs1n, k2 = min1n, k24p11 - p2.
4np11 - p2.

n12p - 12Sn

CS1n, k2 = min1n, k2s2.

ks2.k = min1n, k2,E3Sn - nm4 = 0.

= VAR3Sn4 = ns2,

= E31Sn - nm224
CS1n, k2 = E31Sn - nm224 + E31Sn - nm24E31Sk - Sn - 1k - n2m24

Sk - SnSn

= E31Sn - nm224 + E31Sn - nm21Sk - Sn - 1k - n2m24.
= E31Sn - nm251Sn - nm2 + 1Sk - km2 - 1Sn - nm264

CS1n, k2 = E31Sn - nm21Sk - km24
n = min1n, k2,n … k

Xn
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FIGURE 9.8
(a) First-order autoregressive process; (b) Moving average process.
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The sum process can be generalized in a number of ways. For example, the recur-
sive structure in Fig. 9.6 can be modified as shown in Fig. 9.8(a). We then obtain first-
order autoregressive random processes, which are of interest in time series analysis and in
digital signal processing. If instead we use the structure shown in Fig. 9.8(b), we obtain an
example of a moving average process. We investigate these processes in Chapter 10.

9.4 POISSON AND ASSOCIATED RANDOM PROCESSES

In this section we develop the Poisson random process, which plays an important
role in models that involve counting of events and that find application in areas
such as queueing systems and reliability analysis. We show how the continuous-
time Poisson random process can be obtained as the limit of a discrete-time
process. We also introduce several random processes that are derived from the
Poisson process.

9.4.1 Poisson Process

Consider a situation in which events occur at random instants of time at an average
rate of events per second. For example, an event could represent the arrival of a cus-
tomer to a service station or the breakdown of a component in some system. Let N(t)
be the number of event occurrences in the time interval [0, t]. N(t) is then a nonde-
creasing, integer-valued, continuous-time random process as shown in Fig. 9.9.
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FIGURE 9.9
A sample path of the Poisson counting process. The event occurrence times are denoted
by . The jth interevent time is denoted by Xj = Sj - Sj�1 .S1 , S2 , Á
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Suppose that the interval [0, t] is divided into n subintervals of very short dura-
tion Assume that the following two conditions hold:

1. The probability of more than one event occurrence in a subinterval is negligible
compared to the probability of observing one or zero events.

2. Whether or not an event occurs in a subinterval is independent of the outcomes
in other subintervals.

The first assumption implies that the outcome in each subinterval can be viewed as a
Bernoulli trial. The second assumption implies that these Bernoulli trials are indepen-
dent. The two assumptions together imply that the counting process N(t) can be ap-
proximated by the binomial counting process discussed in the previous section.

If the probability of an event occurrence in each subinterval is p, then the expect-
ed number of event occurrences in the interval [0, t] is np. Since events occur at a rate
of events per second, the average number of events in the interval [0, t] is Thus we
must have that

If we now let (i.e., ) and while remains fixed, then
from Eq. (3.40) the binomial distribution approaches a Poisson distribution with para-
meter We therefore conclude that the number of event occurrences N(t) in the in-
terval [0, t] has a Poisson distribution with mean 

(9.34a)

For this reason N(t) is called the Poisson process. The mean function and the variance
function of the Poisson process are given by:

(9.34b)

In Section 11.3 we rederive the Poisson process using results from Markov chain
theory.

The process N(t) inherits the property of independent and stationary increments
from the underlying binomial process. First, the distribution for the number of event oc-
currences in any interval of length t is given by Eq. (9.34a). Next, the independent and
stationary increments property allows us to write the joint pmf for N(t) at any number
of points. For example, for 

(9.35a)

The independent increments property also allows us to calculate the autocovariance of
N(t). For t1 … t2:

=
1lt12ie-lt1
i!

1l1t2 - t122je-l1t2- t12
1j - i2! .

= P3N1t12 = i4P3N1t2 - t12 = j - i4
P3N1t12 = i,N1t22 = j4 = P3N1t12 = i4P3N1t22 - N1t12 = j - i4

t1 6 t2 ,

mN1t2 = E3N1t2 = k4 = lt and VAR3N1t24 = lt.

P3N1t2 = k4 =
1lt2k
k!
e-lt for k = 0, 1, Á .

lt:
lt.

np = ltp: 0d = t/n: 0n: q

lt = np.

lt.l

d = t>n.
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(9.35b)

Example 9.21

Inquiries arrive at a recorded message device according to a Poisson process of rate 15 inquiries
per minute. Find the probability that in a 1-minute period, 3 inquiries arrive during the first 10
seconds and 2 inquiries arrive during the last 15 seconds.

The arrival rate in seconds is inquiries per second. Writing time in sec-
onds, the probability of interest is

By applying first the independent increments property, and then the stationary increments prop-
erty, we obtain

Consider the time T between event occurrences in a Poisson process. Again sup-
pose that the time interval [0, t] is divided into n subintervals of length The
probability that the interevent time T exceeds t seconds is equivalent to no event oc-
curring in t seconds (or in n Bernoulli trials):

(9.36)

Equation (9.36) implies that T is an exponential random variable with parameter 
Since the times between event occurrences in the underlying binomial process are in-
dependent geometric random variables, it follows that the sequence of interevent times
in a Poisson process is composed of independent random variables. We therefore con-
clude that the interevent times in a Poisson process form an iid sequence of exponential
random variables with mean 1/l.

l.

: e-lt as n: q .

= a1 -
lt
n
bn

= 11 - p2n
P3T 7 t4 = P3no events in t seconds4

d = t/n.

=
110/423e-10/4

3!

115/422e-15/4

2!
.

= P3N1102 = 34P3N160 - 452 = 24
= P3N1102 = 34P3N1602 - N1452 = 24

P3N1102 = 3 and N1602 - N1452 = 24

P3N1102 = 3 and N1602 - N1452 = 24.

l = 15/60 = 1/4

= VAR3N1t124 = lt1 .

= E31N1t12 - lt124E31N1t22 - N1t12 - l1t2 - t124 + VAR3N1t124
= E31N1t12 - lt125N1t22 - N1t12 - lt2 + lt1 + 1N1t12 - lt1264

CN1t1 , t22 = E31N1t12 - lt121N1t22 - lt224
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Another quantity of interest is the time at which the nth event occurs in a Pois-
son process. Let denote the iid exponential interarrival times, then

In Example 7.5, we saw that the sum of n iid exponential random variables has an Er-
lang distribution. Thus the pdf of is an Erlang random variable:

(9.37)

Example 9.22

Find the mean and variance of the time until the tenth inquiry in Example 9.20.
The arrival rate is inquiries per second, so the interarrival times are exponential

random variables with parameter From Table 4.1, the mean and variance of exponential inter-
arrival times then and respectively. The time of the tenth arrival is the sum of ten such
iid random variables, thus

In applications where the Poisson process models customer interarrival times, it is
customary to say that arrivals occur “at random.” We now explain what is meant by this
statement. Suppose that we are given that only one arrival occurred in an interval [0, t]
and we let X be the arrival time of the single customer. For N(x) is the num-
ber of events up to time x, and is the increment in the interval (x, t], then:

(9.38)

Equation (9.38) implies that given that one arrival has occurred in the interval [0, t],
then the customer arrival time is uniformly distributed in the interval [0, t]. It is in this
sense that customer arrival times occur “at random.” It can be shown that if the number
of amvals in the interval [0, t] is k, then the individual arrival times are distributed inde-
pendently and uniformly in the interval.

=
x

t
.

=
lxe-lxe-l1t-x2
lte-lt

=
P3N1x2 = 14P3N1t2 - N1x2 = 04

P3N1t2 = 14

=
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P3N1t2 = 14

=
P3N1x2 = 1 and N1t2 = 14
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FIGURE 9.10
Sample path of a random telegraph signal. The times between transitions are iid
exponential random variables.

Xj

Example 9.23

Suppose two customers arrive at a shop during a two-minute period. Find the probability that
both customers arrived during the first minute.

The arrival times of the customers are independent and uniformly distributed in the two-
minute interval. Each customer arrives during the first minute with probability 1/2. Thus the
probability that both arrive during the first minute is This answer can be verified by
showing that 

9.4.2 Random Telegraph Signal and Other Processes Derived from the Poisson Process

Many processes are derived from the Poisson process. In this section, we present two
examples of such random processes.

Example 9.24 Random Telegraph Signal

Consider a random process X(t) that assumes the values Suppose that or 
with probability 1/2, and suppose that X(t) changes polarity with each occurrence of an event in
a Poisson process of rate Figure 9.10 shows a sample function of X(t).

The pmf of X(t) is given by

(9.39)

The conditional pmf’s are found by noting that X(t) will have the same polarity as X(0) only
when an even number of events occur in the interval (0, t]. Thus

(9.40)=
1
2
11 + e-2at2.

= e-at
1
2
5eat + e-at6

= a
q

j=0

1at22j
12j2! e-at

P3X1t2 = ;1 |X102 = ;14 = P3N1t2 = even integer4

+ P3X1t2 = ;1 |X102 = -14P3X102 = -14.
P3X1t2 = ;14 = P3X1t2 = ;1 |X102 = 14P3X102 = 14

a.

-1X102 = +1;1.

P3N112 = 2 ƒ N122 = 24 = 1/4.
11/222 = 1/4.
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X(t) and X(0) will differ in sign if the number of events in t is odd:

(9.41)

We obtain the pmf for X(t) by substituting into Eq. (9.40):

(9.42)

Thus the random telegraph signal is equally likely to be at any time 
The mean and variance of X(t) are

(9.43)

The autocovariance of X(t) is found as follows:

(9.44)

Thus time samples of X(t) become less and less correlated as the time between them increases.

The Poisson process and the random telegraph processes are examples of the
continuous-time Markov chain processes that are discussed in Chapter 11.

Example 9.25 Filtered Poisson Impulse Train

The Poisson process is zero at and increases by one unit at the random arrival times
Thus the Poisson process can be expressed as the sum of randomly shifted step

functions:

where the are the arrival times.
Since the integral of a delta function is a step function we can view N(t)

as the result of integrating a train of delta functions that occur at times as shown in Fig. 9.11(a):Sn ,
u1t - S2,d1t - S2

Si

N1t2 = a
q

i=1
u1t - Si2 N102 = 0,

Sj , j = 1, 2, Á .
t = 0

= e-2a ƒt2- t1 ƒ.

=
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2
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1
2
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FIGURE 9.11
(a) Poisson process as integral of train of delta functions. (b) Filtered
train of delta functions.

1This is equivalent to passing Z(t) through a linear system whose response to a delta function is h(t).

We can obtain other continuous-time processes by replacing the step function by another
function h(t),1 as shown in Fig. 9.11(b):

(9.45)

For example, h(t) could represent the current pulse that results when a photoelectron hits a de-
tector. X(t) is then the total current flowing at time t. X(t) is called a shot noise process.

X1t2 = a
q

i=1
h1t - Si2.

Z1t2 = a
q

i=1
d1t - Si2.
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The following example shows how the properties of the Poisson process can be
used to evaluate averages involving the filtered process.

Example 9.26 Mean of Shot Noise Process

Find the expected value of the shot noise process X(t).
We condition on N(t), the number of impulses that have occurred up to time t:

Suppose then

Since the arrival times, when the impulses occurred are independent, uniformly dis-
tributed in the interval [0, t],

Thus

and

Finally, we obtain

(9.46)

where we used the fact that Note that E[X(t)] approaches a constant value as t
becomes large if the above integral is finite.

9.5 GAUSSIAN RANDOM PROCESSES, WIENER PROCESS, AND BROWNIAN MOTION

In this section we continue the introduction of important random processes. First, we
introduce the class of Gaussian random processes which find many important applica-
tions in electrical engineering. We then develop an example of a Gaussian random
process: the Wiener random process which is used to model Brownian motion.

E3N1t24 = lt.
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N1t2
t L

t

0
h1u2 du.

E3X1t2 |N1t2 = k4 =
k

t L
t

0
h1u2 du,

E3h1t - Sj24 = L
t

0
h1t - s2ds

t
=

1
tL

t

0
h1u2 du.

S1 , Á , Sk ,

= a
k

j=1
E3h1t - Sj24.

E3X1t2 |N1t2 = k4 = EBak
j=1
h1t - Sj2RN1t2 = k,

E3X1t24 = E3E3X1t2 |N1t244.



Section 9.5 Gaussian Random Processes, Wiener Process, and Brownian Motion 515

9.5.1 Gaussian Random Processes

A random process X(t) is a Gaussian random process if the samples 
are jointly Gaussian random variables for all k, and all

choices of This definition applies to both discrete-time and continuous-
time processes. Recall from Eq. (6.42) that the joint pdf of jointly Gaussian random
variables is determined by the vector of means and by the covariance matrix:

(9.47a)

In the case of Gaussian random processes, the mean vector and the covariance matrix
are the values of the mean function and covariance function at the corresponding time
instants:

(9.47b)

Gaussian random processes therefore have the very special property that their joint pdf’s
are completely specified by the mean function of the process and by the covariance
function In Chapter 6 we saw that the linear transformations of jointly
Gaussian random vectors result in jointly Gaussian random vectors as well. We will see
in Chapter 10 that Gaussian random processes also have the property that the linear
operations on a Gaussian process (e.g., a sum, derivative, or integral) results in another
Gaussian random process. These two properties, combined with the fact that many sig-
nal and noise processes are accurately modeled as Gaussian, make Gaussian random
processes the most useful model in signal processing.

Example 9.27 iid Discrete-Time Gaussian Random Process

Let the discrete-time random process be a sequence of independent Gaussian random vari-
ables with mean m and variance The covariance matrix for the times is

where when and 0 otherwise, and I is the identity matrix. Thus the joint pdf for the
vector is

The Gaussian iid random process has the property that the value at every time instant is inde-
pendent of the value at all other time instants.

fXn1x1 , x2 , Á , xk2 =
1

12ps22k/2
 expb -ak
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1xi - m22/2s2 r .
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, Á ,Xnk2
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5CX1n1 , n226 = 5s2 dij6 = s2I,

n1 , Á , nks2.
Xn

CX1t1 , t22.
mX1t2

m = CmX1t12o
mX1tk2

S K = DCX1t1 , t12 CX1t1 , t22 Á CX1t1 , tk2
CX1t2 , t12 CX1t2 , t22 Á CX1t2 , tk2

o o o
CX1tk , t12 Á CX1tk , tk2

T .

fX1,X2, Á ,Xk1x1 , x2 , Á ,xk2 =
e-1/21x�m2TK-11x�m2
12p2k/2|K|1/2 .

t1 , Á , tk .
X2 = X1t22, Á ,Xk = X1tk2

X1 = X1t12,
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Example 9.28 Continuous-Time Gaussian Random Process

Let X(t) be a continuous-time Gaussian random process with mean function and covariance
function given by:

Find and 
The sample X(3) has a Gaussian pdf with mean and variance 

To calculate we put X(3) in standard form:

From Example 6.24 we know that the sum of two Gaussian random variables is also a Gaussian
random variable with mean and variance given by Eq. (6.47). Therefore the mean and variance
of are given by:

To calculate we put in standard form:

.

9.5.2 Wiener Process and Brownian Motion

We now construct a continuous-time Gaussian random process as a limit of a discrete-
time process. Suppose that the symmetric random walk process (i.e., ) of
Example 9.16 takes steps of magnitude every seconds.We obtain a continuous-time
process by letting be the accumulated sum of the random step process up to time
t. is a staircase function of time that takes jumps of every seconds. At time t,
the process will have taken jumps, so it is equal to

(9.48)

The mean and variance of are

where we used the fact that since p = 1/2.VAR3Dn4 = 4p11 - p2 = 1

VAR3Xd1t24 = h2n VAR3Dn4 = h2n,

E3Xd1t24 = hE3Sn4 = 0

Xd1t2
Xd1t2 = h1D1 + D2 + Á + D3t/d42 = hSn .

n = 3t/d4 d;hXd1t2
Xd1t2

d;h
p = 1/2

P3X112 + X122 7 154 = PBX112 + X122 - 9

220.43
7

15 - 9

220.43
R = Q11.3272 = 0.0922

X112 + X122P3X112 + X122 7 24
= 952 + 2e-26 = 20.43.

= 95e-2 ƒ1-1 ƒ + e-2 ƒ2-1 ƒ + e-2 ƒ1-2 ƒ + e-2 ƒ2-2 ƒ6
 VAR3X112 + X1224 = CX11, 12 + CX11, 22 + CX12, 12 + CX12, 22
E3X112 + X1224 = mX112 + mX122 = 3 + 6 = 9

X112 + X122

P3X132 6 64 = PBX132 - 9

29
6

6 - 9

29
R = 1 - Q1-12 = Q112 = 0.16.

P3X132 6 64CX13, 32 = 9e-2 ƒ3-3 ƒ = 9.
sX

2 132 =mX132 = 3132 = 9
P3X112 + X122 7 24.P3X132 6 64

mX1t2 = 3t CX1t1 , t22 = 9e-2 ƒ t1- t2 ƒ.
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FIGURE 9.12
Four sample functions of the Wiener process.

Suppose that we take a limit where we simultaneously shrink the size of the
jumps and the time between jumps. In particular let and with 
and let X(t) denote the resulting process.

X(t) then has mean and variance given by

(9.49a)

(9.49b)

Thus we obtain a continuous-time process X(t) that begins at the origin, has zero mean
for all time, but has a variance that increases linearly with time. Figure 9.12 shows four
sample functions of the process. Note the similarities in fluctuations to the realizations
of a symmetric random walk in Fig. 9.7(b). X(t) is called the Wiener random process. It
is used to model Brownian motion, the motion of particles suspended in a fluid that
move under the rapid and random impact of neighboring particles.

As Eq. (9.48) implies that X(t) approaches the sum of an infinite number
of random variables since 

(9.50)

By the central limit theorem the pdf of X(t) therefore approaches that of a Gaussian
random variable with mean zero and variance 

(9.51)

X(t) inherits the property of independent and stationary increments from the
random walk process from which it is derived. As a result, the joint pdf of X(t) at

fX1t21x2 =
1

22pat
e-x

2/2at.

at:

X1t2 = lim
d:0
hSn = lim

n:q
1at Sn1n .

n = 3t/d4:q:
d: 0,

VAR3X1t24 = 11ad221t/d2 = at.

E3X1t24 = 0

h = 1adh: 0d: 0
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several times can be obtained by using Eq. (9.30):

(9.52)

The independent increments property and the same sequence of steps that led to
Eq. (9.33) can be used to show that the autocovariance of X(t) is given by

(9.53)

By comparing Eq. (9.53) and Eq. (9.35b), we see that the Wiener process and the Pois-
son process have the same covariance function despite the fact that the two processes
have very different sample functions. This underscores the fact that the mean and au-
tocovariance functions are only partial descriptions of a random process.

Example 9.29

Show that the Wiener process is a Gaussian random process.
Equation (9.52) shows that the random variables 

are independent Gaussian random variables.The random variables
can be obtained from the and the increments by a linear

transformation:

(9.54)

It then follows (from Eq. 6.45) that are jointly Gaussian random
variables, and that X(t) is a Gaussian random process.

9.6 STATIONARY RANDOM PROCESSES

Many random processes have the property that the nature of the randomness in the
process does not change with time. An observation of the process in the time interval

exhibits the same type of random behavior as an observation in some other
time interval This leads us to postulate that the probabilities of sam-
ples of the process do not depend on the instant when we begin taking observations,
that is, probabilities involving samples taken at times will not differ from
those taken at 

Example 9.30 Stationarity and Transience

An urn has 6 white balls each with the label “0” and 5 white balls with the label “1”. The following
sequence of experiments is performed: A ball is selected and the number noted; the first time a
white ball is selected it is not put back in the urn, but otherwise balls are always put back in the urn.

t1 + t, Á , tk + t.
t1 , Á , tk

1t0 + t, t1 + t2.1t0 , t12

X1t12,X1t22,X1t32, Á ,X1tk2
X1tk2 = X1t12 + 1X1t22 - X1t122 + Á + 1X1tk2 - X1tk-122.

o

X1t32 = X1t12 + 1X1t22 - X1t122 + 1X1t32 - X1t222
X1t22 = X1t12 + 1X1t22 - X1t122
X1t12 = X1t12

X1t12X1t22,X1t32, Á ,X1tk2,X1t12,
X1tk2 - X1tk-12,X1t22, Á ,

X1t12,X1t22 - X1t12,X1t32 -

CX1t1 , t22 = a min1t1 , t22 = a t1 for t1 6 t2 .

=
expb - 1

2
B x1

2

at1
+
1x2 - x122
a1t2 - t12 + Á +

1xk - xk-122
a1tk - tk-12 R r

212pa2kt11t2 - t12Á 1tk - tk-12 .

fX1t12, Á ,X1tk21x1 , Á , xk2 = fX1t121x12fX1t2- t121x2 - x12Á fX1tk- tk - 121xk - xk-12
t1 , t2 , Á , tk
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The random process that results from this sequence of experiments clearly has a transient
phase and a stationary phase. The transient phase consists of a string of n consecutive 1’s and it
ends with the first occurrence of a “0”. During the transient phase and the
mean duration of the transient phase is geometrically distributed with mean 11/6. After the first
occurrence of a “0”, the process enters a “stationary” phase where the process is a binary
equiprobable iid sequence. The statistical behavior of the process does not change once the sta-
tionary phase is reached.

If we are dealing with random processes that began at then the above con-
dition can be stated precisely as follows. A discrete-time or continuous-time random process
X(t) is stationary if the joint distribution of any set of samples does not depend on the place-
ment of the time origin. This means that the joint cdf of is the
same as that of 

(9.55)

for all time shifts all k, and all choices of sample times If a process begins
at some definite time (i.e., or ), then we say it is stationary if its joint distri-
butions do not change under time shifts to the right.

Two processes X(t) and Y(t) are said to be jointly stationary if the joint cdf’s of
and do not depend on the placement of the time ori-

gin for all k and j and all choices of sampling times and 
The first-order cdf of a stationary random process must be independent of time,

since by Eq. (9.55),
(9.56)

This implies that the mean and variance of X(t) are constant and independent of time:

(9.57)

(9.58)

The second-order cdf of a stationary random process can depend only on the time
difference between the samples and not on the particular time of the samples, since by
Eq. (9.55),

(9.59)

This implies that the autocorrelation and the autocovariance of X(t) can depend only
on

(9.60)

(9.61)

Example 9.31 iid Random Process

Show that the iid random process is stationary.
The joint cdf for the samples at any k time instants, ist1 , Á , tk ,

CX1t1 , t22 = CX1t2 - t12 for all t1 , t2 .

RX1t1 , t22 = RX1t2 - t12 for all t1 , t2

t2 - t1:

FX1t12,X1t221x1 , x22 = FX102,X1t2- t121x1 , x22 for all t1 , t2 .

VAR3X1t24 = E31X1t2 - m224 = s2 for all t.

mX1t2 = E3X1t24 = m for all t

FX1t21x2 = FX1t+t21x2 = FX1x2 all t, t.

t¿1 , Á , t¿j .t1 , Á , tk
Y1tœ12 , Á , Y1tœj2X1t12, Á ,X1tk2

t = 0n = 0
t1 , Á , tk .t,

FX1t12, Á ,X1tk21x1 , Á , xk2 = FX1t1+t2, Á ,X1tk+t21x1 , Á , xk2,
X1t1 + t2,X1t2 + t2, Á ,X1tk + t2: X1t12,X1t22, Á ,X1tk2

t = -q ,

P3In = 04 = 6/11,



520 Chapter 9 Random Processes

for all k, Thus Eq. (9.55) is satisfied, and so the iid random process is stationary.

Example 9.32

Is the sum process a discrete-time stationary process?
The sum process is defined by where the are an iid se-

quence. The process has mean and variance

where m and are the mean and variance of the It can be seen that the mean and variance
are not constant but grow linearly with the time index n. Therefore the sum process cannot be a
stationary process.

Example 9.33 Random Telegraph Signal

Show that the random telegraph signal discussed in Example 9.24 is a stationary random process
when Show that X(t) settles into stationary behavior as even if

We need to show that the following two joint pmf’s are equal:

for any k, any and any The independent increments property of the Pois-
son process implies that

since the values of the random telegraph at the times are determined by the number of
occurrences of events of the Poisson process in the time intervals Similarly,

The corresponding transition probabilities in the previous two equations are equal since

= P3X1tj+1 + t2 = aj+1 ƒX1tj + t2 = aj4.

P3X1tj+12 = aj+1 ƒX1tj2 = aj4 = d 1
2
51 + e-2a1tj + 1- tj26 if aj = aj+1

1
2
51 - e-2a1tj + 1- tj26 if aj Z aj+1

* P3X1tk + t2 = ak ƒX1tk-1 + t2 = ak-14.
= P3X1t1 + t2 = a14P3X1t2 + t2 = a2 ƒX1t1 + t2 = a14Á
P3X1t1 + t2 = a1 , Á ,X1tk + t2 = ak4

1tj , tj+12.
t1 , Á , tk

* P3X1t22 = a2 ƒX1t12 = a14Á P3X1tk2 = ak ƒX1tk-12 = ak-14,
P3X1t12 = a1 , Á ,X1tk2 = ak4 = P3X1t12 = a14

aj = ;1.t1 6 Á 6 tk ,

= P3X1t1 + t2 = a1 , Á ,X1tk + t2 = ak4,P3X1t12 = a1 , Á ,X1tk2 = ak4

P3X102 = ;14 Z 1/2.
t: qP3X102 = ;14 = 1/2.

Xn .s2

mS1n2 = nm VAR3Sn4 = ns2,

XiSn = X1 + X2 + Á + Xn ,

t1 , Á , tk .

= FX1t1+t2, Á ,X1tk+t21x1 , Á , xk2,
FX1t12, Á ,X1tk21x1 , x2 , Á , xk2 = FX1x12FX1x22Á FX1xk2
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Thus the two joint probabilities differ only in the first term, namely, and

From Example 9.24 we know that if then for
all t. Thus and

Thus we conclude that the process is stationary when 
If then the two joint pmf’s are not equal because 

Let’s see what happens if we know that the process started at a spe-
cific value, say that is, The pmf for X(t) is obtained from Eqs.
(9.39) through (9.41):

For very small t, the probability that is close to 1; but as t increases, the probability that
becomes 1/2. Therefore as becomes large, and 
and the two joint pmf’s become equal. In other words, the process “forgets” the initial

condition and settles down into “steady state,” that is, stationary behavior.

9.6.1 Wide-Sense Stationary Random Processes

In many situations we cannot determine whether a random process is stationary, but
we can determine whether the mean is a constant:

(9.62)

and whether the autocovariance (or equivalently the autocorrelation) is a function of
only:

(9.63)

A discrete-time or continuous-time random process X(t) is wide-sense stationary (WSS)
if it satisfies Eqs. (9.62) and (9.63). Similarly, we say that the processes X(t) and Y(t) are
jointly wide-sense stationary if they are both wide-sense stationary and if their cross-
covariance depends only on When X(t) is wide-sense stationary, we write

where
All stationary random processes are wide-sense stationary since they satisfy Eqs.

(9.62) and (9.63). The following example shows that some wide-sense stationary
processes are not stationary.

Example 9.34

Let consist of two interleaved sequences of independent random variables. For n even,
assumes the values with probability 1/2; for n odd, assumes the values 1/3 and with-3Xn;1

XnXn

t = t1 - t2 .

CX1t1 , t22 = CX1t2 and RX1t1 , t22 = RX1t2,
t1 - t2 .

CX1t1 , t22 = CX1t1 - t22 for all t1 , t2 .
t1 - t2

mX1t2 = m for all t,

a14: 1/2
P3X1t1 + t2 =P3X1t12 = a14: 1/2t1X1t2 = 1

X1t2 = 1

= d 1
2
51 + e-2at6 if a = 1

1
2
51 - e-2at6 if a = -1.

P3X1t2 = a4 = P3X1t2 = a ƒX102 = 141

P3X102 = 14 = 1.X102 = 1,
a14 Z P3X1t1 + t2 = a14.

P3X1t12 =P3X102 = ;14 Z 1/2,
P3X102 = ;14 = 1/2.

P3X1t12 = a1 , Á ,X1tk2 = ak4 = P3X1t1 + t2 = a1 , Á ,X1tk + t2 = ak4.
P3X1t12 = a14 = 1/2, P3X1t1 + t2 = a14 = 1/2,

P3X1t2 = ;14 = 1/2,P3X102 = ;14 = 1/2
P3X1t1 + t2 = a14.

P3X1t12 = a14
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2See Problem 5.74 and Appendix C.

probabilities 9/10 and 1/10, respectively. is not stationary since its pmf varies with n. It is easy
to show that has mean

and covariance function

is therefore wide-sense stationary.

We will see in Chapter 10 that the autocorrelation function of wide-sense station-
ary processes plays a crucial role in the design of linear signal processing algorithms.
We now develop several results that enable us to deduce properties of a WSS process
from properties of its autocorrelation function.

First, the autocorrelation function at gives the average power (second mo-
ment) of the process:

(9.64)

Second, the autocorrelation function is an even function of since

(9.65)

Third, the autocorrelation function is a measure of the rate of change of a random
process in the following sense. Consider the change in the process from time t to

(9.66)

where we used the Markov inequality, Eq. (4.75), to obtain the upper bound. Equation
(9.66) states that if is small, that is, drops off slowly, then the
probability of a large change in X(t) in seconds is small.

Fourth, the autocorrelation function is maximum at We use the Cauchy-
Schwarz inequality:2

(9.67)

for any two random variables X and Y. If we apply this equation to and X(t),
we obtain

Thus
(9.68)ƒRX1t2 ƒ … RX102.

RX1t22 = E3X1t + t2X1t242 … E3X21t + t24E3X21t24 = RX1022.

X1t + t2
E3XY42 … E3X24E3Y24,

t = 0.
t

RX1t2RX102 - RX1t2

=
25RX102 - RX1t26

e2 ,

…
E31X1t + t2 - X1t2224

e2

P3|X1t + t2 - X1t2| 7 e4 = P31X1t + t2 - X1t222 7 e24
t + t:

RX1t2 = E3X1t + t2X1t24 = E3X1t2X1t + t24 = RX1-t2.
t

RX102 = E3X1t224 for all t.

t = 0

Xn

CX1i, j2 = bE3Xi4E3Xj4 = 0 for i Z j
E3Xi24 = 1 for i = j.

mX1n2 = 0 for all n

Xn

Xn



Section 9.6 Stationary Random Processes 523

Fifth, if then is periodic with period d and X(t) is mean
square periodic, that is, If we apply Eq. (9.67) to

and X(t), we obtain

which implies that

Thus implies that the right-hand side of the equation is zero, and thus
that for all Repeated applications of this result imply that

is periodic with period d.The fact that X(t) is mean square periodic follows from

Sixth, let where N(t) is a zero-mean process for which
as then

In other words, approaches the square of the mean of X(t) as
In summary, the autocorrelation function can have three types of components:

(1) a component that approaches zero as (2) a periodic component; and (3) a
component due to a nonzero mean.

Example 9.35

Figure 9.13 shows several typical autocorrelation functions. Figure 9.13(a) shows the autocorre-
lation function for the random telegraph signal X(t) (see Eq. (9.44)):

X(t) is zero mean and as 
Figure 9.13(b) shows the autocorrelation function for a sinusoid Y(t) with amplitude a and

random phase (see Example 9.10):

Y(t) is zero mean and is periodic with period 
Figure 9.13(c) shows the autocorrelation function for the process 

where X(t) is the random telegraph process, Y(t) is a sinusoid with random phase, and m is a con-
stant. If we assume that X(t) and Y(t) are independent processes, then

= RX1t2 + RY1t2 + m2.

RZ1t2 = E35X1t + t2 + Y1t + t2 + m65X1t2 + Y1t2 + m64

Z1t2 = X1t2 + Y1t2 + m,
1/f0 .RY1t2

RY1t2 =
a2

2
cos12pf0t2 for all t.

ƒ t ƒ :q.RX1t2: 0

RX1t2 = e-2a ƒt ƒ for all t.

t:q;

t:q.RX1t2
= m2 + RN1t2:m2 as t:q.

RX1t2 = E31m + N1t + t221m + N1t224 = m2 + 2mE3N1t24 + RN1t2
t: q ,RN1t2: 0
X1t2 = m + N1t2,
E31X1t + d2 - X1t2224 = 25RX102 - RX1d26 = 0.

RX1t2
t.RX1t + d2 = RX1t2

RX1d2 = RX102
5RX1t + d2 - RX1t262 … 25RX102 - RX1d26RX102.

… E31X1t + t + d2 - X1t + t2224E3X21t24,
E31X1t + t + d2 - X1t + t22X1t242

X1t + t + d2 - X1t + t2
E31X1t + d2 - X1t2224 = 0.

RX1t2RX102 = RX1d2,
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RX(t) � e�2α t

0

(a)

t

0

(b)

(c)

t

RY(t) �
a2

2
cos 2pf0t

RZ(t)

0
t

m2

FIGURE 9.13
(a) Autocorrelation function of a random telegraph signal. (b) Autocorrelation
function of a sinusoid with random phase. (c) Autocorrelation function of a random
process that has nonzero mean, a periodic component, and a “random” component.

9.6.2 Wide-Sense Stationary Gaussian Random Processes

If a Gaussian random process is wide-sense stationary, then it is also stationary. Recall
from Section 9.5, Eq. (9.47), that the joint pdf of a Gaussian random process is com-
pletely determined by the mean and the autocovariance If X(t) is
wide-sense stationary, then its mean is a constant m and its autocovariance depends
only on the difference of the sampling times, It then follows that the joint pdf of
X(t) depends only on this set of differences, and hence it is invariant with respect to
time shifts. Thus the process is also stationary.

The above result makes WSS Gaussian random processes particularly easy to work
with since all the information required to specify the joint pdf is contained in m and

Example 9.36 A Gaussian Moving Average Process

Let be an iid sequence of Gaussian random variables with zero mean and variance and let
be the average of two consecutive values of Xn:Yn

s2,Xn

CX1t2.

ti - tj .

CX1t1 , t22.mX1t2
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The mean of is zero since for all i. The covariance is

We see that has a constant mean and a covariance function that depends only on thus
is a wide-sense stationary process. is a Gaussian random variable since it is defined by a

linear function of Gaussian random variables (see Section 6.4, Eq. 6.45). Thus the joint pdf of 
is given by Eq. (9.47) with zero-mean vector and with entries of the covariance matrix specified
by above.

9.6.3 Cyclostationary Random Processes

Many random processes arise from the repetition of a given procedure every T seconds.
For example, a data modulator (“modem”) produces a waveform every T seconds ac-
cording to some input data sequence. In another example, a “time multiplexer” inter-
leaves n separate sequences of information symbols into a single sequence of symbols. It
should not be surprising that the periodic nature of such processes is evident in their prob-
abilistic descriptions.A discrete-time or continuous-time random process X(t) is said to be
cyclostationary if the joint cumulative distribution function of any set of samples is invari-
ant with respect to shifts of the origin by integer multiples of some period T. In other words,

and have the
same joint cdf for all k, m, and all choices of sampling times 

(9.69)

We say that X(t) is wide-sense cyclostationary if the mean and autocovariance func-
tions are invariant with respect to shifts in the time origin by integer multiples of T,
that is, for every integer m,

(9.70a)

(9.70b)

Note that if X(t) is cyclostationary, then it follows that X(t) is also wide-sense cyclosta-
tionary.

CX1t1 + mT, t2 + mT2 = CX1t1 , t22.
mX1t + mT2 = mX1t2

= FX1t1+mT2,X1t2+mT2, Á ,X1tk+mT21x1 , x2 , Á , xk2.
FX1t12,X1t22, Á ,X1tk21x1 , x2 , Á , xk2

t1 , Á , tk:
X1t2 + mT2, Á ,X1tk + mT2X1t1 + mT2,X1t12,X1t22, Á ,X1tk2

CY1i, j2
Yn

YnYn

ƒ i - j ƒ ,Yn

= e 1
2
s2 if i = j

1
4
s2 if ƒ i - j ƒ = 1

0 otherwise.

=
1
4
5E3XiXj4 + E3XiXj-14 + E3Xi-1Xj4 + E3Xi-1Xj-146

CY1i, j2 = E3YiYj4 =
1
4
E31Xi + Xi-121Xj + Xj-124
E3Xi4 = 0Yn

Yn =
Xn + Xn-1

2
.
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Example 9.37

Consider a random amplitude sinusoid with period T:

Is X(t) cyclostationary? wide-sense cyclostationary?
Consider the joint cdf for the time samples 

Thus X(t) is a cyclostationary random process and hence also a wide-sense cyclostationary
process.

In the above example, the sample functions of the random process are always pe-
riodic. The following example shows that, in general, the sample functions of a cyclo-
stationary random process need not be periodic.

Example 9.38 Pulse Amplitude Modulation

A modem transmits a binary iid equiprobable data sequence as follows: To transmit a binary 1,
the modem transmits a rectangular pulse of duration T seconds and amplitude 1; to transmit a bi-
nary 0, it transmits a rectangular pulse of duration T seconds and amplitude Let X(t) be the
random process that results. Is X(t) wide-sense cyclostationary?

Figure 9.14(a) shows a rectangular pulse of duration T seconds, and Fig. 9.14(b) shows the
waveform that results for a particular data sequence. Let be the sequence of amplitudes 1;12Ai

-1.

= P3X1t1 + mT2 … x1 ,X1t2 + mT2 … x2 , Á ,X1tk + mT2 … xk4.
= P3A cos12p1t1 + mT2/T2 … x1 , Á , A cos12p1tk + mT2/T2 … xk4
= P3A cos12pt1/T2 … x1 , Á , A cos12ptk/T2 … xk4

P3X1t12 … x1 ,X1t22 … x2 , Á ,X1tk2 … xk24
t1 , Á , tk:

X1t2 = A cos12pt/T2.

t

t

p(t) 1

1 1

�1 �1

0

0 2T 4T

T

(a) Individual signal pulse

(b) Waveform corresponding to data sequence 1001

T 3T

FIGURE 9.14
Pulse amplitude modulation.
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0

0

1

1

1

1

1

1

0

T
t1

t2

T

2T

3T

4T

5T

2T 3T 4T 5T

FIGURE 9.15
Autocovariance function of pulse amplitude-modulated
random process.

corresponding to the binary sequence, then X(t) can be represented as the sum of amplitude-
modulated time-shifted rectangular pulses:

(9.71)

The mean of X(t) is

since The autocovariance function is

Figure 9.15 shows the autocovariance function in terms of and It is clear that
for all integers m. Therefore the process is wide-sense cy-

clostationary.

We will now show how a stationary random process can be obtained from a cyclo-
stationary process. Let X(t) be a cyclostationary process with period T. We “stationarize”
X(t) by observing a randomly phase-shifted version of X(t):

(9.72)Xs1t2 = X1t + ®2 ® uniform in 30, T4,

CX1t1 + mT, t2 + mT2 = CX1t1 , t22
t2 .t1

= bE3X1t1224 = 1 if nT … t1 , t2 6 1n + 12T
E3X1t124E3X1t224 = 0                               otherwise.

CX1t1 , t22 = E3X1t12X1t224 - 0

E3An4 = 0.

mX1t2 = EB aq
n=-q

Anp1t - nT2R = a
q

n=-q
E3An4p1t - nT2 = 0

X1t2 = a
q

n=-q
Anp1t - nT2.
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where is independent of can arise when the phase of X(t) is either un-
known or not of interest. If X(t) is a cyclostationary random process, then is a sta-
tionary random process. To show this, we first use conditional expectation to find the
joint cdf of 

(9.73)

Equation (9.73) shows that the joint cdf of is obtained by integrating the joint cdf
of X(t) over one time period. It is easy to then show that a time-shifted version of 
say will have the same joint cdf as 

(see Problem 9.80). Therefore is a stationary random process.
By using conditional expectation (see Problem 9.81), it is easy to show that if X(t)

is a wide-sense cyclostationary random process, then is a wide-sense stationary
random process, with mean and autocorrelation given by

(9.74a)

(9.74b)

Example 9.39 Pulse Amplitude Modulation with Random Phase Shift

Let be the phase-shifted version of the pulse amplitude–modulated waveform X(t) intro-
duced in Example 9.38. Find the mean and autocorrelation function of 

has zero mean since X(t) is zero-mean. The autocorrelation of is obtained
from Eq. (9.74b). From Fig. 9.15, we can see that for and

otherwise. Therefore:

Thus has a triangular autocorrelation function:

RXs1t2 = c 1 -
ƒ t ƒ
T

ƒ t ƒ … T

0 ƒ t ƒ 7 T.

Xs1t2
for - T 6 t 6 0: RXs1t2 =

1
TL

T

- t
dt =

T + t
T

.

 for 0 6 t 6 T: RXs1t2 =
1
TL

T-t

0
dt =

T - t
T

;

RX1t + t, t2 = 0
0 6 t + t 6 T, RX1t + t, t2 = 1

Xs1t2Xs1t2
Xs1t2.

Xs1t2

RXs1t2 =
1
TL

T

0
RX1t + t, t2 dt.

E3Xs1t24 =
1
TL

T

0
mx1t2 dt

Xs1t2
Xs1t2Xs1t22, Á ,Xs1tk2

Xs1t12,Xs1t1 + t2,Xs1t2 + t2, Á ,Xs1tk + t2, Xs1t2,
Xs1t2

=
1
TL

T

0
P3X1t1 + u2 … x1 , Á ,X1tk + u2 … xk4 du.

= L
T

0
P3X1t1 + ®2 … x1 , Á ,X1tk + ®2 … xk | ® = u4f®1u2 du

= P3X1t1 + ®2 … x1 ,X1t2 + ®2 … x2 , Á ,X1tk + ®2 … xk4
P3Xs1t12 … x1 ,Xs1t22 … x2 , Á ,Xs1tk2 … xk4
Xs1t2:

Xs1t2
X1t2.Xs1t2®
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9.7 CONTINUITY, DERIVATIVES, AND INTEGRALS OF RANDOM PROCESSES

Many of the systems encountered in electrical engineering have dynamics that are de-
scribed by linear differential equations.When the input signals to these systems are de-
terministic, the solutions of the differential equations give the output signals of the
systems. In developing these solutions we make use of the results of calculus for deter-
ministic functions. Since each sample function of a random process can be viewed as a
deterministic signal, it is only natural to apply continuous-time random processes as
input signals to the above systems. The output of the systems then consists of a sample
function of another random process. On the other hand, if we view a system as acting
on an input random process to produce an output random process, we find that we
need to develop a new “calculus” for continuous-time random processes. In particular
we need to develop probabilistic methods for addressing the continuity, differentiabili-
ty, and integrability of random processes, that is, of the ensemble of sample functions as
a whole. In this section we develop these concepts.

9.7.1 Mean Square Continuity

A natural way of viewing a random process is to imagine that each point in S produces
a particular deterministic sample function The standard methods from calculus
can be used to determine the continuity of the sample function at a point for each point

Intuitively, we say that is continuous at if the difference 
approaches zero as t approaches More formally, we say that:

is continuous at if given any there exists a such that
implies that and we write:

In some simple cases, such as the random sinusoid discussed in Example 9.2, we can es-
tablish that all sample functions of the random process are continuous at a point and
so we can conclude that the random process is continuous at In general, however, we
can only address the continuity of a random process in a probabilistic sense. In this sec-
tion, we concentrate on convergence in the mean square sense, introduced in Section
7.4, because of its tractability and its usefulness in the study of linear systems subject to
random inputs.

Mean Square Continuity: The random process X(t) is continuous at the
point in the mean square sense if

(9.75)

We denote mean square continuity by (limit in the mean)

We say that X(t) is mean square continuous if it is mean square continuous for all 
Note that if all sample functions of a random process are continuous at a point thent0 ,

t0 .

l.i.m.
t: t0

X1t2 = X1t02.

E31X1t2 - X1t02224: 0 as t: t0 .

t0

t0 .
t0 ,

lim
t: t0
X1t, z2 = X1t0 , z2.

ƒX1t, z2 - X1t0 , z2 ƒ 6 e,ƒ t - t0 ƒ 6 d
d 7 0e 7 0t0X1t, z2

t0 .
ƒX1t, z2 - X1t0 , z2 ƒt0X1t, z2z.

t0

X1t, z2. z
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t0
t

x(t, z1)

x(t, z2)

x(t, z3)

0
t

RX(t)

(a) (b)

FIGURE 9.16
(a) Mean square continuity at does not imply all sample functions are continuous at (b) If X(t) is WSS
and is continuous at then X(t) is mean square continuous for all t.t = 0,RX(t)

t0.t0

the process will also be mean square continuous at the point In the examples we will
see that mean square continuity does not imply that all the sample functions are con-
tinuous. Thus, in general, we may have the situation in Fig. 9.16.

In order to determine what conditions are required for mean square continuity,
consider the mean square difference between X(t) and 

(9.76)

Hence, if the autocorrelation function is continuous at the point then
letting the right-hand side of Eq. (9.76) will vanish. Thus we conclude that if

is continuous in both and at the point then X(t) is mean square
continuous at the point

At this point it is worth recalling that a function of two variables f (x, y) is continu-
ous at a point (a, b) if the limit f (x, y) reaches the same value for any mode of approach
from (x, y) to (a, b). In particular, in order for to be continuous at

must approach the same value as and approach from any
direction.

A discontinuity in the mean function at some point indicates that the
sample functions must be discontinuous at with nonzero probability. Therefore, we
must have that if X(t) is mean square continuous at then the mean function
must be continuous at

(9.77a)

To show this, we note that the variance of the difference is nonnegative,
thus

- E3X1t2 - X1t0242.
 0 … VAR3X1t2 - X1t024 = E31X1t2 - X1t02224

X1t2 - X1t02
lim
t: t0
mX1t2 = mX1t02.

t0:
mX1t2t0 ,

t0

t0mX1t2
1t0 , t02t2t11t0 , t02, RX1t1 , t22

RX1t1 , t22

t0 .
1t0 , t02,t2t1RX1t1 , t22

t: t0 ,
1t0 , t02,RX1t1 , t22

- RX1t, t02 + RX1t0 , t02.
E31X1t2 - X1t02224 = RX1t, t2 - RX1t0 , t2

X1t02:

t0 .
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Therefore

If X(t) is mean square continuous at then as the left-hand side of the above
equation approaches zero. This implies that the right-hand side approaches zero, and
hence Equation (9.77a) can be rewritten as follows:

(9.77b)

Therefore if X(t) is mean square continuous at then we can interchange the order of
the limit and the expected value.

If the random process X(t) is wide-sense stationary, then Eq. (9.76) becomes

(9.78)

Therefore if is continuous at then the wide-sense stationary random
process X(t) is mean square continuous at every point

Example 9.40 Wiener and Poisson Processes

Are the Wiener and Poisson processes mean square continuous?
The autocorrelation of the Wiener process X(t) is given by

Consider the limit as and approach 

As and approach zero, the above difference vanishes. Therefore the autocorrelation func-
tion is continuous at the point and the Wiener process is mean square continuous.

The autocorrelation of the Poisson process N(t) is given by

This is exactly the same as that of the Wiener process.Therefore the Poisson process is also mean
square continuous.

The above example shows clearly how mean square continuity does not imply
continuity of the sample functions. The Poisson and Wiener processes have the same
autocorrelation function and are both mean square continuous. However, the Poisson
process has a countably infinite number of discontinuities, while it can be shown that
almost all sample functions of the Wiener process are continuous.

Example 9.41 Pulse Amplitude Modulation

Let X(t) be the pulse amplitude modulation random process introduced in Example 9.38. Is X(t)
mean square continuous?

RN1t1 , t22 = l min1t1 , t22.

1t0 , t02,
e2e1

= a |min1t0 + e1 , t0 + e22 - t0 | … a max1e1 , e22.
 |RX1t0 + e1 , t0 + e22 - RX1t0 , t02|

1t0 , t02:t2t1

RX1t1 , t22 = a min1t1 , t22.

t0 .
t = 0,RX1t2

E31X1t0 + t2 - X1t02224 = 21RX102 - RX1t22.

t0 ,

lim
t: t0
E3X1t24 = E C l.i.m.

t: t0
X1t2 D .

mX1t2:mX1t02.
t: t0t0 ,

E31X1t2 - X1t02224 Ú E3X1t2 - X1t0242 = 1mX1t2 - mX1t0222.
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The process has discontinuity at with nonzero probability, so we expect the
process not to be mean square continuous. The autocorrelation function of X(t) is shown in Fig.
9.15 and is given by

The autocorrelation function is continuous at all points and hence X(t) is mean
square continuous at all points within the signaling intervals, However,
the autocorrelation function is not continuous at the points which correspond to
the points where the transitions between pulses occur. For example, if we approach the point
(nT, nT) along the line we obtain the limit 1; if we approach (nT, nT) along a line per-
pendicular to the above, the limit is zero. Thus X(t) is not mean square continuous at the point

9.7.2 Mean Square Derivatives

Suppose we take a sample function of a random process and carry out the lim-
iting procedure that defines the derivative of a deterministic function:

This limit may exist for some sample functions and it may fail to exist for other sample
functions of the same random process. We define the derivative of a random process in
terms of mean square convergence:

Mean Square Derivative: The random process X(t) has mean square deriva-
tive at t defined by

(9.79)

provided that the mean square limit exists, that is,

(9.80)

We also denote the mean square derivative by dX(t)/dt. Note that if all sample func-
tions of X(t) are differentiable at the point t, then the mean square derivative exists be-
cause Eq. (9.80) is satisfied. However, the existence of the mean square derivative does
not imply the existence of the derivative for all sample functions.

It can be shown that the mean square derivative of X(t) at the point t exists if

02
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e
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e
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e
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t1 = t2 ,

t1 = t0 = nT,
nT 6 t 6 1n + 12T.

t1 = t0 Z nT,

RX1t1 , t22 = b1 nT … t1 6 1n + 12T and nT … t2 6 1n + 12T
0 otherwise.
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exists at the point We examine the special case where X(t) is WSS. Con-
sider the mean square value of the first difference in X(t):

. (9.81)

Therefore the mean square derivative of a WSS random process X(t) exists for all t if
has derivatives up to order two at

If X(t) is a Gaussian random process for which the mean square derivative
exists, then must also be a Gaussian random process. To show this, con-

sider The k time samples are
given by a linear transformation of the jointly Gaussian random variables 

It then follows that 
are jointly Gaussian random variables and hence that is a Gaussian ran-

dom process. the limit of as approaches zero, is then also a Gaussian ran-
dom process since (from Section 7.4) mean square convergence implies convergence in
distribution.

Once we have determined the existence of the mean square derivative we
can proceed to find its mean and autocorrelation functions. Using the same reasoning
that led to Eq. (9.77b), we can show that we can interchange the order of expectation
and mean square differentiation. Therefore

(9.82)

Note that if X(t) is a wide-sense stationary process, then a constant, and
therefore

Next we find the cross-correlation between X(t) and 
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Finally, we obtain the autocorrelation of 

(9.83)

If X(t) is a wide-sense stationary process, we have

(9.84)

where and then

(9.85)

Example 9.42

Let X(t) be the random amplitude sinusoid introduced in Example 9.9. Does X(t) have a mean
square derivative?

The autocorrelation function for X(t) is

The second mixed partial derivative with respect to and exists at every point (t, t), and is given
by

Therefore X(t) has a mean square derivative at every point t.

Example 9.43 Wiener Process and White Gaussian Noise

Does the Wiener process have a mean square derivative?
Recall that the Wiener process is Gaussian, so we expect that its derivative is also Gauss-

ian. We first show that this process does not have a mean square derivative. The Wiener process
has autocorrelation function given by

The first derivative with respect to is

0
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The derivative of a step function does not exist at its point of discontinuity. We therefore con-
clude that the second mixed partial derivative does not exist at any point t, and hence the Wiener
process does not have a mean square derivative at any point.

We can generalize the notion of derivative of a random process if we use delta functions.
Recall that the delta function is defined so that its integral is a unit step function (see Eq. 4.18).
We can therefore interpret the derivative of a unit step function as yielding a delta function.This
suggests that the process has autocorrelation function given by

(9.86)

The properties of the delta function give the random process some unusual properties.
First, since the delta function is infinite at it follows that the mean square value of 
is infinite, that is, has infinite power.Also, since the delta function is zero whenever 
it follows that any two distinct time samples, and are uncorrelated regardless of
how close is to This suggests that varies extremely rapidly in time. Recall that the
Wiener process was obtained in Section 9.5 as the limit of the random walk process.Thus it is not
surprising that the derivative of the process has these properties.

The random process that results from taking the derivative of the Wiener process is called
white Gaussian noise. It is very useful in modeling broadband noise in communication and radar
systems. We discuss it further in the next chapter.

9.7.3 Mean Square Integrals

The integral of a continuous-time random process arises naturally when computing
time averages. It also arises as the solution to systems described by linear differential
equations. In this section, we develop the notion of the integral of a random process in
the sense of mean square convergence.

Suppose we are interested in the integral of the random process X(t) over the in-
terval We partition the interval into n subintervals and form the sum

We define the integral of X(t) as the mean square limit of the sequence as the width
of the subintervals approaches zero. When the limit exists, we denote the limiting ran-
dom process by

(9.87)

The Cauchy criterion provides us with conditions that ensure the existence of the
mean square integral in Eq. (9.87):

(9.88)

As in the case of the mean square derivative, we obtain three terms when we expand the
square inside the expected value. Each of these terms leads to an expression of the form

(9.89)EBa
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If the limit of the expression on the right-hand side exists, then it can be shown that the
three terms resulting from Eq. (9.88) add to zero. On the other hand, the limit of the
right-hand side of Eq. (9.89) approaches a double integral of the autocorrelation func-
tion. We have thus shown that the mean square integral of X(t) exists if the following
double integral exists:

(9.90)

It can be shown that if X(t) is a mean square continuous random process, then its integral
exists.

If X(t) is a Gaussian random process, then its integral Y(t) is also a Gaussian ran-
dom process. This follows from the fact that the are linear combinations of jointly
Gaussian random variables.

The mean and autocorrelation function of Y(t) are given by

(9.91)

and

(9.92)

Finally, we note that if X(t) is wide-sense stationary, then the integrands in Eqs.
(9.90) and (9.92) are replaced by 

Example 9.44 Moving Average of X(t)

Find the mean and variance of M(t), the moving average over half a period of a random ampli-
tude sinusoid X(t) with period T:

The mean of M(t) is given by

Its second moment at time t is given by
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The variance is then

Example 9.45 Integral of White Gaussian Noise

Let Z(t) be the white Gaussian noise process introduced in Example 9.43. Find the autocorrela-
tion function of X(t), the integral of Z(t) over the interval (0, t).

From Example 9.43, the white Gaussian noise process has autocorrelation function

The autocorrelation function of X(t) is then given by

We thus find that X(t) has the same autocorrelation as the Wiener process. In addition we have
that X(t) must be a Gaussian random process since Z(t) is Gaussian. It then follows that X(t)
must be the Wiener process because it has the joint pdf given by Eq. (9.52).

9.7.4 Response of a Linear System to Random Input

We now apply the results developed in this section to develop the solution of a linear
system described by a first-order differential equation. The method can be generalized
to higher-order equations. In the next chapter we develop transform methods to solve
the general problem.

Consider a linear system described by the first-order differential equation:

(9.93)

For example, X(t) may represent the voltage across the capacitor of an RC circuit with
current input Z(t). We now show how to obtain and If the input
process Z(t) is Gaussian, then the output process will also be Gaussian. Therefore, in
the case of Gaussian input processes, we can then characterize the joint pdf of the out-
put process.
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We obtain a differential equation for by taking the expected value of
Eq. (9.93):

(9.94)

with initial condition 
As an intermediate step we next find a differential equation for If we

multiply Eq. (9.93) by and take the expected value, we obtain

with initial condition since The same derivation that led
to the cross-correlation between X(t) and (see Eq. 9.83) can be used to show that

Thus we obtain the following differential equation:

(9.95)

with initial condition 
Finally we obtain a differential equation for Multiply Eq. (9.93) by
and take the expected value:

with initial condition This leads to the differential equation

(9.96)

with initial condition Note that the solution to Eq. (9.95) appears as
the forcing function in Eq. (9.96). Thus we conclude that by solving the differential
equations in Eqs. (9.94), (9.95), and (9.96) we obtain the mean and autocorrelation
function for X(t).

Example 9.46 Ornstein-Uhlenbeck Process

Equation (9.93) with the input given by a zero-mean, white Gaussian noise process is called the
Langevin equation, after the scientist who formulated it in 1908 to describe the Brownian motion
of a free particle. In this formulation X(t) represents the velocity of the particle, so that Eq. (9.93)
results from equating the acceleration of the particle to the force on the particle due to
friction and the force due to random collisions Z(t). We present the solution developed
by Uhlenbeck and Ornstein in 1930.

First, we note that since the input process Z(t) is Gaussian, the output process X(t) will
also be a Gaussian random process. Next we recall that the first-order differential equation
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has solution

Therefore the solution to Eq. (9.94) is

The autocorrelation of the white Gaussian noise process is

Equation (9.95) is also a first-order differential equation, and it has solution

where u(x) is the unit step function.
The autocorrelation function of the output process X(t) is the solution to the first-order

differential equation Eq. (9.96). The solution is given by

(9.97a)

A Gaussian random process with this autocorrelation function is called an Ornstein-Uhlen-
beck process. Thus we conclude that the output process X(t) is an Ornstein-Uhlenbeck
process.

If we let and then as t approaches infinity,

(9.97b)

This shows that the effect of the zero initial condition dies out as time progresses, and the process
becomes wide-sense stationary. Since the process is Gaussian, this also implies that the process
becomes strict-sense stationary.
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9.8 TIME AVERAGES OF RANDOM PROCESSES AND ERGODIC THEOREMS

At some point, the parameters of a random process must be obtained through mea-
surement. The results from Chapter 7 and the statistical methods of Chapter 8 suggest
that we repeat the random experiment that gives rise to the random process a large
number of times and take the arithmetic average of the quantities of interest. For ex-
ample, to estimate the mean of a random process we repeat the random
experiment and take the following average:

(9.98)

where N is the number of repetitions of the experiment, and is the realization
observed in the ith repetition.

In some situations, we are interested in estimating the mean or autocorrelation
functions from the time average of a single realization, that is,

(9.99)

An ergodic theorem states conditions under which a time average converges as the ob-
servation interval becomes large. In this section, we are interested in ergodic theorems
that state when time averages converge to the ensemble average (expected value).

The strong law of large numbers, presented in Chapter 7, is one of the most im-
portant ergodic theorems. It states that if is an iid discrete-time random process
with finite mean then the time average of the samples converges to the
ensemble average with probability one:

(9.100)

This result allows us to estimate m by taking the time average of a single realization of
the process. We are interested in obtaining results of this type for a larger class of ran-
dom processes, that is, for non-iid, discrete-time random processes, and for continuous-
time random processes.

The following example shows that, in general, time averages do not converge to
ensemble averages.

Example 9.47

Let for all t, where A is a zero-mean, unit-variance random variable. Find the limiting
value of the time average.

The mean of the process is However, Eq. (9.99) gives

Thus the time-average mean does not always converge to Note that this process is
stationary. Thus this example shows that stationary processes need not be ergodic.
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FIGURE 9.17
Region of integration for integral in Eq. (9.102).

Consider the estimate given by Eq. (9.99) for The estimate
yields a single number, so obviously it only makes sense to consider processes for
which a constant. We now develop an ergodic theorem for the time aver-
age of wide-sense stationary processes.

Let X(t) be a WSS process. The expected value of is

(9.101)

Equation (9.101) states that is an unbiased estimator for m.
Consider the variance of 

(9.102)

Since the process X(t) is WSS, Eq. (9.102) becomes

. (9.103)

Figure 9.17 shows the region of integration for this integral. The integrand is constant
along the line for so we can evaluate the integral as the-2T 6 u 6 2T,u = t - t¿
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sums of infinitesimal strips as shown in the figure. It can be shown that each strip has area
so the contribution of each strip to the integral is 

Thus

(9.104)

Therefore, will approach m in the mean square sense, that is,
if the expression in Eq. (9.104) approaches zero with increasing T. We have

just proved the following ergodic theorem.

Theorem 

Let X(t) be a WSS process with then

in the mean square sense, if and only if

In keeping with engineering usage, we say that a WSS process is mean ergodic if it sat-
isfies the conditions of the above theorem.

The above theorem can be used to obtain ergodic theorems for the time average
of other quantities. For example, if we replace X(t) with in Eq. (9.99), we
obtain a time-average estimate for the autocorrelation function of the process Y(t):

(9.105)

It is easily shown that if Y(t) is WSS.The above ergodic the-
orem then implies that the time-average autocorrelation converges to in the mean
square sense if the term in Eq.(9.104) with X(t) replaced by converges to zero.

Example 9.48

Is the random telegraph process mean ergodic?
The covariance function for the random telegraph process is so the vari-

ance of is

.

The bound approaches zero as so Therefore the process is mean
ergodic.
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If the random process under consideration is discrete-time, then the time-average
estimate for the mean and the autocorrelation functions of are given by

(9.106)

(9.107)

If is a WSS random process, then and so is an unbiased esti-
mate for m. It is easy to show that the variance of is

(9.108)

Therefore, approaches m in the mean square sense and is mean ergodic if the ex-
pression in Eq. (9.108) approaches zero with increasing T.

Example 9.49 Ergodicity and Exponential Correlation

Let be a wide-sense stationary discrete-time process with mean m and covariance function
for and Show that is mean ergodic.

The variance of the sample mean (Eq. 9.106) is:

The bound on the right-hand side approaches zero as T increases and so is mean ergodic.

Example 9.50 Ergodicity of Self-Similar Process and Long-Range Dependence

Let be a wide-sense stationary discrete-time process with mean m and covariance function

(9.109)

for and is said to be second-order self-similar. We will inves-
tigate the ergodicity of 

We rewrite the variance of the sample mean in (Eq. 9.106) as follows:
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It is easy to show (See Problem 9.132) that the sum inside the braces is Therefore
the variance becomes:

(9.110)

The value of H, which is called the Hurst parameter, affects the convergence behavior of the sam-
ple mean. Note that if the covariance function becomes which corre-
sponds to an iid sequence. In this case, the variance becomes which is the convergence
rate of the sample mean for iid samples. However, for the variance becomes:

(9.111)

so the convergence of the sample mean is slower by a factor of than for iid
samples.

The slower convergence of the sample mean when results from the long-range de-
pendence of It can be shown that for large k, the covariance function is approximately given by:

(9.112)

For decays as where which is a very slow decay rate. Thus
the dependence between values of decreases slowly and the process is said to have a long
memory or long-range dependence.

9.9 FOURIER SERIES AND KARHUNEN-LOEVE EXPANSION

Let X(t) be a wide-sense stationary, mean square periodic random process with period
T, that is, In order to simplify the development, we
assume that X(t) is zero mean. We show that X(t) can be represented in a mean square
sense by a Fourier series:

(9.113)

where the coefficients are random variables defined by

(9.114)

Equation (9.114) implies that, in general, the coefficients are complex-valued random
variables. For complex-valued random variables, the correlation between two random
variables X and Y is defined by We also show that the coefficients are orthog-
onal random variables, that is, for 

Recall that if X(t) is mean square periodic, then is a periodic function in 
with period T. Therefore, it can be expanded in a Fourier series:

(9.115)

where the coefficients are given by
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The coefficients appear in the following derivation.
First, we show that the coefficients in Eq. (9.113) are orthogonal random vari-

ables, that is,

The integrand of the above equation has

where we have used the fact that the Fourier coefficients can be calculated over any
full period. Therefore

(9.117)

where is the Kronecker delta function. Thus and are orthogonal random 
variables. Note that the above equation implies that that is, the are
real-valued.

To show that the Fourier series equals X(t) in the mean square sense, we take

The above equation equals zero, since the are real and since from Eq.
(9.115).

If X(t) is a wide-sense stationary random process that is not mean square periodic,
we can still expand X(t) in the Fourier series in an arbitrary interval [0, T]. Mean square
equality will hold only inside the interval. Outside the interval, the expansion repeats
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itself with period T. The Fourier coefficients will no longer be orthogonal; instead they
are given by

(9.118)

It is easy to show that if X(t) is mean square periodic, then this equation reduces to Eq.
(9.117).

9.9.1 Karhunen-Loeve Expansion

In this section we present the Karhunen-Loeve expansion, which allows us to expand a
(possibly nonstationary) random process X(t) in a series:

(9.119a)

where

(9.119b)

where the equality in Eq. (9.119a) is in the mean square sense, where the coefficients 
are orthogonal random variables, and where the functions are orthonormal:

In other words, the Karhunen-Loeve expansion provides us with many of the nice prop-
erties of the Fourier series for the case where X(t) is not mean square periodic. For sim-
plicity, we again assume that X(t) is zero mean.

In order to motivate the Karhunen-Loeve expansion, we review the Karhunen-
Loeve transform for vector random variables as introduced in Section 6.3. Let X be a
zero-mean, vector random variable with covariance matrix The eigenvalues and
eigenvectors of are obtained from

(9.120)

where the are column vectors. The set of normalized eigenvectors are orthonormal,
that is, Define the matrix P of eigenvectors and of eigenvalues as
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(9.121a)

Therefore we find that the covariance matrix can be expanded as a weighted sum of
matrices, In addition, if we let then the random variables in Y are or-
thogonal. Furthermore, since then

(9.121b)

Thus we see that the arbitrary vector random variable X can be expanded as a weighted
sum of the eigenvectors of where the coefficients are orthogonal random variables.
Furthermore the eigenvectors form an orthonormal set. These are exactly the proper-
ties we seek in the Karhunen-Loeve expansion for X(t). If the vector random variable
X is jointly Gaussian, then the components of Y are independent random variables.
This results in tremendous simplification in a wide variety of problems.

In analogy to Eq. (9.120), we begin by considering the following eigenvalue equation:

(9.122)

The values and the corresponding functions for which the above equation
holds are called the eigenvalues and eigenfunctions of the covariance function

Note that it is possible for the eigenfunctions to be complex-valued, e.g.,
complex exponentials. It can be shown that if is continuous, then the nor-
malized eigenfunctions form an orthonormal set and satisfy Mercer’s theorem:

(9.123)

Note the correspondence between Eq. (9.121) and Eq. (9.123). Equation (9.123) in
turn implies that

(9.124)

We are now ready to show that the equality in Eq. (9.119a) holds in the mean
square sense and that the coefficients are orthogonal random variables. First con-
sider
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The integrand of the above equation has

Therefore

where is the Kronecker delta function. Thus and are orthogonal random

variables. Note that the above equation implies that that is, the eigen-
values are real-valued.

To show that the Karhunen-Loeve expansion equals X(t) in the mean square
sense, we take

The above equation equals zero from Eq. (9.124) and from the fact that the are real.
Thus we have shown that Eq. (9.119a) holds in the mean square sense.

Finally, we note that in the important case where X(t) is a Gaussian random process,
then the components will be independent Gaussian random variables.This result is ex-
tremely useful in solving certain signal detection and estimation problems. [Van Trees.]

Example 9.51 Wiener Process

Find the Karhunen-Loeve expansion for the Wiener process.
Equation (9.122) for the Wiener process gives, for 
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We differentiate the above integral equation once with respect to to obtain an integral equa-
tion and again to obtain a differential equation:

This second-order differential equation has a sinusoidal solution:

In order to solve the above equation for a, b, and we need boundary conditions for the
differential equation. We obtain these by substituting the general solution for into the inte-
gral equation:

As approaches zero, the right-hand side approaches zero. This implies that in the left-
hand side of the equation. A second boundary condition is obtained by letting approach T in
the equation obtained after the first differentiation of the integral equation:

This implies that

Therefore the eigenvalues are given by

The normalization requirement implies that

which implies that Thus the eigenfunctions are given by

and the Karhunen-Loeve expansion for the Wiener process is

where the are zero-mean, independent Gaussian random variables with variance given by ln .Xn
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Example 9.52 White Gaussian Noise Process

Find the Karhunen-Loeve expansion of the white Gaussian noise process.
The white Gaussian noise process is the derivative of the Wiener process. If we take the

derivative of the Karhunen-Loeve expansion of the Wiener process, we obtain

where the are independent Gaussian random variables with the same variance This im-
plies that the process has infinite power, a fact we had already found about the white Gaussian
noise process. In the Problems we will see that any orthonormal set of eigenfunctions can be
used in the Karhunen-Loeve expansion for white Gaussian noise.

9.10 GENERATING RANDOM PROCESSES

Many engineering systems involve random processes that interact in complex ways. It
is not always possible to model these systems precisely using analytical methods. In
such situations computer simulation methods are used to investigate the system dy-
namics and to measure the performance parameters of interest. In this section we con-
sider two basic methods to generating random processes. The first approach involves
generating the sum process of iid sequences of random variables. We saw that this ap-
proach can be used to generate the binomial and random walk processes, and, through
limiting procedures, the Wiener and Poisson processes. The second approach involves
taking the linear combination of deterministic functions of time where the coefficients
are given by random variables. The Fourier series and Karhunen-Loeve expansion use
this approach. Real systems, e.g., digital modulation systems, also generate random
processes in this manner.

9.10.1 Generating Sum Random Processes

The generation of sample functions of the sum random process involves two steps:

1. Generate a sequence of iid random variables that drive the sum process.
2. Generate the cumulative sum of the iid sequence.

Let D be an array of samples of the desired iid random variables. The function
cumsum(D) in Octave and MATLAB then provides the cumulative sum, that is, the sum
process, that results from the sequence in D.

The code below generates m realizations of an n-step random walk process.
>p=1/2

>n=1000

>m=4
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FIGURE 9.18
(a) Ten sample functions of a Poisson random process with (b) Sample mean and variance of ten sample
functions of a Poisson random process with l = 0.4.

l = 0.4.

> V=-1:2:1;
> P=[1-p,p];

> D=discrete_rnd(V, P, m, n);

> X=cumsum (D);

> plot (X)

Figures 9.7(a) and 9.7(b) in Section 9.3 show four sample functions of the symmetric ran-
dom walk process for The sample functions vary over a wide range of positive
and negative values. Figure 9.7(c) shows four sample functions for The sample
functions now have a strong linear trend consistent with the mean The vari-
ability about this trend is somewhat less than in the symmetric case since the variance
function is now 

We can generate an approximation to a Poisson process by summing iid
Bernoulli random variables. Figure 9.18(a) shows ten realizations of Poisson processes
with arrivals per second. The sample functions for seconds were gen-
erated using a 1000-step binomial process with The linear increas-
ing trend of the Poisson process is evident in the figure. Figure 9.18(b) shows the
estimate of the mean and variance functions obtained by averaging across the 10 real-
izations. The linear trend in the sample mean function is very clear; the sample vari-
ance function is also linear but is much more variable. The mean and variance
functions of the realizations are obtained using the commands mean(transpose(X))
and var(transpose(X)).

We can generate sample functions of the random telegraph signal by taking the
Poisson process N(t) and calculating Figure 9.19(a)
shows a realization of the random telegraph signal. Figure 9.19(b) shows an estimate of
the covariance function of the random telegraph signal. The exponential decay in the
covariance function can be seen in the figure. See Eq. (9.44).

X1t2 = 21N1t2 modulo 22 - 1.

p = lT/n = 0.02.
T = 50l = 0.4

n4p11 - p2 = 3n/4.

n12p - 12.
p = 3/4.

p = 1/2.
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The covariance function is computed using the function CX_est below.

function [CXall]=CX_est (X, L, M_est)

N=length(X); %N is number of samples
CX=zeros (1,L+1); %L is maximum lag
M_est=mean(X) % Sample mean
for m=1:L+1, %Add product terms
for n=1:N-m+1,

CX(m)=CX(m) + (X(n) - M_est) * (X(n+m-1)- M_est);

end;

CX (m)=CX(m) / (N-m+1); %Normalize by number of terms
end;

for i=1:L,

CXall(i)=CX(L+2-i); % Lags 1 to L
end

CXall(L+1:2*L+1)=CX(1:L+1); % Lags to

The Wiener random process can also be generated as a sum process. One ap-
proach is to generate a properly scaled random walk process, as in Eq. (9.50). A better
approach is to note that the Wiener process has independent Gaussian increments, as
in Eq. (9.52), and therefore, to generate the sequence D of increments for the time
subintervals, and to then find the corresponding sum process. The code below gener-
ates a sample of the Wiener process:

> a=2

> delta=0.001

> n=1000

> D=normal_rnd(0,a*delta,1,n)

> X=cumsum(D);

> plot(X)
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FIGURE 9.19
(a) Sample function of a random telegraph process with (b) Estimate of covariance function of a random
telegraph process.

l � 0.4.
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Figure 9.12 in Section 9.5 shows four sample functions of a Brownian motion process
with Figure 9.20 shows the sample mean and sample variance of 50 sample
functions of the Wiener process with It can be seen that the mean across the 50
realizations is close to zero which is the actual mean function for the process. The sam-
ple variance across the 50 realizations increases steadily and is close to the actual vari-
ance function which is 

9.10.2 Generating Linear Combinations of Deterministic Functions

In some situations a random process can be represented as a linear combination
of deterministic functions where the coefficients are random variables. The Fouri-
er series and the Karhunen-Loeve expansions are examples of this type of repre-
sentation.

In Example 9.51 let the parameters in the Karhunen-Loeve expansion for a
Wiener process in the interval be 

where the are zero-mean, independent Gaussian random variables with variance

The following code generates the 100 Gaussian coefficients for the Karhunen-Loeve
expansion for the Wiener process.

ln =
s2T2

1n - 1/222p2 =
1

1n - 1/222p2 .

Xn

X1t2 = a
q

n=1
XnA

2
T

 sinan -
1
2
b pt
T

= a
q

n=1
Xn22 sinan -

1
2
bpt

T = 1, s2 = 1:0 … t … T

at = 2t.

a = 2.
a = 2.
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FIGURE 9.20
Sample mean and variance functions from 50 realizations of
Wiener process.
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FIGURE 9.21
Sample functions for Wiener process using 100 terms in Karhunen-
Loeve expansion.

> M=zeros(100,1);

> n=1:1:100; %Number of coefficients
> N=transpose(n);

> v=1./((N-0.5).^2 *pi ^2); %Variances of coefficients
> t=0.01:0.01:1;

> p=(N-0.5)*t; %Argument of sinusoid
> x=normal_rnd(M,v,100,1); %Gaussian coefficients
> y=sqrt(2)*sin(pi *p); % sin terms
> z=transpose(x)*y

> plot(z)

Figure 9.21 shows the Karhunen-Loeve expansion for the Wiener process using 100
terms.The sample functions generally exhibit the same type behavior as in the previous
figures. The sample functions, however, do not exhibit the jaggedness of the other ex-
amples, which are based on the generation of many more random variables.

SUMMARY

• A random process or stochastic process is an indexed family of random variables
that is specified by the set of joint distributions of any number and choice of ran-
dom variables in the family. The mean, autocovariance, and autocorrelation func-
tions summarize some of the information contained in the joint distributions of
pairs of time samples.

• The sum process of an iid sequence has the property of stationary and indepen-
dent increments, which facilitates the evaluation of the joint pdf/pmf of the
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process at any set of time instants. The binomial and random processes are sum
processes. The Poisson and Wiener processes are obtained as limiting forms of
these sum processes.

• The Poisson process has independent, stationary increments that are Poisson dis-
tributed. The interarrival times in a Poisson process are iid exponential random
variables.

• The mean and covariance functions completely specify all joint distributions of a
Gaussian random process.

• The Wiener process has independent, stationary increments that are Gaussian
distributed. The Wiener process is a Gaussian random process.

• A random process is stationary if its joint distributions are independent of the
choice of time origin. If a random process is stationary, then is constant,
and depends only on 

• A random process is wide-sense stationary (WSS) if its mean is constant and if its
autocorrelation and autocovariance depend only on A WSS process need
not be stationary.

• A wide-sense stationary Gaussian random process is also stationary.
• A random process is cyclostationary if its joint distributions are invariant with re-

spect to shifts of the time origin by integer multiples of some period T.
• The white Gaussian noise process results from taking the derivative of the

Wiener process.
• The derivative and integral of a random process are defined as limits of random

variables. We investigated the existence of these limits in the mean square sense.
• The mean and autocorrelation functions of the output of systems described by a

linear differential equation and subject to random process inputs can be obtained
by solving a set of differential equations. If the input process is a Gaussian ran-
dom process, then the output process is also Gaussian.

• Ergodic theorems state when time-average estimates of a parameter of a random
process converge to the expected value of the parameter. The decay rate of the
covariance function determines the convergence rate of the sample mean.

CHECKLIST OF IMPORTANT TERMS

t1 - t2 .

t1 - t2 .RX1t1 , t22
mX1t2

Autocorrelation function
Autocovariance function
Average power
Bernoulli random process
Binomial counting process
Continuous-time process
Cross-correlation function
Cross-covariance function
Cyclostationary random process
Discrete-time process

Ergodic theorem
Fourier series
Gaussian random process
Hurst parameter
iid random process
Independent increments
Independent random processes
Karhunen-Loeve expansion
Markov random process
Mean ergodic random process
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Mean function
Mean square continuity
Mean square derivative
Mean square integral
Mean square periodic process
Ornstein-Uhlenbeck process
Orthogonal random processes
Poisson process
Random process
Random telegraph signal
Random walk process
Realization, sample path, or sample 

function

Shot noise
Stationary increments
Stationary random process
Stochastic process
Sum random process
Time average
Uncorrelated random processes
Variance of X(t)
White Gaussian noise
Wide-sense cyclostationary process
Wiener process
WSS random process
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PROBLEMS

Sections 9.1 and 9.2: Definition and Specification of a Stochastic Process

9.1. In Example 9.1, find the joint pmf for and Why are and independent?
9.2. A discrete-time random process is defined as follows.A fair die is tossed and the out-

come k is observed. The process is then given by for all n.
(a) Sketch some sample paths of the process.
(b) Find the pmf for 
(c) Find the joint pmf for and 
(d) Find the mean and autocovariance functions of 

9.3. A discrete-time random process is defined as follows. A fair coin is tossed. If the out-
come is heads, for all n; if the outcome is tails, for all n.
(a) Sketch some sample paths of the process.
(b) Find the pmf for 
(c) Find the joint pmf for and 
(d) Find the mean and autocovariance functions of 

9.4. A discrete-time random process is defined by for where s is selected at
random from the interval (0, 1).
(a) Sketch some sample paths of the process.
(b) Find the cdf of 
(c) Find the joint cdf for and 
(d) Find the mean and autocovariance functions of 
(e) Repeat parts a, b, c, and d if s is uniform in (1, 2).

9.5. Let g(t) be the rectangular pulse shown in Fig. P9.1.The random process X(t) is defined as

where A assumes the values with equal probability.;1

X1t2 = Ag1t2,

Xn .
Xn+1 .Xn

Xn .

n Ú 0,Xn = sn,
Xn .

Xn+k .Xn

Xn .

Xn = 1-12n+1Xn = 1-12n
Xn

Xn .
Xn+k .Xn

Xn .

Xn = k
Xn

X2X1X2 .X1

(a) Find the pmf of X(t).
(b) Find
(c) Find the joint pmf of X(t) and 
(d) Find

9.6. A random process is defined by

where g(t) is the rectangular pulse of Fig. P9.1, and T is a uniformly distributed random
variable in the interval (0, 1).

Y1t2 = g1t - T2,

CX1t, t + d2, d 7 0.
X1t + d2.

mX1t2.
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(a) Find the pmf of Y(t).
(b) Find and 

9.7. A random process is defined by

where T is a uniform random variable in the interval (0, 1) and g(t) is the periodic trian-
gular waveform shown in Fig. P9.2.

X1t2 = g1t - T2,

CY1t1 , t22.mY1t2

t
0 2 31

1

FIGURE P9.2

(a) Find the cdf of X(t) for 
(b) Find mX(t) and 

9.8. Let as in Problem 9.6, but let T be an exponentially distributed random
variable with parameter 
(a) Find the pmf of Y(t).
(b) Find the joint pmf of Y(t) and Consider two cases: and 
(c) Find and for and 

9.9. Let where A and B are independent random variables.
(a) Find the pdf of Z(t).
(b) Find and 

9.10. Find an expression for in terms of autocorrelation function.
9.11. The random process H(t) is defined as the “hard-limited” version of X(t):

(a) Find the pdf, mean, and autocovariance of H(t) if X(t) is the sinusoid with a random
amplitude presented in Example 9.2.

(b) Find the pdf, mean, and autocovariance of H(t) if X(t) is the sinusoid with random
phase presented in Example 9.9.

(c) Find a general expression for the mean of H(t) in terms of the cdf of X(t).
9.12. (a) Are independent random processes orthogonal? Explain.

(b) Are orthogonal random processes uncorrelated? Explain.
(c) Are uncorrelated processes independent?
(d) Are uncorrelated processes orthogonal?

9.13. The random process Z(t) is defined by

Z1t2 = 2Xt - Y,

H1t2 = b +1 if X1t2 Ú 0
-1 if X1t2 6 0.

E3 ƒXt2 - Xt1 ƒ
24

CZ1t1 , t22.mZ1t2
Z1t2 = At3 + B,

0 6 d 6 1.d 7 1CY1t, t + d2mY1t2
0 6 d 6 1.d 7 1,Y1t + d2.

a.
Y1t2 = g1t - T2

CX1t1 , t22.
0 6 t 6 1.
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where X and Y are a pair of random variables with means variances 
and correlation coefficient Find the mean and autocovariance of Z(t).

9.14. Let H(t) be the output of the hard limiter in Problem 9.11.
(a) Find the cross-correlation and cross-covariance between H(t) and X(t) when the

input is a sinusoid with random amplitude as in Problem 9.11a.
(b) Repeat if the input is a sinusoid with random phase as in Problem 9.11b.
(c) Are the input and output processes uncorrelated? Orthogonal?

9.15. Let where is a zero-mean discrete-time random process and g(n) is
a deterministic function of n.
(a) Find the mean and variance of 
(b) Find the joint cdf of and 
(c) Find the autocovariance function of 
(d) Plot typical sample functions for and if:

9.16. Let where is a zero-mean, unit-variance, discrete-time random process
and c(n) is a deterministic function of n.
(a) Find the mean and variance of 
(b) Find the joint cdf of and 
(c) Find the autocovariance function of 
(d) Plot typical sample functions for and if:

9.17. (a) Find the cross-correlation and cross-covariance for and in Problem 9.15.
(b) Find the joint pdf of and 
(c) Determine whether and are uncorrelated, independent, or orthogonal ran-

dom processes.
9.18. (a) Find the cross-correlation and cross-covariance for and in Problem 9.16.

(b) Find the joint pdf of and 
(c) Determine whether and are uncorrelated, independent, or orthogonal ran-

dom processes.
9.19. Suppose that X(t) and Y(t) are independent random processes and let

.

(a) Find , and 
(b) Find the and Hint: Use auxiliary variables.

9.20. Repeat Problem 9.19 if X(t) and Y(t) are independent discrete-time processes and X(t)
and Y(t) have different iid random processes.

Section 9.3: Sum Process, Binomial Counting Process, and Random Walk

9.21. (a) Let be the process that results when individual 1’s in a Bernoulli process are
erased with probability Find the pmf of the counting process for Does 
have independent and stationary increments?

(b) Repeat part a if in addition to the erasures, individual 0’s in the Bernoulli process
are changed to 1’s with probability 

9.22. Let denote a binomial counting process.Sn

b.

YnYn .S¿n ,a.
Yn

fU1t12V1t221u, v2.fU1t12X1t221u, x2,
CUV1t1 , t22.CUX1t1 , t22, CUY1t1 , t22

V1t2 = X1t2 + Y1t2
U1t2 = X1t2 - Y1t2

YnXn

Yn+1 .Xn

YnXn

YnXn

Yn+1 .Xn

YnXn

c1n2 = n; c1n2 = 1/n2; c1n2 = 1/n.YnXn

Yn .
Yn+1 .Yn

Yn .

XnYn = c1n2Xn
g1n2 = n; g1n2 = 1/n2; g1n2 = 1/n.YnXn

Yn .
Yn+1 .Yn

Yn .

XnYn = Xn + g1n2

rX,Y .
sX

2 , sY
2 ,mX ,mY ,
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(a) Show that 
(b) Find where 
(c) Show that where 

9.23. (a) Find for the random walk process.
(b) What is the answer in part a if 

9.24. Consider the following moving average processes:

(a) Find the mean, variance, and covariance of and if is a Bernoulli random
process.

(b) Repeat part a if is the random step process.
(c) Generate 100 outcomes of a Bernoulli random process and find the resulting 

and Are the sample means of and in part a close to their respective
means?

(d) Repeat part c with given by the random step process.
9.25. Consider the following autoregressive processes:

(a) Suppose that is a Bernoulli process. What trends do the processes exhibit?
(b) Express and in terms of and then find and 

Do these results agree with the trends you expect?
(c) Do or have independent increments? stationary increments?
(d) Generate 100 outcomes of a Bernoulli process. Find the resulting realizations of 

and Is the sample mean meaningful for either of these processes?
(e) Repeat part d if is the random step process.

9.26. Let be the discrete-time process defined as the sequence of sample means of an iid
sequence:

(a) Find the mean, variance, and covariance of 
(b) Does have independent increments? stationary increments?

9.27. Find the pdf of the processes defined in Problem 9.24 if the are an iid sequence of
zero-mean, unit-variance Gaussian random variables.

9.28. Let consist of an iid sequence of Cauchy random variables.
(a) Find the pdf of the sum process Hint: Use the characteristic function method.
(b) Find the joint pdf of and 

9.29. Let consist of an iid sequence of Poisson random variables with mean 
(a) Find the pmf of the sum process 
(b) Find the joint pmf of and Sn+k .Sn

Sn .
a.Xn

Sn+k .Sn

Sn .
Xn

Xn

Mn

Mn .

Mn =
X1 + X2 + Á + Xn

n
.

Mn

Xn

Zn .
Wn

ZnWn

E3Zn4.E3Wn4Xn ,Xn-1 , Á ,X1ZnWn

Xn

Zn = 3/4Zn-1 + Xn Z0 = 0.

Wn = 2Wn-1 + Xn W0 = 0

Xn

ZnYnZn .
YnXn ,

Xn

XnZnYn

Zn = 2/3Xn + 1/3Xn-1 X0 = 0

Yn = 1/21Xn + Xn-12 X0 = 0

p = 1/2?
P3Sn = 04

n2 7 n1 7 n0 .P3Sn2
= j ƒ Sn1

= i, Sn0
= k4 = P3Sn2

= j ƒ Sn1
= i4,

n2 7 n1 .P3Sn2
= j ƒ Sn1

= i4,
P3Sn = j, Sn¿ = i4 Z P3Sn = j4P3Sn¿ = i4.
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9.30. Let be an iid sequence of zero-mean, unit-variance Gaussian random variables.
(a) Find the pdf of defined in Problem 9.26.
(b) Find the joint pdf of and Hint: Use the independent increments property

of
9.31. Repeat Problem 9.26 with where is an iid random process.

What happens to the variance of as n increases?
9.32. Repeat Problem 9.26 with where is an iid random process. What

happens to the variance of Mn as n increases?
9.33. Suppose that an experiment has three possible outcomes, say 0, 1, and 2, and suppose that

these occur with probabilities and respectively. Consider a sequence of inde-
pendent repetitions of the experiment, and let be the indicator function for out-
come j. The vector

then constitutes a vector-valued Bernoulli random process. Consider the counting
process for X(n):

(a) Show that S(n) has a multinomial distribution.
(b) Show that S(n) has independent increments, then find the joint pmf of S(n) and

(c) Show that components of the vector process are binomial counting
processes.

Section 9.4: Poisson and Associated Random Processes

9.34. A server handles queries that arrive according to a Poisson process with a rate of 10
queries per minute. What is the probability that no queries go unanswered if the server is
unavailable for 20 seconds?

9.35. Customers deposit $1 in a vending machine according to a Poisson process with rate 
The machine issues an item with probability p. Find the pmf for the number of items dis-
pensed in time t.

9.36. Noise impulses occur in a radio transmission according to a Poisson process of rate 
(a) Find the probability that no impulses occur during the transmission of a message

that is t seconds long.
(b) Suppose that the message is encoded so that the errors caused by up to 2 impulses can

be corrected.What is the probability that a t-second message cannot be corrected?
9.37. Packets arrive at a multiplexer at two ports according to independent Poisson processes

of rates and packets/second, respectively.
(a) Find the probability that a message arrives first on line 2.
(b) Find the pdf for the time until a message arrives on either line.
(c) Find the pmf for N(t), the total number of messages that arrive in an interval of

length t.
(d) Generalize the result of part c for the “merging” of k independent Poisson processes

of rates respectively:

N1t2 = N11t2 + Á + Nk1t2.
ll , Á , lk ,

l2 = 2l1 = 1

l.

l.

Sj1n2
S1n + k2.

S1n2 = X1n2 + X1n - 12 + Á + X112 S102 = 0.

X1n2 = 1X01n2,X11n2,X21n22
Xj1n2

p2 ,p0 , p1 ,

YnXn = 3/4Xn - 1 + Yn
Mn

YnXn = 1/21Yn + Yn-12,
Sn .

Mn+k .Mn

Mn

Xn
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9.38. (a) Find with where N(t) is a Poisson process with
rate

(b) Compare your answer to Explain the difference, if
any.

9.39. Let be a Poisson process with arrival rate that is started at Let be
another Poisson process that is independent of that has arrival rate and that is
started at 
(a) Show that the pmf of the process is given by:

where
(b) Now consider a Poisson process in which the arrival rate is a piecewise constant

function of time. Explain why the pmf of the process is given by the above pmf
where

(c) For what other arrival functions does the pmf in part a hold?
9.40. (a) Suppose that the time required to service a customer in a queueing system is a ran-

dom variable T. If customers arrive at the system according to a Poisson process
with parameter find the pmf for the number of customers that arrive during one
customer’s service time. Hint: Condition on the service time.

(b) Evaluate the pmf in part a if T is an exponential random variable with parameter 
9.41. (a) Is the difference of two independent Poisson random processes also a Poisson

process?

(b) Let be the number of complete pairs generated by a Poisson process up to
time t. Explain why is or is not a Poisson process.

9.42. Let N(t) be a Poisson random process with parameter Suppose that each time an event
occurs, a coin is flipped and the outcome (heads or tails) is recorded. Let and 
denote the number of heads and tails recorded up to time t, respectively.Assume that p is
the probability of heads.
(a) Find
(b) Use part a to show that and are independent Poisson random variables

of rates and respectively:

9.43. Customers play a $1 game machine according to a Poisson process with rate Suppose
the machine dispenses a random reward X each time it is played. Let X(t) be the total
reward issued up to time t.
(a) Find expressions for if is Bernoulli.
(b) Repeat part a if X assumes the values with probabilities (5/6, 1/6).50, 56

XnP3X1t2 = j4

l.

P3N11t2 = j,N21t2 = k4 =
1plt2j
j!
e-plt

111 - p2lt2k
k!

e-11-p2lt.

11 - p2lt,plt
N21t2N11t2

P3N11t2 = j,N21t2 = k ƒ N1t2 = k + j4.

N21t2N11t2
l.

Np1t2
Np1t2

b.

l,

l1t2

m1t2 = L
t

0
l1t¿2 dt¿.

l1t2
m1t2 = E3N1t24.

P3N1t + t2 - N1t2 = k4 =
1m1t + t2 - m1t22k

k!
e-1m1t+t2-m1t22 for k = 0, 1, Á

N1t2 = N11t2 + N21t2
t = 1.

l2 ,N11t2,
N21t2t = 0.l1N11t2

P3N1t + d2 = j ƒ N1t2 = k4.
l.

d 7 0,P3N1t - d2 = j ƒ N1t2 = k4
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(c) Repeat part a if X is Poisson with mean 1.
(d) Repeat  part a if with probability p the machine returns all the coins.

9.44. Let X(t) denote the random telegraph signal, and let Y(t) be a process derived from X(t)
as follows: Each time X(t) changes polarity, Y(t) changes polarity with probability p.
(a) Find the 
(b) Find the autocovariance function of Y(t). Compare it to that of X(t).

9.45. Let Y(t) be the random signal obtained by switching between the values 0 and 1 accord-
ing to the events in a Poisson process of rate Compare the pmf and autocovariance of
Y(t) with that of the random telegraph signal.

9.46. Let Z(t) be the random signal obtained by switching between the values 0 and 1 accord-
ing to the events in a counting process N(t). Let

(a) Find the pmf of Z(t).
(b) Find

9.47. In the filtered Poisson process (Eq. (9.45)), let h(t) be a pulse of unit amplitude and dura-
tion T seconds.
(a) Show that X(t) is then the increment in the Poisson process in the interval 
(b) Find the mean and autocorrelation functions of X(t).

9.48. (a) Find the second moment and variance of the shot noise process discussed in
Example 9.25.

(b) Find the variance of the shot noise process if for 
9.49. Messages arrive at a message center according to a Poisson process of rate Every

hour the messages that have arrived during the previous hour are forwarded to their
destination. Find the mean of the total time waited by all the messages that arrive
during the hour. Hint: Condition on the number of arrivals and consider the arrival
instants.

Section 9.5: Gaussian Random Process, Wiener Process and Brownian Motion

9.50. Let X(t) and Y(t) be jointly Gaussian random processes. Explain the relation be-
tween the conditions of independence, uncorrelatedness, and orthogonality of X(t)
and Y(t).

9.51. Let X(t) be a zero-mean Gaussian random process with autocovariance function given by

Find the joint pdf of X(t) and 
9.52. Find the pdf of Z(t) in Problem 9.13 if X and Y are jointly Gaussian random variables.
9.53. Let where X(t) is a Gaussian random process.

(a) Find the mean and autocovariance of Y(t).
(b) Find the pdf of Y(t).
(c) Find the joint pdf of Y(t) and 
(d) Show that Y(t) is a Gaussian random process.

Y1t + s2.

Y1t2 = X1t + d2 - X1t2,
X1t + s2.
CX1t1 , t22 = 4e-2 ƒt1- t2 ƒ.

l.
t Ú 0.h1t2 = e-bt

1t - T, t2.

mZ1t2.

P3N1t2 = k4 =
1

1 + lt
a lt

1 + lt
bk k = 0, 1, 2, Á .

l.

P3Y1t2 = ;14.
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9.54. Let where A and B are iid Gaussian random variables with
zero mean and variance 
(a) Find the mean and autocovariance of X(t).
(b) Find the joint pdf of X(t) and 

9.55. Let X(t) and Y(t) be independent Gaussian random processes with zero means and the
same covariance function Define the “amplitude-modulated signal” by

(a) Find the mean and autocovariance of Z(t).
(b) Find the pdf of Z(t).

9.56. Let X(t) be a zero-mean Gaussian random process with autocovariance function given by
If X(t) is the input to a “square law detector,” then the output is

Find the mean and autocovariance of the output Y(t).
9.57. Let where X(t) is the Wiener process.

(a) Find the pdf of Y(t).
(b) Find the joint pdf of Y(t) and 

9.58. Let where X(t) is the Wiener process.
(a) Find the pdf of Y(t).
(b) Find the conditional pdf of given 

9.59. Let where X(t) is the Wiener process.
(a) Find the pdf of Z(t).
(b) Find and 

9.60. (a) For X(t) the Wiener process with and show that the joint pdf of
X(t) and X(1) is given by:

(b) Use part a to show that for the conditional pdf of X(t) given
is:

(c) Use part b to find the conditional pdf of X(t) given and for
Hint: Find the equivalent process in the interval 10, t2 - t12.t1 6 t 6 t2 .

X1t22 = bX1t12 = a

fX1t21x ƒX102 = X112 = 02 =

expb - 1
2
B x2

t11 - t2R r
2p2t11 - t2 .

X102 = X112 = 0
0 6 t 6 1,

fX1t2,X1121x1 , x22 =

expb - 1
2
Bx1

2

t
+
1x2 - x122
11 - t2 R r

2p2t11 - t2 .

0 6 t 6 1,a = 1
CZ1t1 , t22.mZ1t2

Z1t2 = X1t2 - aX1t - s2,
Y1t12.Y1t22

Y1t2 = X21t2,
Y1t + s2.

Y1t2 = X1t2 + mt,

Y1t2 = X1t22.
CX1t1 , t22.

Z1t2 = X1t2 cos vt + Y1t2 sin vt.

C1t1 , t22.
X1t + s2.

s2.
X1t2 = A cos vt + B sin vt,
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Section 9.6: Stationary Random Processes

9.61. (a) Is the random amplitude sinusoid in Example 9.9 a stationary random process? Is it
stationary?

(b) Repeat part a for the random phase sinusoid in Example 9.10.
9.62. A discrete-time random process is defined as follows. A fair coin is tossed; if the out-

come is heads then for all n, and for all n, otherwise.
(a) Is a WSS random process?
(b) Is a stationary random process?
(c) Do the answers in parts a and b change if p is a biased coin?

9.63. Let be the random process in Problem 9.3.
(a) Is a WSS random process?
(b) Is a stationary random process?
(c) Is a cyclostationary random process?

9.64. Let where g(t) is the periodic waveform introduced in Problem 9.7,
and T is a uniformly distributed random variable in the interval (0, 1). Is X(t) a stationary
random process? Is X(t) wide-sense stationary?

9.65. Let X(t) be defined by

where A and B are iid random variables.
(a) Under what conditions is X(t) wide-sense stationary?
(b) Show that X(t) is not stationary. Hint: Consider

9.66. Consider the following moving average process:

(a) Is a stationary random process if is an iid integer-valued process?
(b) Is a stationary random process if is a stationary process?
(c) Are and jointly stationary random processes if is an iid process? a sta-

tionary process?
9.67. Let be a zero-mean iid process, and let be an autoregressive random process

(a) Find the autocovariance of and determine whether is wide-sense stationary.
Hint: Express in terms of 

(b) Does eventually settle down into stationary behavior?
(c) Find the pdf of if is an iid sequence of zero-mean, unit-variance Gaussian ran-

dom variables. What is the pdf of as 
9.68. Let where X(t) is a wide-sense stationary random process.

(a) Determine whether Y(t) is also a wide-sense stationary random process.
(b) Find the cross-covariance function of Y(t) and X(t). Are the processes jointly wide-

sense stationary?

Y1t2 = X1t + s2 - bX1t2,
n: q?Zn

XnZn

Zn

Xn ,Xn-1 , Á ,X1 .Zn

ZnZn

Zn = 3/4Zn-1 + Xn Z0 = 0.

ZnXn

XnXnYn

XnYn

XnYn

Yn = 1/21Xn + Xn-12 X0 = 0.

E3X31t24.

X1t2 = A cos vt + B sin vt,

X1t2 = g1t - T2,
Xn

Xn

Xn

Xn

Xn

Xn

Xn = -1Xn = 1
Xn

wide-sense
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(c) Find the pdf of Y(t) if X(t) is a Gaussian random process.
(d) Find the joint pdf of and in part c.
(e) Find the joint pdf of and in part c.

9.69. Let X(t) and Y(t) be independent, wide-sense stationary random processes with zero
means and the same covariance function Let Z(t) be defined by

(a) Determine whether Z(t) is also wide-sense stationary.
(b) Determine the pdf of Z(t) if X(t) and Y(t) are also jointly Gaussian zero-mean ran-

dom processes with 
(c) Find the joint pdf of and in part b.
(d) Find the cross-covariance between Z(t) and X(t). Are Z(t) and X(t) jointly station-

ary random processes?
(e) Find the joint pdf of and in part b. Hint: Use auxilliary variables.

9.70. Let X(t) and Y(t) be independent, wide-sense stationary random processes with zero
means and the same covariance function Let Z(t) be defined by

(a) Determine whether Z(t) is a wide-sense stationary random process.
(b) Determine the pdf of Z(t) if X(t) and Y(t) are also jointly Gaussian zero-mean ran-

dom processes with 
(c) Find the joint pdf of and in part b.
(d) Find the cross-covariance between Z(t) and X(t). Are Z(t) and X(t) jointly station-

ary random processes?
(e) Find the joint pdf of and in part b.

9.71. Let X(t) be a zero-mean, wide-sense stationary Gaussian random process with autocorre-
lation function The output of a “square law detector” is

Show that Hint: For zero-mean, jointly Gaussian random
variables

9.72. A WSS process X(t) has mean 1 and autocorrelation function given in Fig. P9.3.
E3X2Z24 = E3X24E3Z24 + 2E3XZ42.
RY1t2 = RX1022 + 2R 2

X1t2.
Y1t2 = X1t22.

RX1t2.
X1t22Z1t12

Z1t22Z1t12
CX1t2 = 4e-ƒt ƒ.

Z1t2 = X1t2 cos vt + Y1t2 sin vt.

CX1t2.
X1t22Z1t12

Z1t22Z1t12
CX1t2 = 4e-ƒt ƒ.

Z1t2 = 3X1t2 - 5Y1t2.
CX1t2.

X1t22Y1t12
Y1t22Y1t12

2
2 2

RX(t)
4

t
�9 �8 �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

FIGURE P9.3

(a) Find the mean component of 
(b) Find the periodic component of 
(c) Find the remaining component of RX1t2.

RX1t2.
RX1t2.
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9.73. Let and be independent random processes. A multiplexer combines these two se-
quences into a combined sequence that is,

(a) Suppose that and are independent Bernoulli random processes. Under
what conditions is a stationary random process? a cyclostationary random
process?

(b) Repeat part a if and are independent stationary random processes.
(c) Suppose that and are wide-sense stationary random processes. Is a wide-

sense stationary random process? a wide-sense cyclostationary random process?
Find the mean and autocovariance functions of 

(d) If is wide-sense cyclostationary, find the mean and correlation function of the
randomly phase-shifted version of as defined by Eq. (9.72).

9.74. A ternary information source produces an iid, equiprobable sequence of symbols from
the alphabet Suppose that these three symbols are encoded into the respective
binary codewords 00, 01, 10. Let be the sequence of binary symbols that result from
encoding the ternary symbols.
(a) Find the joint pmf of and for n even; n odd. Is stationary? cyclostationary?
(b) Find the mean and covariance functions of Is wide-sense stationary? wide-

sense cyclostationary?
(c) If is cyclostationary, find the joint pmf, mean, and autocorrelation functions of the

randomly phase-shifted version of as defined by Eq. (9.72).
9.75. Let s(t) be a periodic square wave with period which is equal to 1 for the first half

of a period and for the remainder of the period. Let where A is a ran-
dom variable.
(a) Find the mean and autocovariance functions of X(t).
(b) Is X(t) a mean-square periodic process?
(c) Find the mean and autocovariance of the randomly phase-shifted version of

X(t) given by Eq. (9.72).
9.76. Let and where A and B are independent random variables

that assume values or with equal probabilities, where s(t) is the periodic square
wave in Problem 9.75.
(a) Find the joint pmf of and 
(b) Find the cross-covariance of X(t1) and Y(t2).
(c) Are X(t) and Y(t) jointly wide-sense cyclostationary? Jointly cyclostationary?

9.77. Let X(t) be a mean square periodic random process. Is X(t) a wide-sense cyclostationary
process?

9.78. Is the pulse amplitude modulation random process in Example 9.38 cyclostationary?
9.79. Let X(t) be the random amplitude sinusoid in Example 9.37. Find the mean and autocor-

relation functions of the randomly phase-shifted version of X(t) given by Eq. (9.72).
9.80. Complete the proof that if X(t) is a cyclostationary random process, then defined

by Eq. (9.72), is a stationary random process.
9.81. Show that if X(t) is a wide-sense cyclostationary random process, then defined by

Eq. (9.72), is a wide-sense stationary random process with mean and autocorrelation
functions given by Eqs. (9.74a) and (9.74b).

Xs1t2,
Xs1t2,

Y1t22.X1t12
-1+1

Y1t2 = Bs1t2,X1t2 = As1t2
Xs1t2

X1t2 = As1t2,-1
T = 1

Bn

Bn

BnBn .
BnBn+1Bn

Bn

5a, b, c6.
Uk

Uk

Uk .

UkYnXn

YnXn

Uk

YnXn

U2n = Xn , U2n+1 = Yn .

Uk ,
YnXn
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Section 9.7: Continuity, Derivatives, and Integrals of Random Processes

9.82. Let the random process be a unit step function delayed by an exponen-
tial random variable S, that is, for and for 
(a) Find the autocorrelation function of X(t).
(b) Is X(t) mean square continuous?
(c) Does X(t) have a mean square derivative? If so, find its mean and autocorrelation

functions.
(d) Does X(t) have a mean square integral? If so, find its mean and autocovariance

functions.
9.83. Let X(t) be the random telegraph signal introduced in Example 9.24.

(a) Is X(t) mean square continuous?
(b) Show that X(t) does not have a mean square derivative, and show that the second

mixed partial derivative of its autocorrelation function has a delta function. What
gives rise to this delta function?

(c) Does X(t) have a mean square integral? If so, find its mean and autocovariance
functions.

9.84. Let X(t) have autocorrelation function

(a) Is X(t) mean square continuous?
(b) Does X(t) have a mean square derivative? If so, find its mean and autocorrelation

functions.
(c) Does X(t) have a mean square integral? If so, find its mean and autocorrelation

functions.
(d) Is X(t) a Gaussian random process?

9.85. Let N(t) be the Poisson process. Find and use the result to show that
N(t) is mean square continuous.

9.86. Does the pulse amplitude modulation random process discussed in Example 9.38 have a
mean square integral? If so, find its mean and autocovariance functions.

9.87. Show that if X(t) is a mean square continuous random process, then X(t) has a mean
square integral. Hint: Show that

and then apply the Schwarz inequality to the two terms on the right-hand side.
9.88. Let Y(t) be the mean square integral of X(t) in the interval (0, t). Show that is equal

to X(t) in the mean square sense.
9.89. Let X(t) be a wide-sense stationary random process. Show that 
9.90. A linear system with input Z(t) is described by

Find the output X(t) if the input is a zero-mean Gaussian random process with autocor-
relation function given by

RX1t2 = s2e-b ƒt ƒ.

X¿1t2 + aX1t2 = Z1t2 t Ú 0,X102 = 0.

E3X1t2X¿1t24 = 0.

Y¿1t2

RX1t1 , t22 - RX1t0 , t02 = E31X1t12 - X1t022X1t224 + E3X1t021X1t22 - X1t0224,

E31N1t2 - N1t02224

RX1t2 = s2e-at
2
.

t 6 S.X1t2 = 0t Ú S,X1t2 = 1
X1t2 = u1t - S2
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Section 9.8: Time Averages of Random Processes and Ergodic Theorems

9.91. Find the variance of the time average given in Example 9.47.
9.92. Are the following processes WSS and mean ergodic?

(a) Discrete-time dice process in Problem 9.2.
(b) Alternating sign process in Problem 9.3.
(c) for in Problem 9.4.

9.93. Is the following WSS random process X(t) mean ergodic?

9.94. Let where A is a random variable with mean m and variance 
(a) Evaluate find its limit as and compare to 
(b) Evaluate find its limit as and compare to 

9.95. Repeat Problem 9.94 with where A is as in Problem 9.94, is
a random variable uniformly distributed in and A and are independent ran-
dom variables.

9.96. Find an exact expression for in Example 9.48. Find the limit as 
9.97. The WSS random process has mean m and autocovariance Is 

mean ergodic?
9.98. (a) Are the moving average processes in Problem 9.24 mean ergodic?

(b) Are the autoregressive processes in Problem 9.25a mean ergodic?
9.99. (a) Show that a WSS random process is mean ergodic if

(b) Show that a discrete-time WSS random process is mean ergodic if

9.100. Let denote a time-average estimate for the mean power of a WSS random
process.
(a) Under what conditions is this time average a valid estimate for 
(b) Apply your result in part a for the random phase sinusoid in Example 9.2.

9.101. (a) Under what conditions is the time average a valid estimate for
the autocorrelation of a WSS random process X(t)?

(b) Apply your result in part a for the random phase sinusoid in Example 9.2.
9.102. Let Y(t) be the indicator function for the event that is,

(a) Show that is the proportion of time in the time interval that
X1t2 H 1a, b4.

1-T, T26Y1t27T

Y1t2 = b1 ifX1t2 H 1a, b4
0 otherwise.

5a 6 X1t2 … b6,
RX1t2

6X1t + t2X1t27T

E3X21t24?
6X21t27T

a
q

k=-q
ƒC1k2 ƒ 6 q .

L
q

-q
ƒC1u2 ƒ 6 q .

Zn

Yn

XnCX1k2 = 11/22 ƒk ƒ.Xn

T: q .VAR36X1t27T4
®10, 2p2,

®X1t2 = A cos12pft + ®2,
RX1t + t, t2.T: q ,6X1t + t2X1t27 ,

mX1t2.T: q ,6X1t27T ,
s2.X1t2 = A cos12pft2,

RX1t2 = b0 ƒ t ƒ 7 1
511 - ƒ t ƒ 2 ƒ t ƒ … 1.

n Ú 0Xn = sn,
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(b) Find
(c) Under what conditions does 
(d) How can be used to estimate 
(e) Apply the result in part d to the random telegraph signal.

9.103. (a) Repeat Problem 9.102 for the time average of the discrete-time which is defined
as the indicator for the event 

(b) Apply your result in part a to an iid discrete-valued random process.
(c) Apply your result in part a to an iid continuous-valued random process.

9.104. For define where u(x) is the unit step function, that is, if
and only if 
(a) Show that the time average is the proportion of that are less than a in

the first N samples.
(b) Show that if the process is ergodic (in some sense), then this time average is equal to

9.105. In Example 9.50 show that 
9.106. Plot the covariance function vs. k for the self-similar process in Example 9.50 with 

for: Does the long-range dependence of the
process increase or decrease with H?

9.107. (a) Plot the variance of the sample mean given by Eq. (9.110) vs. T with for:

(b) For the parameters in part a, plot vs. T, which is the ratio of the vari-
ance of the sample mean of a long-range dependent process relative to the variance
of the sample mean of an iid process. How does the long-range dependence manifest
itself, especially for H approaching 1?

(c) Comment on the width of confidence intervals for estimates of the mean of long-
range dependent processes relative to those of iid processes.

9.108. Plot the variance of the sample mean for a long-range dependent process (Eq. 9.110) vs.
the sample size T in a log-log plot.
(a) What role does H play in the plot?
(b) One of the remarkable indicators of long-range dependence in nature comes from a

set of observations of the minimal water levels in the Nile river for the years
622–1281 [Beran, p. 22] where the log-log plot for part a gives a slope of What
value of H corresponds to this slope?

9.109. Problem 9.99b gives a sufficient condition for mean ergodicity for discrete-time random
processes. Use the expression in Eq. (9.112) for a long-range dependent process to deter-
mine whether the sufficient condition is satisfied. Comment on your findings.

Section 9.9: Fourier Series and Karhunen-Loeve Expansion

9.110. Let where X is a random variable.
(a) Find the correlation function for X(t), which for complex-valued random processes

is defined by where denotes the complex conjugate.
(b) Under what conditions is X(t) a wide-sense stationary random process?

*RX1t1 , t22 = E3X1t12X*1t224,
X1t2 = Xejvt

*

-0.27.

12T + 122H-1

H = 0.5,H = 0.6,H = 0.75,H = 0.99.
s2 = 1

H = 0.5,H = 0.6,H = 0.75,H = 0.99.
s2 = 1

VAR38Xn9T4 = 1s2212T + 122H-2.
FX1a2 = P3X … a4.

Xn’s6Zn7N
Xn … a.

Xn = 1Zn = u1a - Xn2,n Ú 1,

5a 6 Xn … b46.
Yn ,

P3X1t2 … x4?6Y1t27T
6Y1t27T: P3a 6 X1t2 … b4?

E36Y1t27T4.
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9.111. Consider the sum of two complex exponentials with random coefficients:

(a) Find the covariance function of X(t).
(b) Find conditions on the complex-valued random variables and for X(t) to be

a wide-sense stationary random process.
(c) Show that if we let and where U

and V are real-valued random variables, then X(t) is a real-valued random process.
Find an expression for X(t) and for the autocorrelation function.

(d) Restate the conditions on and from part b in terms of U and V.
(e) Suppose that in part c, U and V are jointly Gaussian random variables. Show that

X(t) is a Gaussian random process.
9.112. (a) Derive Eq. (9.118) for the correlation of the Fourier coefficients for a non-mean

square periodic process X(t).
(b) Show that Eq. (9.118) reduces to Eq. (9.117) when X(t) is WSS and mean square periodic.

9.113. Let X(t) be a WSS Gaussian random process with 
(a) Find the Fourier series expansion for X(t) in the interval [0, T].
(b) What is the distribution of the coefficients in the Fourier series?

9.114. Show that the Karhunen-Loeve expansion of a WSS mean-square periodic process X(t)
yields its Fourier series. Specify the orthonormal set of eigenfunctions and the corre-
sponding eigenvalues.

9.115. Let X(t) be the white Gaussian noise process introduced in Example 9.43. Show that any
set of orthonormal functions can be used as the eigenfunctions for X(t) in its Karhunen-
Loeve expansion. What are the eigenvalues?

9.116. Let where X(t) and W(t) are orthogonal random processes and
W(t) is a white Gaussian noise process. Let be the eigenfunctions corresponding to

Show that are also the eigenfunctions for What is the relation
between the eigenvalues of and those of 

9.117. Let X(t) be a zero-mean random process with autocovariance

(a) Write the eigenvalue integral equation for the Karhunen-Loeve expansion of X(t)
on the interval 

(b) Differentiate the above integral equation to obtain the differential equation

(c) Show that the solutions to the above differential equation are of the form
and Find an expression for b.f1t2 = B sin bt.f1t2 = A cos bt

d2

dt2
f1t2 =

a2¢l - 2
s2

a
≤

l
f1t2.

3-T, T4.

RX1t2 = s2e-a ƒt ƒ.

KY1t1 , t22?KX1t1 , t22
KY1t1 , t22.fn1t2KX1t1 , t22.

fn1t2
Y1t2 = X1t2 + W1t2,

RX1t2 = e-ƒt ƒ.

X2X1

X2 = 1U + jV2/2,v1 = -v2 ,X1 = 1U - jV2/2
X2X1,

X1t2 = X1e
jv1t + X2e

jv2t where v1 Z v2 .
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(d) Substitute the from part c into the integral equation of part a to show that if
then b is the root of tan and if then b is

the root of tan 
(e) Find the values of A and B that normalize the eigenfunctions.
(f ) In order to show that the frequencies of the eigenfunctions are not harmonically re-

lated, plot the following three functions versus The in-
tersections of these functions yield the eigenvalues. Note that there are two roots per
interval of length 

Section 9.10: Generating Random Processes

9.118. (a) Generate 10 realizations of the binomial counting process with 
and For each value of p, plot the sample functions for 

(b) Generate 50 realizations of the binomial counting process with Find the
sample mean and sample variance of the realizations for the first 200 trials.

(c) In part b, find the histogram of increments in the process for the interval [1, 50],
[51, 100], [101, 150], and [151, 200]. Compare these histograms to the theoretical
pmf. How would you check to see if the increments in the four intervals are 
stationary?

(d) Plot a scattergram of the pairs consisting of the increments in the interval [1, 50] and
[51, 100] in a given realization. Devise a test to check whether the increments in the
two intervals are independent random variables.

9.119. Repeat Problem 9.118 for the random walk process with the same parameters.
9.120. Repeat Problem 9.118 for the sum process in Eq. (9.24) where the are iid unit-variance

Gaussian random variables with mean:
9.121. Repeat Problem 9.118 for the sum process in Eq. (9.24) where the are iid Poisson ran-

dom variables with 
9.122. Repeat Problem 9.118 for the sum process in Eq. (9.24) where the are iid Cauchy ran-

dom variables with 
9.123. Let where 

(a) Generate five realizations of the process for 9/10 and with given by
the and random step process. Plot the sample functions for the first
200 steps. Find the sample mean and sample variance for the outcomes in each real-
ization. Plot the histogram for outcomes in each realization.

(b) Generate 50 realizations of the process with and Find
the sample mean and sample variance of the realizations for the first 200 trials. Find
the histogram of across the realizations at times and 

(c) In part b, find the histogram of increments in the process for the interval [1, 50], [51,
100], [101, 150], and [151, 200]. To what theoretical pmf should these histograms be
compared? Should the increments in the process be stationary? Should the incre-
ments be independent?

9.124. Repeat Problem 9.123 for the sum process in Eq. (9.24) where the are iid unit-variance
Gaussian random variables with mean:m = 0;m = 0.5.

Xn

n = 200.n = 5, n = 50,Yn

p = 1/2.a = 1/2, p = 1/4,Yn

p = 1/4p = 1/2
Xna = 1/4, 1/2,

Y0 = 0.Yn = aYn-1 + Xn
a = 1.

Xn

a = 1.
Xn

m = 0;m = 0.5.
Xn

p = 1/2.
n = 200 trials.p = 3/4.
p = 1/4, p = 1/2,

*

p.

bT: tan bT, bT/aT, -aT/bT.
*

bT = -b/a.
f1t2 = B sin bt,bT = a/b,f1t2 = A cos bt,

f1t2
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9.125. (a) Propose a method for estimating the covariance function of the sum process in
Problem 9.118. Do not assume that the process is wide-sense stationary.

(b) How would you check to see if the process is wide-sense stationary?
(c) Apply the methods in parts a and b to the experiment in Problem 9.118b.
(d) Repeat part c for Problem 9.123b.

9.126. Use the binomial process to approximate a Poisson random process with arrival rate
customer per second in the time interval (0, 100]. Try different values of n and

come up with a recommendation on how n should be selected.
9.127. Generate 100 repetitions of the experiment in Example 9.21.

(a) Find the relative frequency of the event 
and compare it to the theoretical probability.

(b) Find the histogram of the time that elapses until the second arrival and compare it to
the theoretical pdf. Plot the empirical cdf and compare it to the theoretical cdf.

9.128. Generate 100 realizations of the Poisson random process N(t) with arrival rate 
customer per second in the time interval (0, 10]. Generate the pair by as-
signing arrivals in N(t) to with probability and to with probability
0.75.
(a) Find the histograms for and and compare them to the theoretical pmf

by performing a chi-square goodness-of-fit test at a 5% significance level.
(b) Perform a chi-square goodness-of-fit test to test whether and are in-

dependent random variables. How would you check whether and are
independent random processes?

9.129. Subscribers log on to a system according to a Poisson process with arrival rate cus-
tomer per second. The ith customer remains logged on for a random duration of sec-
onds, where the are iid random variables and are also independent of the arrival times.
(a) Generate the sequence of customer arrival times and the corresponding

departure times given by where the connections times are all equal
to 1.

(b) Plot: A(t), the number of arrivals up to time t; D(t), the number of departures up to
time t; and the number in the system at time t.

(c) Perform 100 simulations of the system operation for a duration of 200 seconds. As-
sume that customer connection times are an exponential random variables with mean
5 seconds. Find the customer departure time instants and the associated departure
counting process D(t). How would you check whether D(t) is a Poisson process? Find
the histograms for D(t) and the number in the system N(t) at Try
to fit a pmf to each histogram.

(d) Repeat part c if customer connection times are exactly 5 seconds long.
9.130. Generate 100 realizations of the Wiener process with for the interval (0, 3.5) using

the random walk limiting procedure.
(a) Find the histograms for increments in the intervals (0, 0.5], (0.5, 1.5], and (1.5, 3.5]

and compare these to the theoretical pdf.
(b) Perform a test at a 5% significance level to determine whether the increments in the

first two intervals are independent random variables.

a = 1

t = 50, 100, 150, 200.

N1t2 = A1t2 - D1t2,

Dn = Sn + Tn ,
Sn

Ti

Ti

l = 1

N21t2N11t2
N21102N11102

N21102N11102
N21t2p = 0.25N11t2
1N11t2,N21t22

l = 1

P3N1102 = 3 and N1602 - N1452 = 24

l = 1
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9.131. Repeat Problem 9.130 using Gaussian-distributed increments to generate the Wiener
process. Discuss how the increment interval in the simulation should be selected.

Problems Requiring Cumulative Knowledge

9.132. Let X(t) be a random process with independent increments. Assume that the increments
are gamma random variables with parameters and 

(a) Find the joint density function of and 
(b) Find the autocorrelation function of X(t).
(c) Is X(t) mean square continuous?
(d) Does X(t) have a mean square derivative?

9.133. Let X(t) be the pulse amplitude modulation process introduced in Example 9.38 with
A phase-modulated process is defined by

(a) Plot the sample function of Y(t) corresponding to the binary sequence 0010110.
(b) Find the joint pdf of and 
(c) Find the mean and autocorrelation functions of Y(t).
(d) Is Y(t) a stationary, wide-sense stationary, or cyclostationary random process?
(e) Is Y(t) mean square continuous?
(f) Does Y(t) have a mean square derivative? If so, find its mean and autocorrelation

functions.
9.134. Let N(t) be the Poisson process, and suppose we form the phase-modulated process

(a) Plot a sample function of Y(t) corresponding to a typical sample function of N(t).
(b) Find the joint density function of and Hint: Use the independent incre-

ments property of N(t).
(c) Find the mean and autocorrelation functions of Y(t).
(d) Is Y(t) a stationary, wide-sense stationary, or cyclostationary random process?
(e) Is Y(t) mean square continuous?
(f) Does Y(t) have a mean square derivative? If so, find its mean and autocorrelation

functions.
9.135. Let X(t) be a train of amplitude-modulated pulses with occurrences according to a Pois-

son process:

where the are iid random variables, the are the event occurrence times in a Poisson
process, and h(t) is a function of time. Assume the amplitudes and occurrence times are
independent.
(a) Find the mean and autocorrelation functions of X(t).
(b) Evaluate part a when a unit step function.
(c) Evaluate part a when a rectangular pulse of duration T seconds.h1t2 = p1t2,

h1t2 = u1t2,

SkAk

X1t2 = a
q

k=1
Akh1t - Sk2,

Y1t22.Y1t12

Y1t2 = a cos12pft + pN1t22.

Y1t22.Y1t12

Y1t2 = a cosa2pt +
p

2
X1t2b .

T = 1.

X1t22.X1t12
a = t2 - t1 .l 7 0X1t22 - X1t12
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9.136. Consider a linear combination of two sinusoids:

where and are independent uniform random variables in the interval and
and are jointly Gaussian random variables. Assume that the amplitudes are inde-

pendent of the phase random variables.
(a) Find the mean and autocorrelation functions of X(t).
(b) Is X(t) mean square periodic? If so, what is the period?
(c) Find the joint pdf of and 

9.137. (a) A Gauss-Markov random process is a Gaussian random process that is also a Markov
process. Show that the autocovariance function of such a process must satisfy

where
(b) It can be shown that if the autocovariance of a Gaussian random process satisfies

the above equation, then the process is Gauss-Markov. Is the Wiener process Gauss-
Markov? Is the Ornstein-Uhlenbeck process Gauss-Markov?

9.138. Let and be two independent stationary random processes. Suppose that and 
are zero-mean, Gaussian random processes with autocorrelation functions

A block multiplexer takes blocks of two from the above processes and interleaves them
to form the random process 

(a) Find the autocorrelation function of 
(b) Is cyclostationary? wide-sense stationary?
(c) Find the joint pdf of and 
(d) Let where T is selected uniformly from the set Repeat

parts a, b, and c for 
9.139. Let be the Gaussian random process in Problem 9.138.A decimator takes every other

sample to form the random process 

(a) Find the autocorrelation function of 
(b) Find the joint pdf of and 
(c) An interpolator takes the sequence and inserts zeros between samples to form

the sequence 

Find the autocorrelation function of Is a Gaussian random process?WkWk .

A10A30A50A70A90A11 Á .

Wk:
Vm

Vm+k.Vm

Vm .

A1A3A5A7A9A11

Vm:
An

Zm .
50, 1, 2, 36.Zm = Ym+T ,

Ym+1 .Ym

Ym

Ym .

A1A2B1B2A3A4B3B4A5A6B5B6 Á .

Ym:

RA1k2 = s1
2r1

ƒk ƒ RB1k2 = s2
2r2

ƒk ƒ.

BnAnBnAn

t1 … t2 … t3 .

CX1t3 , t12 =
CX1t3 , t22CX1t2 , t12

CX1t2 , t22 ,

X1t22.X1t12

A2A1

10, 2p2,®2®1

X1t2 = A1 cos1v0t + ®12 + A2 cos122v0t + ®22,
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9.140. Let be a sequence of zero-mean, unit-variance independent Gaussian random variables.
A block coder takes pairs of A’s and linearly transforms them to form the sequence 

(a) Find the autocorrelation function of 
(b) Is stationary in any sense?
(c) Find the joint pdf of and 

9.141. Suppose customer orders arrive according to a Bernoulli random process with parameter p.
When an order arrives, its size is an exponential random variable with parameter Let 
be the total size of all orders up to time n.
(a) Find the mean and autocorrelation functions of 
(b) Is a stationary random process?
(c) Is a Markov process?
(d) Find the joint pdf of and Sn+k .Sn

Sn

Sn

Sn .

Snl.

Yn+2 .Yn+1 ,Yn ,
Yn

Yn .

BY2n

Y2n+1
R =

1

22
B1 1

1 -1
R B A2n

A2n+1
R .

Yn:
An



In this chapter we introduce methods for analyzing and processing random signals. We
cover the following topics:

• Section 10.1 introduces the notion of power spectral density, which allows us to
view random processes in the frequency domain.

• Section 10.2 discusses the response of linear systems to random process inputs
and introduce methods for filtering random processes.

• Section 10.3 considers two important applications of signal processing: sampling
and modulation.

• Sections 10.4 and 10.5 discuss the design of optimum linear systems and intro-
duce the Wiener and Kalman filters.

• Section 10.6 addresses the problem of estimating the power spectral density of a
random process.

• Finally, Section 10.7 introduces methods for implementing and simulating the
processing of random signals.

10.1 POWER SPECTRAL DENSITY

The Fourier series and the Fourier transform allow us to view deterministic time func-
tions as the weighted sum or integral of sinusoidal functions. A time function that
varies slowly has the weighting concentrated at the low-frequency sinusoidal compo-
nents. A time function that varies rapidly has the weighting concentrated at higher-fre-
quency components. Thus the rate at which a deterministic time function varies is
related to the weighting function of the Fourier series or transform. This weighting
function is called the “spectrum” of the time function.

The notion of a time function as being composed of sinusoidal components is also
very useful for random processes. However, since a sample function of a random
process can be viewed as being selected from an ensemble of allowable time functions,
the weighting function or “spectrum” for a random process must refer in some way to
the average rate of change of the ensemble of allowable time functions. Equation
(9.66) shows that, for wide-sense stationary processes, the autocorrelation function
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1This result is usually called the Wiener-Khinchin theorem, after Norbert Wiener and A. Ya. Khinchin, who
proved the result in the early 1930s. Later it was discovered that this result was stated by Albert Einstein in a
1914 paper (see Einstein).

is an appropriate measure for the average rate of change of a random process.
Indeed if a random process changes slowly with time, then it remains correlated with it-
self for a long period of time, and decreases slowly as a function of On the
other hand, a rapidly varying random process quickly becomes uncorrelated with itself,
and decreases rapidly with 

We now present the Einstein-Wiener-Khinchin theorem, which states that the
power spectral density of a wide-sense stationary random process is given by the Fouri-
er transform of the autocorrelation function.1

10.1.1 Continuous-Time Random Processes

Let X(t) be a continuous-time WSS random process with mean and autocorrela-
tion function Suppose we take the Fourier transform of a sample of X(t) in the
interval as follows

(10.1)

We then approximate the power density as a function of frequency by the function:

(10.2)

where * denotes the complex conjugate. X(t) is a random process, so is also a
random process but over a different index set. is called the periodogram esti-
mate and we are interested in the power spectral density of X(t) which is defined by:

(10.3)

We show at the end of this section that the power spectral density of X(t) is given by the
Fourier transform of the autocorrelation function:

(10.4)

A table of Fourier transforms and its properties is given in Appendix B.
For real-valued random processes, the autocorrelation function is an even

function of 
(10.5)RX1t2 = RX1-t2.

t:

= L
q

-q
RX1t2e-j2pft dt.SX1f2 = f5RX1t26

SX1f2 = lim
T:q

E3p'T1f24 = lim
T:q

1
T
E3 ƒ x'1f2 ƒ 24.

p
'
T1f2

p
'
T1f2

p
'
T1f2 =

1
T

ƒ x'1f2 ƒ 2 =
1
T
x
'1f2x'…1f2 =

1
T
bLT0 
X1t¿2e-j2pft¿ dt¿ r bLT0 

X1t¿2ej2pft¿ dt¿r ,

x
'1f2 = L

T

0 
X1t¿2e-j2pft¿ dt¿.

0 6 t 6 T
RX1t2.

mX

t.RX1t2
t.RX1t2

RX1t2
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2If X(t) is a voltage or current developed across a 1-ohm resistor, then is the instantaneous power ab-
sorbed by the resistor.

X21t2

Substitution into Eq. (10.4) implies that

(10.6)

since the integral of the product of an even function and an odd function
is zero. Equation (10.6) implies that is real-valued and an even func-

tion of f. From Eq. (10.2) we have that is nonnegative:

(10.7)

The autocorrelation function can be recovered from the power spectral density
by applying the inverse Fourier transform formula to Eq. (10.4):

(10.8)

Equation (10.8) is identical to Eq. (4.80), which relates the pdf to its corresponding
characteristic function. The last section in this chapter discusses how the FFT can be
used to perform numerical calculations for and 

In electrical engineering it is customary to refer to the second moment of X(t) as
the average power of X(t).2 Equation (10.8) together with Eq. (9.64) gives

(10.9)

Equation (10.9) states that the average power of X(t) is obtained by integrating 
over all frequencies.This is consistent with the fact that is the “density of power”
of X(t) at the frequency f.

Since the autocorrelation and autocovariance functions are related by 
the power spectral density is also given by

(10.10)

where we have used the fact that the Fourier transform of a constant is a delta func-
tion. We say the is the “dc” component of X(t).

The notion of power spectral density can be generalized to two jointly wide-sense
stationary processes. The cross-power spectral density is defined by

(10.11)SX,Y1f2 = f5RX,Y1t26,
SX,Y1 f2

mX

= f5CX1t26 + mX2 d1f2,
SX1f2 = f5CX1t2 + mX2 6

CX1t2 + mX2 ,
RX1t2 =

SX1f2
SX1f2

E3X21t24 = RX102 = L
q

-q
SX1f2 df.

RX1t2.SX1f2

= L
q

-q
SX1f2ej2pft df.

RX1t2 = f-15SX1f26

SX1f2 Ú 0 for all f.

SX1f2
SX1f21sin 2pft2 1RX1t22

= L
q

-q
RX1t2 cos 2pft dt,

SX1f2 = L
q

-q
RX1t25cos 2pft - j sin 2pft6 dt
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FIGURE 10.1
Power spectral density of a random telegraph signal with and

transitions per second.a = 2
a = 1

where is the cross-correlation between X(t) and Y(t):

(10.12)

In general, is a complex function of f even if X(t) and Y(t) are both real-valued.

Example 10.1 Random Telegraph Signal

Find the power spectral density of the random telegraph signal.
In Example 9.24, the autocorrelation function of the random telegraph process was

found to be

where is the average transition rate of the signal. Therefore, the power spectral density of the
process is

(10.13)

Figure 10.1 shows the power spectral density for and transitions per second. The
process changes two times more quickly when it can be seen from the figure that the
power spectral density for has greater high-frequency content.

Example 10.2 Sinusoid with Random Phase

Let where is uniformly distributed in the interval Find
SX1f2.

10, 2p2.®X1t2 = a cos12pf0t + ®2,

a = 2
a = 2;

a = 2a = 1

=
4a

4a2 + 4p2f2 .

=
1

2a - j2pf
+

1
2a + j2pf

SX1f2 = L
0

-q
e2ate-j2pft dt + L

q

0
e-2ate-j2pft dt

a

RX1t2 = e-2a ƒt ƒ,

SX,Y1f2
RX,Y1t2 = E3X1t + t2Y1t24.

RX,Y1t2
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From Example 9.10, the autocorrelation for X(t) is

Thus, the power spectral density is

(10.14)

where we have used the table of Fourier transforms in Appendix B.The signal has average power
All of this power is concentrated at the frequencies so the power density at

these frequencies is infinite.

Example 10.3 White Noise

The power spectral density of a WSS white noise process whose frequency components are lim-
ited to the range is shown in Fig. 10.2(a).The process is said to be “white” in anal-
ogy to white light, which contains all frequencies in equal amounts. The average power in this

-W … f … W

;f0 ,RX102 = a2>2.

=
a2

4
d1f - f02 +

a2

4
d1f + f02,

SX1f2 =
a2

2
f5cos 2pf0t6

RX1t2 =
a2

2
cos 2pf0t.

(b)

0

N0W

RX(t)

N0/2

SX( f )

�1
2W

(a)

�W W
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2W
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4
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τ

f

FIGURE 10.2
Bandlimited white noise: (a) power spectral density, (b) autocorrelation
function.
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process is obtained from Eq. (10.9):

(10.15)

The autocorrelation for this process is obtained from Eq. (10.8):

(10.16)

is shown in Fig. 10.2(b). Note that X(t) and are uncorrelated at 

The term white noise usually refers to a random process W(t) whose power spectral densi-
ty is for all frequencies:

(10.17)

Equation (10.15) with shows that such a process must have infinite average power. By tak-
ing the limit in Eq. (10.16), we find that the autocorrelation of such a process approaches

(10.18)

If W(t) is a Gaussian random process, we then see that W(t) is the white Gaussian noise process
introduced in Example 9.43 with 

Example 10.4 Sum of Two Processes

Find the power spectral density of where X(t) and Y(t) are jointly WSS
processes.

The autocorrelation of Z(t) is

The power spectral density is then

(10.19)

Example 10.5

Let where d is a constant delay and where X(t) is WSS. Find 
and SY1f2.SYX1f2, RY1t2,

RYX1t2,Y1t2 = X1t - d2,

= SX1f2 + SYX1f2 + SXY1f2 + SY1f2.
SZ1f2 = f5RX1t2 + RYX1t2 + RXY1t2 + RY1t26

= RX1t2 + RYX1t2 + RXY1t2 + RY1t2.
RZ1t2 = E3Z1t + t2Z1t24 = E31X1t + t2 + Y1t + t221X1t2 + Y1t224

Z1t2 = X1t2 + Y1t2,

a = N0>2.

RW1t2 =
N0

2
d1t2.

W: q
W = q

SW1f2 =
N0

2
for all f.

N0>2
k = 1, 2, Á .

t = ;k>2W,X1t + t2RX1t2
=
N0 sin12pWt2

2pt
.

=
1
2
N0
e-j2pWt - ej2pWt

-j2pt

RX1t2 =
1
2
N0L

W

-W
ej2pft df

E3X21t24 = L
W

-W

N0

2
df = N0W.
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3You can view as the coefficients of the Fourier series of the periodic function SX1f2.RX1k2

The definitions of and give

(10.20)

The time-shifting property of the Fourier transform gives

(10.21)

Finally,

(10.22)

Equation (10.22) implies that

(10.23)

Note from Eq. (10.21) that the cross-power spectral density is complex. Note from Eq. (10.23)
that despite the fact that Thus, does not imply that

10.1.2 Discrete-Time Random Processes

Let be a discrete-time WSS random process with mean and autocorrelation
function The power spectral density of is defined as the Fourier transform of
the autocorrelation sequence

(10.24)

Note that we need only consider frequencies in the range since 
is periodic in f with period 1. As in the case of continuous random processes, can
be shown to be a real-valued, nonnegative, even function of f.

The inverse Fourier transform formula applied to Eq. (10.23) implies that3

(10.25)

Equations (10.24) and (10.25) are similar to the discrete Fourier transform. In the last
section we show how to use the FFT to calculate and 

The cross-power spectral density of two jointly WSS discrete-time
processes and is defined by

(10.26)

where is the cross-correlation between and 

(10.27)RX,Y1k2 = E3Xn+kYn4.
Yn:XnRX,Y1k2

SX,Y1f2 = f5RX,Y1k26,
YnXn

SX, Y1f2
RX1k2.SX1f2

RX1k2 = L
1>2

-1>2
SX1f2ej2pfk df.

SX1f2
SX1f2-1>2 6 f … 1>2,

= a
q

k=-q
RX1k2e-j2pfk.

SX1f2 = f5RX1k26
XnRX1k2.

mXXn

X1t2 = Y1t2.
SX1f2 = SY1f2X1t2 Z Y1t2.SX1f2 = SY1f2

SY1f2 = f5RY1T26 = f5RX1T26 = SX1f2.

RY1t2 = E3Y1t + t2Y1t24 = E3X1t + t - d2X1t - d24 = RX1t2.

= SX1f2 cos12pfd2 - jSX1f2 sin12pfd2.
SYX1f2 = f5RX1t - d26 = SX1f2e-j2pfd

RYX1t2 = E3Y1t + t2X1t24 = E3X1t + t - d2X1t24 = RX1t - d2.
RY1t2RYX1t2, SYX1f2,
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Example 10.6 White Noise

Let the process be a sequence of uncorrelated random variables with zero mean and variance
Find

The autocorrelation of this process is

The power spectral density of the process is found by substituting into Eq. (10.24):

(10.28)

Thus the process contains all possible frequencies in equal measure.

Example 10.7 Moving Average Process

Let the process be defined by
(10.29)

where is the white noise process of Example 10.6. Find 
It is easily shown that the mean and autocorrelation of are given by

and

(10.30)

The power spectral density is then

(10.31)

is shown in Fig. 10.3 for 

Example 10.8 Signal Plus Noise

Let the observation be given by

where is the signal we wish to observe, is a white noise process with power and and
are independent random processes. Suppose further that for all n, where A is a ran-

dom variable with zero mean and variance Thus represents a sequence of noisy measure-
ments of the random variable A. Find the power spectral density of 

The mean and autocorrelation of are

E3Zn4 = E3A4 + E3Yn4 = 0

Zn

Zn .
ZnsA

2 .
Xn = AYn

XnsY
2 ,YnXn

Zn = Xn + Yn ,
Zn

a = 1.SY1f2
= sX2 511 + a22 + 2a cos 2pf6.

SY1f2 = 11 + a22sX2 + asX2 5ej2pf + e-j2pf6

E3YnYn+k4 = c 11 + a22sX2 k = 0
asX

2 k = ;1
0 otherwise.

E3Yn4 = 0,

Yn

SY1f2.Xn

Yn = Xn + aXn-1 ,
Yn

Xn

SX1f2 = sX2 -
1
2

6 f 6
1
2

.

RX1k2
RX1k2 = bsX2 k = 0

0 k Z 0.

SX1f2.sX
2 .

Xn
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and

Thus is also a WSS process.
The power spectral density of is then

where we have used the fact that the Fourier transform of a constant is a delta function.

10.1.3 Power Spectral Density as a Time Average

In the above discussion, we simply stated that the power spectral density is given as the
Fourier transform of the autocorrelation without supplying a proof. We now show how
the power spectral density arises naturally when we take Fourier transforms of realiza-
tions of random processes.

Let be k observations from the discrete-time, WSS process Let
denote the discrete Fourier transform of this sequence:

(10.32)

Note that is a complex-valued random variable.The magnitude squared of is
a measure of the “energy” at the frequency f. If we divide this energy by the total “time” k,
we obtain an estimate for the “power” at the frequency f :

(10.33)

is called the periodogram estimate for the power spectral density.p
'
k1f2

p
'
k1f2 =

1
k

ƒ x'k1f2 ƒ 2.

x
'
k1f2x

'
k1f2

x
'
k1f2 = a

k-1

m=0
Xme

-j2pfm.

x
'
k1f2

Xn .X0 , Á ,Xk-1

SZ1f2 = E3A24d1f2 + SY1f2,
Zn

Zn

= E3A24 + RY1k2.
+ E3Xn+k4E3Yn4 + E3YnYn+k4

= E3XnXn+k4 + E3Xn4E3Yn+k4
E3ZnZn+k4 = E31Xn + Yn21Xn+k + Yn+k24

0

4σX
2

f

SY( f )
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1
2

FIGURE 10.3
Power spectral density of moving average process discussed in Example 10.7.



586 Chapter 10 Analysis and Processing of Random Signals

0 �
m – 

i

(k 
– 1

) �
m – 

i

k –
 1 

�
m – 

i

k – 1

k – 1
m

i

FIGURE 10.4
Range of summation in Eq. (10.34).

Consider the expected value of the periodogram estimate:

(10.34)

Figure 10.4 shows the range of the double summation in Eq. (10.34). Note that all the terms
along the diagonal are equal, that ranges from to 
and that .here are terms along the diagonal Thus Eq. (10.34) be-
comes

(10.35)

Comparison of Eq. (10.35) with Eq. (10.24) shows that the mean of the periodogram
estimate is not equal to for two reasons. First, Eq. (10.34) does not have the term
in brackets in Eq. (10.25). Second, the limits of the summation in Eq. (10.35) are not

We say that is a “biased” estimator for However, as we seek: q ,SX1f2.p
'
k1f2;q .

SX1f2

= a
k-1

m¿ = -1k-12
e1 -

ƒm¿ ƒ
k
fRX1m¿2e-j2pfm¿.

E3p'k1f24 =
1
k a

k-1

m¿ = -1k-12
5k - ƒm¿ ƒ6RX1m¿2e-j2pfm¿

m¿ = m - i.k - ƒm¿ ƒ
k - 1,-1k - 12m¿m¿ = m - i

=
1
k a
k-1

m=0
a
k-1

i=0
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=
1
k a
k-1

m=0
a
k-1

i=0
E3XmXi4e-j2pf1m- i2
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that the term in brackets approaches one, and that the limits of the summation approach
Thus

(10.36)

that is, the mean of the periodogram estimate does indeed approach Note
that Eq. (10.36) shows that is nonnegative for all f, since is nonnegative
for all f.

In order to be useful, the variance of the periodogram estimate should also ap-
proach zero. The answer to this question involves looking more closely at the problem
of power spectral density estimation. We defer this topic to Section 10.6.

All of the above results hold for a continuous-time WSS random process X(t)
after appropriate changes are made from summations to integrals. The periodogram
estimate for for an observation in the interval was defined in Eq.
10.2. The same derivation that led to Eq. (10.35) can be used to show that the mean of
the periodogram estimate is given by

(10.37a)

It then follows that

(10.37b)

10.2 RESPONSE OF LINEAR SYSTEMS TO RANDOM SIGNALS

Many applications involve the processing of random signals (i.e., random processes)
in order to achieve certain ends. For example, in prediction, we are interested in pre-
dicting future values of a signal in terms of past values. In filtering and smoothing, we
are interested in recovering signals that have been corrupted by noise. In modulation,
we are interested in converting low-frequency information signals into high-frequen-
cy transmission signals that propagate more readily through various transmission
media.

Signal processing involves converting a signal from one form into another.Thus a
signal processing method is simply a transformation or mapping from one time func-
tion into another function. If the input to the transformation is a random process, then
the output will also be a random process. In the next two sections, we are interested in
determining the statistical properties of the output process when the input is a wide-
sense stationary random process.

10.2.1 Continuous-Time Systems

Consider a system in which an input signal x(t) is mapped into the output signal y(t) by
the transformation

The system is linear if superposition holds, that is,

T3ax11t2 + bx21t24 = aT3x11t24 + bT3x21t24,

y1t2 = T3x1t24.

E3p'T1f24: SX1f2 as T: q .

E3p'T1f24 = L
T

-T
e1 -

ƒ t ƒ
T
fRX1t2e-j2pft dt.

0 6 t 6 T,SX1 f2,

p
'
k1f2SX1f2

SX1f2.
E3p'k1f24: SX1f2 as k: q ,

;q .



X(t) Y(t)h(t)

FIGURE 10.5
A linear system with a random input
signal.
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4For examples of nonlinear systems see Problems 9.11 and 9.56.
5Equation (10.40) supposes that the input was applied at an infinite time in the past. If the input is applied at

then Y(t) is not wide-sense stationary. However, it becomes wide-sense stationary as the response
reaches “steady state” (see Example 9.46 and Problem 10.29).
t = 0,

where and are arbitrary input signals, and and are arbitrary constants.4

Let y(t) be the response to input x(t), then the system is said to be time-invariant if the
response to is The impulse response h(t) of a linear, time-invariant
system is defined by

where is a unit delta function input applied at The response of the system to
an arbitrary input x(t) is then

(10.38)

Therefore a linear, time-invariant system is completely specified by its impulse re-
sponse. The impulse response h(t) can also be specified by giving its Fourier transform,
the transfer function of the system:

(10.39)

A system is said to be causal if the response at time t depends only on past values of the
input, that is, if for 

If the input to a linear, time-invariant system is a random process X(t) as shown
in Fig. 10.5, then the output of the system is the random process given by

(10.40)

We assume that the integrals exist in the mean square sense as discussed in Section 9.7.
We now show that if X(t) is a wide-sense stationary process, then Y(t) is also wide-
sense stationary.5

The mean of Y(t) is given by

E3Y1t24 = EBLq

-q
h1s2X1t - s2 dsR = L

q

-q
h1s2E3X1t - s24 ds.

Y1t2 = L
q

-q
h1s2X1t - s2 ds = L

q

-q
h1t - s2X1s2 ds.

t 6 0.h1t2 = 0

H1f2 = f5h1t26 = L
q

-q
h1t2e-j2pft dt.

y1t2 = h1t2 * x1t2 = L
q

-q
h1s2x1t - s2 ds = L

q

-q
h1t - s2x1s2 ds.

t = 0.d1t2
h1t2 = T3d1t24

y1t - t2.x1t - t2
bax21t2x11t2
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Now since X(t) is wide-sense stationary, so

(10.41)

where H( f ) is the transfer function of the system. Thus the mean of the output Y(t) is
the constant 

The autocorrelation of Y(t) is given by

(10.42)

where we have used the fact that X(t) is wide-sense stationary. The expression on the
right-hand side of Eq. (10.42) depends only on Thus the autocorrelation of Y(t) de-
pends only on and since the E[Y(t)] is a constant, we conclude that Y(t) is a wide-
sense stationary process.

We are now ready to compute the power spectral density of the output of a linear,
time-invariant system. Taking the transform of as given in Eq. (10.42), we obtain

Change variables, letting 

(10.43)

where we have used the definition of the transfer function. Equation (10.43) relates the
input and output power spectral densities to the system transfer function. Note that

can also be found by computing Eq. (10.43) and then taking the inverse Fourier
transform.

Equations (10.41) through (10.43) only enable us to determine the mean and au-
tocorrelation function of the output process Y(t). In general this is not enough to de-
termine probabilities of events involving Y(t). However, if the input process is a

RY1t2

= ƒH1f2 ƒ 2 SX1f2,
= H…1f2H1f2SX1f2
= L

q

-q
h1s2ej2pfs dsL

q

-q
h1r2e-j2pfr drL

q

-q
RX1u2e-j2pfu du

SY1f2 = L
q

-qL
q

-qL
q

-q
h1s2h1r2RX1u2e-j2pf1u- s+ r2 ds dr du

u = t + s - r:

= L
q

-qL
q

-qL
q

-q
h1s2h1r2RX1t + s - r2e-j2pft ds dr dt.

SY1f2 = L
q

-q
RY1t2e-j2pft dt

RY1t2

t,
t.

= L
q

-qL
q

-q
h1s2h1r2RX1t + s - r2 ds dr,

= L
q

-qL
q

-q
h1s2h1r2E3X1t - s2X1t + t - r24 ds dr

E3Y1t2Y1t + t24 = EBLq

-q
h1s2X1t - s2 dsL

q

-q
h1r2X1t + t - r2 drR

mY = H102mX .

E3Y1t24 = mXL
q

-q
h1t2 dt = mXH102,

mX = E3X1t - t24
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Gaussian WSS random process, then as discussed in Section 9.7 the output process will
also be a Gaussian WSS random process. Thus the mean and autocorrelation function
provided by Eqs. (10.41) through (10.43) are enough to determine all joint pdf’s in-
volving the Gaussian random process Y(t).

The cross-correlation between the input and output processes is also of interest:

(10.44)

By taking the Fourier transform, we obtain the cross-power spectral density:

(10.45a)

Since we have that

(10.45b)

Example 10.9 Filtered White Noise

Find the power spectral density of the output of a linear, time-invariant system whose input is a
white noise process.

Let X(t) be the input process with power spectral density

The power spectral density of the output Y(t) is then

(10.46)

Thus the transfer function completely determines the shape of the power spectral density of the
output process.

Example 10.9 provides us with a method for generating WSS processes with arbi-
trary power spectral density We simply need to filter white noise through a filter 
with transfer function In general this filter will be noncausal.We can
usually, but not always, obtain a causal filter with transfer function H( f) such that

For example, if is a rational function, that is, if it consists of
the ratio of two polynomials, then it is easy to factor into the above form, asSX1f2

SY1f2SY1f2 = H1f2H…1f2.
H1f2 = 2SY1f2 .

SY1f2.

SY1f2 = ƒH1f2 ƒ 2N0

2
.

SX1f2 =
N0

2
for all f.

SX,Y1f2 = SY,X
… 1f2 = H…1f2SX1f2.

RX,Y1t2 = RY,X1-t2,
SY,X1f2 = H1f2SX1f2.

= RX1t2*h1t2.
= L

q

-q
RX1t - r2h1r2 dr

= L
q

-q
E3X1t2X1t + t - r24h1r2 dr

= EBX1t2Lq

-q
X1t + t - r2h1r2 drRRY,X1t2 = E3Y1t + t2X1t24
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shown in the next example. Furthermore any power spectral density can be approxi-
mated by a rational function. Thus filtered white noise can be used to synthesize WSS
random processes with arbitrary power spectral densities, and hence arbitrary autocor-
relation functions.

Example 10.10 Ornstein-Uhlenbeck Process

Find the impulse response of a causal filter that can be used to generate a Gaussian random
process with output power spectral density and autocorrelation function

This power spectral density factors as follows:

If we let the filter transfer function be then the impulse response is

which is the response of a causal system. Thus if we filter white Gaussian noise with power spec-
tral density using the above filter, we obtain a process with the desired power spectral density.

In Example 9.46, we found the autocorrelation function of the transient response of this
filter for a white Gaussian noise input (see Eq. (9.97a)). As was already indicated, when dealing
with power spectral densities we assume that the processes are in steady state. Thus as 
Eq. (9.97a) approaches Eq. (9.97b).

Example 10.11 Ideal Filters

Let where X(t) and Y(t) are independent random processes with power
spectral densities shown in Fig. 10.6(a). Find the output if Z(t) is input into an ideal lowpass filter
with transfer function shown in Fig. 10.6(b). Find the output if Z(t) is input into an ideal band-
pass filter with transfer function shown in Fig. 10.6(c).

The power spectral density of the output W(t) of the lowpass filter is

since for the frequencies where is nonzero, and where is
nonzero. Thus W(t) has the same power spectral density as X(t). As indicated in Example 10.5,
this does not imply that 

To show that in the mean square sense, consider It is
easily shown that

The corresponding power spectral density is

= 0.

= ƒHLP1f2 ƒ 2SX1f2 - HLP1f2SX1f2 - HLP… 1f2SX1f2 + SX1f2
SD1f2 = SW1f2 - SWX1f2 - SXW1f2 + SX1f2

RD1t2 = RW1t2 - RWX1t2 - RXW1t2 + RX1t2.
D1t2 = W1t2 - X1t2.W1t2 = X1t2,

W1t2 = X1t2.
SY1f2HLP1f2 = 0SX1f2HLP1f2 = 1

SW1f2 = ƒHLP1f2 ƒ 2SX1f2 + ƒHLP1f2 ƒ 2SY1f2 = SX1f2,

Z1t2 = X1t2 + Y1t2,

t: q

s2

h1t2 = e-at for t Ú 0,

H1f2 = 1>1a + j2pf2,
SY1f2 =

1
1a - j2pf2

1
1a + j2pf2s2.

SY1f2 =
s2

a2 + 4p2f2 and RY1t2 =
s2

2a
e-a ƒt ƒ
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FIGURE 10.6
(a) Input signal to filters is (b) lowpass filter, (c) bandpass filter.X1t2 + Y1t2,

Therefore for all and in the mean square sense since

Thus we have shown that the lowpass filter removes Y(t) and passes X(t). Similarly, the bandpass
filter removes X(t) and passes Y(t).

Example 10.12

A random telegraph signal is passed through an RC lowpass filter which has transfer function

where is the time constant of the filter. Find the power spectral density and autocor-
relation of the output.

b = 1>RC

H1f2 =
b

b + j2pf
,

E31W1t2 - X1t2224 = E3D21t24 = RD102 = 0.

W1t2 = X1t2t,RD1t2 = 0
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In Example 10.1, the power spectral density of the random telegraph signal with transition
rate was found to be

From Eq. (10.43) we have

is found by inverting the above expression:

10.2.2 Discrete-Time Systems

The results obtained above for continuous-time signals also hold for discrete-time sig-
nals after appropriate changes are made from integrals to summations.

Let the unit-sample response be the response of a discrete-time, linear, time-
invariant system to a unit-sample input 

(10.47)

The response of the system to an arbitrary input random process is then given by

(10.48)

Thus discrete-time, linear, time-invariant systems are determined by the unit-sample
response The transfer function of such a system is defined by

(10.49)

The derivation from the previous section can be used to show that if is a wide-
sense stationary process, then is also wide-sense stationary.The mean of is given by

(10.50)

The autocorrelation of is given by

(10.51)RY1k2 = a
q

j=-q
a
q

i=-q
hjhiRX1k + j - i2.

Yn

mY = mX a
q

j=-q
hj = mXH102.

YnYn

Xn

H1f2 = a
q

i=-q
hie

-j2pfi.

hn .

Yn = hn*Xn = a
q

j=-q
hjXn- j = a

q

j=-q
hn- jXj .

Xn

dn = b1 n = 0
0 n Z 0.

dn:
hn

RY1t2 =
1

b2 - 4a2 5b2e-2a ƒt ƒ - 2abe-b ƒt ƒ6.
RY1t2

=
4ab2

b2 - 4a2 b 1
4a2 + 4p2f2 -

1
b2 + 4p2f2 r .

SY1f2 = ¢ b2

b2 + 4p2f2 ≤ ¢ 4a
4a2 + 4p2f2 ≤

SX1f2 =
4a

4a2 + 4p2f2 .

a
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By taking the Fourier transform of it is readily shown that the power spectral
density of is

(10.52)

This is the same equation that was found for continuous-time systems.
Finally, we note that if the input process is a Gaussian WSS random process,

then the output process is also a Gaussian WSS random whose statistics are com-
pletely determined by the mean and autocorrelation function provided by Eqs. (10.50)
through (10.52).

Example 10.13 Filtered White Noise

Let be a white noise sequence with zero mean and average power If is the input to a
linear, time-invariant system with transfer function H( f ), then the output process has power
spectral density:

(10.53)

Equation (10.53) provides us with a method for generating discrete-time ran-
dom processes with arbitrary power spectral densities or autocorrelation func-
tions. If the power spectral density can be written as a rational function of 
in Eq. (10.24), then a causal filter can be found to generate a process with the
power spectral density. Note that this is a generalization of the methods presented
in Section 6.6 for generating vector random variables with arbitrary covariance
matrix.

Example 10.14 First-Order Autoregressive Process

A first-order autoregressive (AR) process with zero mean is defined by

(10.54)

where is a zero-mean white noise input random process with average power Note that 
can be viewed as the output of the system in Fig. 10.7(a) for an iid input Find the power spec-
tral density and autocorrelation of 

The unit-sample response can be determined from Eq. (10.54):

Note that we require for the system to be stable.6 Therefore the transfer function is

H1f2 = a
q

n=0
ane-j2pfn =

1

1 - ae-j2pf
.

ƒa ƒ 6 1

hn = c 0 n 6 0
1 n = 0
an n 7 0.

Yn .
Xn .

YnsX
2 .Xn

Yn = aYn-1 + Xn ,

Yn

z = ej2pf

SY1f2 = ƒH1f2 ƒ 2sX2 .

Yn

XnsX
2 .Xn

Yn

Xn

SY1f2 = ƒH1f2 ƒ 2SX1f2.
Yn

RY1k2

6A system is said to be stable if The response of a stable system to any bounded input is also 
bounded.

a n ƒhn ƒ 6 q .
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FIGURE 10.7
(a) Generation of AR process; (b) Generation of ARMA process.

Equation (10.52) then gives

Equation (10.51) gives

Example 10.15 ARMA Random Process

An autoregressive moving average (ARMA) process is defined by

(10.55)

where is a WSS, white noise input process. can be viewed as the output of the recursive sys-
tem in Fig. 10.7(b) to the input It can be shown that the transfer function of the linear systemXn .

YnWn

Yn = -a
q

i=1
aiYn- i + a

p

i¿ =0
bi¿Wn- i¿ ,

RY1k2 = a
q

j=0
a
q

i=0
hjhisX

2 dk+ j- i = sX2 a
q

j=0
ajaj+k =

sX
2 ak

1 - a2
.

=
sX

2

1 + a2 - 2a cos 2pf
.

=
sX

2

1 + a2 - 1ae-j2pf + aej2pf2
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sX

2
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FIGURE 10.8
Moving average process showing iid Gaussian sequence and corresponding

moving average processes.N = 10N = 3,

defined by the above equation is

The power spectral density of the ARMA process is

ARMA models are used extensively in random time series analysis and in signal processing.The gen-
eral autoregressive process is the special case of the ARMA process with 
The general moving average process is the special case of the ARMA process with 

Octave has a function filter(b, a, x) which takes a set of coefficients 
and as coefficient for a filter as in Eq. (10.55) and produces the output

corresponding to the input sequence x.The choice of a and b can lead to a broad range of discrete-
time filters.

For example, if we let we obtain a moving average filter:

Figure 10.8 shows a zero-mean, unit-variance Gaussian iid sequence and the outputs from an
and an moving average filter. It can be seen that the filter moderates the

extreme variations but generally tracks the fluctuations in The filter on the other
hand severely limits the variations and only tracks slower longer-lasting trends.

Figures 10.9(a) and (b) show the result of passing an iid Gaussian sequence 
through first-order autoregressive filters as in Eq. (10.54). The AR sequence with 
has low correlation between adjacent samples and so the sequence remains similar to the
underlying iid random process.The AR sequence with has higher correlation be-
tween adjacent samples which tends to cause longer lasting trends as evident in Fig.10.9(b).

a = 0.75

a = 0.1
Xn

N = 10Xn .
N = 3N = 10N = 3
Wn

Yn = 1Wn + Wn-1 + Á + Wn-N+12>N.

a = 11>N, 1>N, Á , 1>N2

a = 1a1 , a2 , Á , aq2bp+12
b = 1b1 , b2 , Á ,aq = 0.
a1 = a2 = Á =

b1 = b2 = Á = bp = 0.

SY1f2 = ƒH1f2 ƒ 2sW2 .
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i¿ =0
bi¿e

-j2pfi¿
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q
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aie
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FIGURE 10.9
(a) First-order autoregressive process with (b) with a = 0.75.a = 0.1;

10.3 BANDLIMITED RANDOM PROCESSES

In this section we consider two important applications that involve random
processes with power spectral densities that are nonzero over a finite range of fre-
quencies. The first application involves the sampling theorem, which states that
bandlimited random processes can be represented in terms of a sequence of their
time samples. This theorem forms the basis for modern digital signal processing
systems. The second application involves the modulation of sinusoidal signals by
random information signals. Modulation is a key element of all modern communi-
cation systems.

10.3.1 Sampling of Bandlimited Random Processes

One of the major technology advances in the twentieth century was the development
of digital signal processing technology. All modern multimedia systems depend in
some way on the processing of digital signals. Many information signals, e.g., voice,
music, imagery, occur naturally as analog signals that are continuous-valued and that
vary continuously in time or space or both. The two key steps in making these signals
amenable to digital signal processing are: (1). Convert the continuous-time signals into
discrete-time signals by sampling the amplitudes; (2) Representing the samples using a
fixed number of bits. In this section we introduce the sampling theorem for wide-sense
stationary bandlimited random processes, which addresses the conversion of signals
into discrete-time sequences.

Let x(t) be a deterministic, finite-energy time signal that has Fourier transform
that is nonzero only in the frequency range Suppose we sam-

ple x(t) every T seconds to obtain the sequence of sample values:
The sampling theorem for deterministic signals states that x(t) can

be recovered exactly from the sequence of samples if or equivalently
that is, the sampling rate is at least twice the bandwidth of the signal.

The minimum sampling rate 1/2W is called the Nyquist sampling rate. The sampling
1>T Ú 2W,

T … 1>2Wx102, x1T2, Á 6. 5Á , x1-2T2, x1-T2,
ƒf ƒ … W.X

' 1f2 = f5x1t26
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FIGURE 10.10
(a) Sampling and interpolation; (b) Fourier transform of sampled
deterministic signal; (c) Sampling, digital filtering, and interpolation.

theorem provides the following interpolation formula for recovering x(t) from the
samples:

(10.56)

Eq. (10.56) provides us with the interesting interpretation depicted in Fig. 10.10(a).
The process of sampling x(t) can be viewed as the multiplication of x(t) by a train of delta
functions spaced T seconds apart.The sampled function is then represented by:

(10.57)

Eq. (10.56) can be viewed as the response of a linear system with impulse response p(t)
to the signal It is easy to show that the p(t) in Eq. (10.56) corresponds to the ideal
lowpass filter in Fig. 10.6:

P1f2 = f5p1t26 = b1 -W … f … W
0 ƒf ƒ 7 W.

xs1t2.

xs1t2 = a
q

n=-q
x1nT2d1t - nT2.

x1t2 = a
q

n=-q
x1nT2p1t - nT2 where p1t2 =

sin1pt>T2
pt>T .
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The proof of the sampling theorem involves the following steps. We show that

(10.58)

which consists of the sum of translated versions of as shown in
Fig. 10.10(b). We then observe that as long as then P( f ) in the above ex-
pressions selects the term in the summation, which corresponds to X( f ). See
Problem 10.45 for details.

Example 10.16 Sampling a WSS Random Process

Let X(t) be a WSS process with autocorrelation function Find the mean and covariance
functions of the discrete-time sampled process for 

Since X(t) is WSS, the mean and covariance functions are:

This shows is a WSS discrete-time process.

Let X(t) be a WSS process with autocorrelation function and power spec-
tral density Suppose that is bandlimited, that is,

We now show that the sampling theorem can be extended to X(t). Let

(10.59)

then in the mean square sense. Recall that equality in the mean square
sense does not imply equality for all sample functions, so this version of the sampling
theorem is weaker than the version in Eq. (10.56) for finite energy signals.

To show Eq. (10.59) we first note that since we can apply
the sampling theorem for deterministic signals to 

(10.60)

Next we consider the mean square error associated with Eq. (10.59):

It is easy to show that Eq. (10.60) implies that each of the terms in braces is equal to zero.
(See Problem 10.48.) We then conclude that in the mean square sense.Xn 1t2 = X1t2

EE3X1t2Xn 1t24 - E3Xn 1t2Xn 1t24F .
= EE3X1t2X1t24 - E3Xn 1t2X1t24F -

E35X1t2 - Xn 1t2624 = E35X1t2 - Xn 1t26X1t24 - E35X1t2 - Xn 1t26Xn 1t24

RX1t2 = a
q

n=-q
RX1nT2p1t - nT2.

RX1t2:
SX1f2 = f5RX1t26,

Xn 1t2 = X1t2
Xn 1t2 = a

q

n=-q
X1nT2p1t - nT2 where p1t2 =

sin1pt>T2
pt>T ,

SX1f2 = 0 ƒf ƒ 7 W.

SX1f2SX1f2.
RX1t2

Xn

E3Xn1
Xn2
4 = E3X1n1T2X1n2T24 = RX1n1T - n2T2 = RX11n1 - n22T2.

mX1n2 = E3X1nT24 = m

n = 0, ;1, ;2, Á .Xn = X1nT2
RX1t2.

k = 0
1>T Ú 2W,

X
' 1f2 = f5x1t26,

f b aq
n=-q

x1nT2p1t - nT2 r =
1
T
P1f2 a

q

k=-q
X
' 1f -

k

T
2,
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Example 10.17 Digital Filtering of a Sampled WSS Random Process

Let X(t) be a WSS process with power spectral density that is nonzero only for 
Consider the sequence of operations shown in Fig. 10.10(c): (1) X(t) is sampled at the Nyquist rate;
(2) the samples X(nT) are input into a digital filter in Fig. 10.7(b) with 
and (3) the resulting output sequence is fed into the interpolation filter. Find the power spectral
density of the output Y(t).

The output of the digital filter is given by:

and the corresponding autocorrelation from Eq. (10.51) is:

The autocorrelation of Y(t) is found from the interpolation formula (Eq. 10.60):

The output power spectral density is then:

(10.61)

where H( f) is the transfer function of the digital filter as per Eq. (10.49).The key finding here is the
appearance of H( f) evaluated at fT.We have obtained a very nice result that characterizes the over-
all system response in Fig. 10.8 to the continuous-time input X(t).This result is true for more general
digital filters, see [Oppenheim and Schafer].

The sampling theorem provides an important bridge between continuous-time
and discrete-time signal processing. It gives us a means for implementing the real as well
as the simulated processing of random signals. First, we must sample the random
process above its Nyquist sampling rate. We can then perform whatever digital process-
ing is necessary. We can finally recover the continuous-time signal by interpolation. The
only difference between real signal processing and simulated signal processing is that
the former usually has real-time requirements, whereas the latter allows us to perform
our processing at whatever rate is possible using the available computing power.

= ƒH1fT2 ƒ 2 SX1f2
= bap

n=0
bne

-j2pfnT r bap
i=0
bie
j2pfiT rSX1f2

= a
p

n=0
a
p

i=0
bnbiSX1f2e-j2pf1n- i2T

SY1f2 = f5RY1t26 = a
p

n=0
a
p

i=0
bnbif5RX1t + 1n - i2T26

= a
p

n=0
a
p

i=0
bnbiRX1t + 1n - i2T2.

= a
p

n=0
a
p

i=0
bnbib aq

k=-q
RX11k + n - i2T2p1t - kT2 r

RY1t2 = a
q

k=-q
RY1kT2p1t - kT2 = a

q

k=-q
a
p

n=0
a
p

i=0
bnbiRX11k + n - i2T2p1t - kT2

RY1kT2 = a
p

n=0
a
p

i=0
bnbiRX11k + n - i2T2.

Y1kT2 = a
p

n=0
bnX11k - n2T2

Yn

a1 = a2 = Á = aq = 0;

ƒf ƒ … W.SX1f2
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(a)

SA( f )

ƒ
0�W W

(b)

SX( f )

ƒ
0�ƒc ƒc

FIGURE 10.11
(a) A lowpass information signal; (b) an amplitude-modulated signal.

10.3.2 Amplitude Modulation by Random Signals

Many of the transmission media used in communication systems can be modeled as
linear systems and their behavior can be specified by a transfer function H(f ), which
passes certain frequencies and rejects others. Quite often the information signal A(t)
(i.e., a speech or music signal) is not at the frequencies that propagate well. The pur-
pose of a modulator is to map the information signal A(t) into a transmission signal
X(t) that is in a frequency range that propagates well over the desired medium. At the
receiver, we need to perform an inverse mapping to recover A(t) from X(t). In this sec-
tion, we discuss two of the amplitude modulation methods.

Let A(t) be a WSS random process that represents an information signal. In gen-
eral A(t) will be “lowpass” in character, that is, its power spectral density will be con-
centrated at low frequencies, as shown in Fig. 10.11(a). An amplitude modulation
(AM) system produces a transmission signal by multiplying A(t) by a “carrier” signal

(10.62)

where we assume is a random variable that is uniformly distributed in the interval
and and A(t) are independent.

The autocorrelation of X(t) is

= E3A1t + t2A1t24E3cos12pfc1t + t2 + ®2 cos12pfct + ®24
= E3A1t + t2 cos12pfc1t + t2 + ®2A1t2 cos12pfct + ®24

E3X1t + t2X1t24

®10, 2p2, ®

X1t2 = A1t2 cos12pfct + ®2,
cos12pfct + ®2:
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LPF

 2 cos (2pfct 
 �)

Y(t)X(t) �

FIGURE 10.12
AM demodulator.

(10.63)

where we used the fact that (see Example 9.10).Thus
X(t) is also a wide-sense stationary random process.

The power spectral density of X(t) is

(10.64)

where we used the table of Fourier transforms in Appendix B. Figure 10.11(b) shows
It can be seen that the power spectral density of the information signal has been

shifted to the regions around X(t) is an example of a bandpass signal. Bandpass
signals are characterized as having their power spectral density concentrated about
some frequency much greater than zero.

The transmission signal is demodulated by multiplying it by the carrier signal and
lowpass filtering, as shown in Fig. 10.12. Let

(10.65)

Proceeding as above, we find that

The ideal lowpass filter passes and blocks which is centered about
, so the output of the lowpass filter has power spectral density

In fact, from Example 10.11 we know the output is the original information signal, A(t).

SY1f2 = SA1f2.
; f

SA1f ; 2fc2,SA1f2
=

1
2
5SA1f + 2fc2 + SA1f26 +

1
2
5SA1f2 + SA1f - 2fc26.

SY1f2 =
1
2
SX1f + fc2 +

1
2
SX1f - fc2

Y1t2 = X1t22 cos12pfct + ®2.

;fc .
SX1f2.

=
1
4
SA1f + fc2 +

1
4
SA1f - fc2,

SX1f2 = fe 1
2
RA1t2 cos12pfct2 f

E3cos12pfc12t + t2 + 2®24 = 0

=
1
2
RA1t2 cos12pfct2,

= RA1t2E c12 cos12pfct2 +
1
2

cos12pfc12t + t2 + 2®2 d
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(a)

SX( f )

0�ƒ0

(b)

(c)

SA( f )

0

ƒ0

jSB,A( f )

0

FIGURE 10.13
(a) A general bandpass signal. (b) a real-valued even function
of . (c) an imaginary odd function of f.f

The modulation method in Eq. (10.56) can only produce bandpass signals for
which is locally symmetric about for 
as in Fig. 10.11(b). The method cannot yield real-valued transmission signals whose
power spectral density lack this symmetry, such as shown in Fig. 10.13(a). The following
quadrature amplitude modulation (QAM) method can be used to produce such signals:

(10.66)

where A(t) and B(t) are real-valued, jointly wide-sense stationary random processes,
and we require that

(10.67a)

(10.67b)

Note that Eq. (10.67a) implies that a real-valued, even function of f, as
shown in Fig. 10.13(b). Note also that Eq. (10.67b) implies that is a purely
imaginary, odd function of f, as also shown in Fig. 10.13(c) (see Problem 10.57).

SB,A1f2
SA1f2 = SB1f2,

RB,A1t2 = -RA,B1t2.
RA1t2 = RB1t2

X1t2 = A1t2 cos12pfct + ®2 + B1t2 sin12pfct + ®2,

ƒdf ƒ 6 W,fc , SX1fc + df2 = SX1fc - df2SX1f2
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Proceeding as before, we can show that X(t) is a wide-sense stationary random
process with autocorrelation function

(10.68)

and power spectral density

(10.69)

The resulting power spectral density is as shown in Fig. 10.13(a). Thus QAM can be
used to generate real-valued bandpass signals with arbitrary power spectral density.

Bandpass random signals, such as those in Fig. 10.13(a), arise in communication
systems when wide-sense stationary white noise is filtered by bandpass filters. Let N(t)
be such a process with power spectral density It can be shown that N(t) can be
represented by

(10.70)

where and are jointly wide-sense stationary processes with

(10.71)
and

(10.72)

where the subscript L denotes the lowpass portion of the expression in brackets. In
words, every real-valued bandpass process can be treated as if it had been generated by
a QAM modulator.

Example 10.18 Demodulation of Noisy Signal

The received signal in an AM system is

where N(t) is a bandlimited white noise process with spectral density

Find the signal-to-noise ratio of the recovered signal.
Equation (10.70) allows us to represent the received signal by

The demodulator in Fig. 10.12 is used to recover A(t). After multiplication by 
we have

- Ns1t2 sin14pfct + 2®2.
= 5A1t2 + Nc1t2611 + cos14pfct + 2®22

- Ns1t22 cos12pfct + ®2 sin12pfct + ®2
 2Y1t2 cos12pfct + ®2 = 5A1t2 + Nc1t262 cos212pfct + ®2

2 cos12pfct + ®2,
Y1t2 = 5A1t2 + Nc1t26 cos12pfct + ®2 - Ns1t2 sin12pfct + ®2.

SN1f2 = c N0

2
ƒf ; fc ƒ 6 W

0 elsewhere.

Y1t2 = A1t2 cos12pfct + ®2 + N1t2,

SNc,Ns1f2 = j5SN1f - fc2 - SN1f + fc26L ,

SNc1f2 = SNs1f2 = 5SN1f - fc2 + SN1f + fc26L
Ns1t2Nc1t2
N1t2 = Nc1t2 cos12pfct + ®2 - Ns1t2 sin12pfct + ®2,

SN1f2.

SX1f2 =
1
2
5SA1f - fc2 + SA1f + fc26 +

1
2j
5SBA1f - fc2 - SBA1f + fc26.

RX1t2 = RA1t2 cos12pfct2 + RB,A1t2 sin12pfct2
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After lowpass filtering, the recovered signal is

The power in the signal and noise components, respectively, are

The output signal-to-noise ratio is then

10.4 OPTIMUM LINEAR SYSTEMS

Many problems can be posed in the following way. We observe a discrete-time, zero-
mean process over a certain time interval and we are re-
quired to use the resulting observations to obtain
an estimate for some other (presumably related) zero-mean process The esti-
mate is required to be linear, as shown in Fig. 10.14:

(10.73)

The figure of merit for the estimator is the mean square error

(10.74)E3et24 = E31Zt - Yt224,

Yt = a
t+b

b= t-a
ht-bXb = a

a

b=-b
hbXt-b .

Yt

Zt .Yt

5Xt-a , Á ,Xt , Á ,Xt+b6a + b + 1
I = 5t - a, Á , t + b6,Xa

SNR =
sA

2

2WN0
.

sNc
2 = L

W

-W
SNc1f2 df = L

W

-W
¢N0

2
+
N0

2
≤ df = 2WN0 .

sA
2 = L

W

-W
SA1f2 df

A1t2 + Nc1t2.

� � � �




ha hb

Yt

ha–1

Xt – a XtXt � a 
1 Xt 
 b

h0

FIGURE 10.14
A linear system for producing an estimate Yt .
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and we seek to find the optimum filter, which is characterized by the impulse response
that minimizes the mean square error.

Examples 10.19 and 10.20 show that different choices of and and of obser-
vation interval correspond to different estimation problems.

Example 10.19 Filtering and Smoothing Problems

Let the observations be the sum of a “desired signal” plus unwanted “noise”

We are interested in estimating the desired signal at time t. The relation between t and the ob-
servation interval I gives rise to a variety of estimation problems.

If that is, and then we have a filtering problem where we esti-
mate in terms of noisy observations of the past and present. If then we have a
filtering problem in which we estimate in terms of the most recent noisy observations.

If that is, then we have a smoothing problem where we are at-
tempting to recover the signal from its entire noisy version. There are applications where this
makes sense, for example, if the entire realization has been recorded and the estimate is
obtained by “playing back”

Example 10.20 Prediction

Suppose we want to predict in terms of its recent past: The general estima-
tion problem becomes this prediction problem if we let the observation be the past a values
of the signal that is,

The estimate is then a linear prediction of in terms of its most recent values.

10.4.1 The Orthogonality Condition

It is easy to show that the optimum filter must satisfy the orthogonality condition (see
Eq. 6.56), which states that the error must be orthogonal to all the observations that is,

(10.75)
or equivalently,

(10.76)

If we substitute Eq. (10.73) into Eq. (10.76) we find

(10.77)= a
a

b=-b
hbRX1t - a - b2 for all a H I.

= a
a

b=-b
hbE3Xt-bXa4

E3ZtXa4 = EB aa
b=-b
hbXt-bXaR for all a H I

E3ZtXa4 = E3YtXa4 for all a H I.

= E31Zt - Yt2Xa4 = 0,

 0 = E3etXa4 for all a H I

Xa ,et

ZtYt

Xa = Za t - a … a … t - 1.
Za ,

Xa

5Zt-a , Á , Zt-16.Zt

Xa .
ZtXa

a = b = q ,I = 1-q , q2,
a + 1Zt

I = 1t - a, t2,Zt

b = 0,a = qI = 1-q , t2,

Xa = Za + Na a H I.

Na:Za

XaZt

hb
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7Equation (10.79) can also be solved by using the Karhunen-Loeve expansion.

Equation (10.77) shows that depends only on and thus and 
are jointly wide-sense stationary processes. Therefore, we can rewrite Eq. (10.77) as
follows:

Finally, letting we obtain the following key equation:

(10.78)

The optimum linear filter must satisfy the set of linear equations given by
Eq. (10.78). Note that Eq. (10.78) is identical to Eq. (6.60) for estimating a random
variable by a linear combination of several random variables. The wide-sense station-
arity of the processes reduces this estimation problem to the one considered in
Section 6.5.

In the above derivation we deliberately used the notation instead of to sug-
gest that the same development holds for continuous-time estimation. In particular,
suppose we seek a linear estimate Y(t) for the continuous-time random process Z(t) in
terms of observations of the continuous-time random process in the time inter-
val

It can then be shown that the filter that minimizes the mean square error is spec-
ified by

(10.79)

Thus in the time-continuous case we obtain an integral equation instead of a set of
linear equations. The analytic solution of this integral equation can be quite diffi-
cult, but the equation can be solved numerically by approximating the integral by a
summation.7

We now determine the mean square error of the optimum filter. First we note
that for the optimum filter, the error and the estimate are orthogonal since

where the terms inside the last summation are 0 because of Eq. (10.75).Since 
the mean square error is then

= E3etZt4,
E3et24 = E3et1Zt - Yt24

et = Zt - Yt ,

E3etYt4 = E cetaht-bXb d = aht-bE3etXb4 = 0,

Ytet

RZ,X1t2 = L
a

-b
h1b2RX1t - b2 db -b … t … a.

h1b2
Y1t2 = L

t+b

t-a
h1t - b2X1b2 db = L

a

-b
h1b2X1t - b2 db.

t - a … a … t + b:
X1a2

ZnZt

a + b + 1

RZ,X1m2 = a
a

b=-b
hbRX1m - b2 -b … m … a.

m = t - a,

RZ,X1t - a2 = a
a

b=-b
hbRX1t - b - a2 t - a … a … t + b.

ZtXat - a,E3ZtXa4
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since and are orthogonal. Substituting for yields

(10.80)

Similarly, it can be shown that the mean square error of the optimum filter in the
continuous-time case is

(10.81)

The following theorems summarize the above results.

Theorem 

Let and be discrete-time, zero-mean, jointly wide-sense stationary processes, and let be
an estimate for of the form

The filter that minimizes satisfies the equation

and has mean square error given by

Theorem 

Let X(t) and Z(t) be continuous-time, zero-mean, jointly wide-sense stationary processes, and let
Y(t) be an estimate for Z(t) of the form

The filter that minimizes satisfies the equation

RZ,X1t2 = L
a

-b
h1b2RX1t - b2 db -b … t … a

E31Z1t2 - Y1t2224h1b2
Y1t2 = L

t+b

t-a
h1t - b2X1b2 db = L

a

-b
h1b2X1t - b2 db.

E31Zt - Yt224 = RZ102 - a
a

b=-b
hbRZ,X1b2.

RZ,X1m2 = a
a

b=-b
hbRX1m - b2 -b … m … a

E31Zt - Yt224

Yt = a
t+b

b= t-a
ht-bXb = a

a

b=-b
hbXt-b .

Zt

YtZtXt

E3e21t24 = RZ102 = L
a

-b
h1b2RZ,X1b2 db.

= RZ102 - a
a

b=-b
hbRZ,X1b2.

= RZ102 - EBZt aa
b=-b
hbXt-bR= RZ102 - E3ZtYt4

E3et24 = E31Zt - Yt2Zt4 = E3ZtZt4 - E3YtZt4
etYtet
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and has mean square error given by

Example 10.21 Filtering of Signal Plus Noise

Suppose we are interested in estimating the signal from the most recent noisy obser-
vations:

Find the set of linear equations for the optimum filter if and are independent random
processes.

For this choice of observation interval, Eq. (10.78) becomes

(10.82)

The cross-correlation terms in Eq. (10.82) are given by

The autocorrelation terms are given by

since and are independent random processes. Thus Eq. (10.82) for the optimum filter be-
comes

(10.83)

This set of linear equations in unknowns is solved by matrix inversion.

Example 10.22 Filtering of AR Signal Plus Noise

Find the set of equations for the optimum filter in Example 10.21 if is a first-order autore-
gressive process with average power and parameter r, and is a white noise process
with average power 

The autocorrelation for a first-order autoregressive process is given by

(See Problem 10.42.) The autocorrelation for the white noise process is

Substituting and into Eq. (10.83) yields the following set of linear equations:

(10.84)sZ
2 r ƒm ƒ = a

p

b=0
hb1sZ2 r ƒm-b ƒ + sN2 d1m - b22 m H 50, Á , p6.

RN1m2RZ1m2
RN1m2 = sN2 d1m2.

RZ1m2 = sZ2 r ƒm ƒ m = 0, ;1, ;2, Á .

sN
2 .

Naƒ r ƒ 6 1,sZ
2

Za

hbp + 1p + 1

RZ1m2 = a
p

b=0
hb5RZ1m - b2 + RN1m - b26 m H 50, 1, Á , p6.

NaZa

= RZ1m - b2 + RN1m - b2,
+ RN,Z1m - b2 + RN1m - b2

= RZ1m - b2 + RZ,N1m - b2
RX1m - b2 = E3Xn-bXn-m4 = E31Zn-b + Nn-b21Zn-m + Nn-m24

RZ,X1m2 = E3ZnXn-m4 = E3Zn1Zn-m + Nn-m24 = RZ1m2.

RZ,X1m2 = a
p

b=0
hbRX1m - b2 m H 50, 1, Á , p6.

NaZa

Xa = Za + Na a H I = 5n - p, Á , n - 1, n6.
p + 1Zn

E31Z1t2 - Y1t2224 = RZ102 - L
a

-b
h1b2RZ,X1b2 db.
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If we divide both sides of Eq. (10.84) by and let we obtain the following matrix
equation:

(10.85)

Note that when the noise power is zero, i.e., then the solution is 
that is, no filtering is required to obtain 

Equation (10.85) can be readily solved using Octave. The following function will compute
the optimum linear coefficients and the mean square error of the optimum predictor:

function [mse]= Lin_Est_AR (order,rho,varsig,varnoise)

n=[0:1:order-1]

r=varsig*rho.^n;

R=varnoise*eye(order)+toeplitz(r);

H=inv(R)*transpose(r)

mse=varsig-transpose(H)*transpose(r);

endfunction

Table 10.1 gives the values of the optimal predictor coefficients and the mean square error as
the order of the estimator is increased for the first-order autoregressive process with 
and noise variance It can be seen that the predictor places heavier weight on more recent
samples, which is consistent with the higher correlation of such samples with the current sample. For
smaller values of r, the correlation for distant samples drops off more quickly and the coefficients
place even lower weighting on them. The mean square error can also be seen to decrease with in-
creasing order of the estimator. Increasing the first few orders provides significant improve-
ments, but a point of diminishing returns is reached around 

10.4.2 Prediction

The linear prediction problem arises in many signal processing applications. In
Example 6.31 in Chapter 6, we already discussed the linear prediction of speech sig-
nals. In general, we wish to predict in terms of 

Yn = a
p

b=1
hbZn-b .

Zn-1 , Zn-2 , Á , Zn-p:Zn

p + 1 = 3.
p + 1

sN
2 = 4.

sZ
2 = 4, r = 0.9,

Zn .j = 1, Á , p,
h0 = 1, hj = 0,≠ = 0,

E1 + ≠ r r2 Á rp

r 1 + ≠ r Á rp-1

r2 r 1 + ≠ Á rp-2

# # # Á #
rp rp-1 rp-2 Á 1 + ≠

U E h0

h1#
#
hp

U = E 1
r
#
#
rp

U .

≠ = sN2 >sZ2 ,sZ
2

TABLE 10.1 Effect of predictor order on MSE performance.

p � 1 MSE Coefficients

1 2.0000 0.5

2 1.4922 0.37304 0.28213

3 1.3193 0.32983 0.22500 0.17017

4 1.2549 0.31374 0.20372 0.13897 0.10510

5 1.2302 0.30754 0.19552 0.12696 0.08661 0.065501
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For this problem, so Eq. (10.79) becomes

(10.86a)

In matrix form this equation becomes

(10.86b)

Equations (10.86a) and (10.86b) are called the Yule-Walker equations.
Equation (10.80) for the mean square error becomes

(10.87)

By inverting the matrix we can solve for the vector of filter coefficients h.

Example 10.23 Prediction for Long-Range and Short-Range Dependent Processes

Let be a discrete-time first-order autoregressive process with and and
let be a discrete-time long-range dependent process with autocovariance given by Eq.
(9.109), and Both processes have but the autocovariance of

decreases exponentially while that of has long-range dependence. Compare the per-
formance of the optimal linear predictor for these processes for short-term as well as long-term
predictions.

The optimum linear coefficients and the associated mean square error for the long-range
dependent process can be calculated using the following code. The function can be modified for
the autoregressive case.

function mse= Lin_Pred_LR(order,Hurst,varsig)

n=[0:1:order-1]

H2=2*Hurst

r=varsig*((1+n).^H2-2*(n.^H2)+abs(n-1).^H2)/2
rz=varsig*((2+n).^H2-2*((n+1).^H2)+(n).^H2)/2
R=toeplitz(r);

H=transpose(inv(R)*transpose(rz))

mse=varsig-H*transpose(rz)

endfunction

Table 10.2 below compares the mean square errors and the coefficients of the two process-
es in the case of short-term prediction. The predictor for attains all of the benefit of pre-
diction with a system. The optimum predictors for higher-order systems set the other
coefficients to zero, and the mean square error remains at 0.4577. The predictor for X21t2

p = 1
X11t2

X21t2X11t2
CX112 = 0.7411,H = 0.9.sX

2 = 1,
X21t2

r = 0.7411,sX
2 = 1X11t2

RZ,p * p

E3en24 = RZ102 - a
p

b=1
hbRZ1b2.

= RZh.

ERZ112RZ122
.
.

RZ1p2
U = E RZ102 RZ112 RZ122 Á RZ1p - 12

RZ112 RZ102 RZ112 Á RZ1p - 22
. . . . .
. . . . RZ112

RZ1p - 12 . . RZ112 RZ102
U E h1

h2

.

.
hp

U

RZ1m2 = a
p

b=1
hbRZ1m - b2 m H 51, Á , p6.

Xa = Za ,
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TABLE 10.2(a) Short-term prediction: autoregressive,
r = 0.7411, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

1 0.45077 0.74110

2 0.45077 0.74110 0

TABLE 10.2(b) Short-term prediction: long-range dependent process,
Hurst = 0.9, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

1 0.45077 0.74110

2 0.43625 0.60809 0.17948

3 0.42712 0.582127 0.091520 0.144649

4 0.42253 0.567138 0.082037 0.084329 0.103620

5 0.41964 0.558567 0.075061 0.077543 0.056707 0.082719

TABLE 10.3(a) Long-term prediction: autoregressive,
r = 0.7411, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

1 0.99750 0.04977
2 0.99750 0.04977 0

achieves most of the possible performance with a system, but small reductions in mean
square error do accrue by adding more coefficients. This is due to the persistent correlation
among the values in 

Table 10.3 shows the dramatic impact of long-range dependence on prediction perfor-
mance. We modified Eq. (10.86) to provide the optimum linear predictor for based on two ob-
servations and that are in the relatively remote past. and its previous values are
almost uncorrelated, so the best predictor has a mean square error of almost 1, which is the vari-
ance of On the other hand, retains significant correlation with its previous values and
so the mean square error provides a significant reduction from the unit variance. Note that the
second-order predictor places significant weight on the observation 20 samples in the past.

X21t2X11t2.
X11t2Xt-20Xt-10

Xt

X21t2.
p = 1

TABLE 10.3(b) Long-term prediction: long-range dependent
process, Hurst = 0.9, sX

2 = 1, CX(1) = 0.7411.

p MSE Coefficients

10 0.79354 0.45438

10;20 0.74850 0.34614 0.23822
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10.4.3 Estimation Using the Entire Realization of the Observed Process

Suppose that is to be estimated by a linear function of the entire realization of 
that is, and Eq. (10.73) becomes

In the case of continuous-time random processes, we have

The optimum filters must satisfy Eqs. (10.78) and (10.79), which in this case become

(10.88a)

(10.88b)

The Fourier transform of the first equation and the Fourier transform of the second
equation both yield the same expression:

which is readily solved for the transfer function of the optimum filter:

(10.89)

The impulse response of the optimum filter is then obtained by taking the appropriate
inverse transform. In general the filter obtained from Eq. (10.89) will be noncausal,
that is, its impulse response is nonzero for We already indicated that there are
applications where this makes sense, namely, in situations where the entire realiza-
tion is recorded and the estimate is obtained in “nonreal time” by “playing
back”

Example 10.24 Infinite Smoothing

Find the transfer function for the optimum filter for estimating Z(t) from 
where and are independent, zero-mean random processes.

The cross-correlation between the observation and the desired signal is

since Z(t) and N(t) are zero-mean, independent random processes. The cross-power spectral
density is then

(10.90)SZ,X1t2 = SZ1f2.

= RZ1t2,
= E3Z1t + t2Z1t24 + E3Z1t + t2N1t24

RZ,X1t2 = E3Z1t + t2X1t24 = E3Z1t + t21Z1t2 + N1t224

N1a2Z1a2a H 1-q , q2,
X1a2 = Z1a2 + N1a2,

Xa .
ZtXa

t 6 0.

H1f2 =
SZ,X1f2
SX1f2 .

SZ,X1f2 = H1f2SX1f2,

RZ,X1t2 = L
q

-q
h1b2RX1t - b2 db for all t.

RZ,X1m2 = a
q

b=-q
hbRX1m - b2 for all m

Y1t2 = L
q

-q
h1b2X1t - b2 db.

Yt = a
q

b=-q
hbXt-b .

a = b = q
Xt ,YtZt
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The autocorrelation of the observation process is

The corresponding power spectral density is

(10.91)

Substituting Eqs. (10.90) and (10.91) into Eq. (10.89) gives

(10.92)

Note that the optimum filter H( f ) is nonzero only at the frequencies where is nonzero,
that is, where the signal has power content. By dividing the numerator and denominator of Eq.
(10.92) by we see that H( f ) emphasizes the frequencies where the ratio of signal to noise
power density is large.

10.4.4 Estimation Using Causal Filters

Now, suppose that is to be estimated using only the past and present of that is,
Equations (10.78) and (10.79) become

(10.93a)

(10.93b)

Equations (10.93a) and (10.93b) are called the Wiener-Hopf equations and, though sim-
ilar in appearance to Eqs. (10.88a) and (10.88b), are considerably more difficult to solve.

First, let us consider the special case where the observation process is white, that
is, for the discrete-time case Equation (10.93a) is then

(10.94)

Thus in this special case, the optimum causal filter has coefficients given by

The corresponding transfer function is

(10.95)

Note Eq. (10.95) is not since the limits of the Fourier transform in Eq. (10.95) do
not extend from to However, H( f ) can be obtained from by finding 

keeping the causal part (i.e., for ) and setting the non-
causal part to 0.

m Ú 0hmhm = f-13SZ,X1f24,
SZ,X1f2+q .-q

SZ,X1f2,
H1f2 = a

q

m=0
RZ,X1m2e-j2pfm.

hm = b0 m 6 0
RZ,X1m2 m Ú 0.

RZ,X1m2 = a
q

b=0
hb dm-b = hm m Ú 0.

RX1m2 = dm .

RZ,X1t2 = L
q

0
h1b2RX1t - b2 db for all t.

RZ,X1m2 = a
q

b=0
hbRX1m - b2 for all m

I = 1-q , t2. Xa ,Zt

*

SZ1f2,
SZ1f2

H1f2 =
SZ1f2

SZ1f2 + SN1f2 .

SX1f2 = SZ1f2 + SN1f2.

= RZ1t2 + RN1t2.
RX1t2 = E31Z1t + t2 + N1t + t221Z1t2 + N1t224
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FIGURE 10.15
Whitening filter approach for solving Wiener-
Hopf equations.
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8The method for factoring as specified by Eq. (10.96) is called spectral factorization. See Example
10.10 and the references at the end of the chapter.

SX1f2

We now show how the solution of the above special case can be used to solve the
general case. It can be shown that under very general conditions, the power spectral
density of a random process can be factored into the form

(10.96)

where G( f ) and 1/G( f ) are causal filters.8 This suggests that we can find the optimum
filter in two steps, as shown in Fig. 10.15. First, we pass the observation process through
a “whitening” filter with transfer function to produce a white noise
process since

Second, we find the best estimator for using the whitened observation process
as given by Eq. (10.95). The filter that results from the tandem combination of

the whitening filter and the estimation filter is the solution to the Wiener-Hopf
equations.

The transfer function of the second filter in Fig. 10.15 is

(10.97)

by Eq. (10.95). To evaluate Eq. (10.97) we need to find

(10.98)

where is the impulse response of the whitening filter. The Fourier transform of
Eq. (10.98) gives an expression that is easier to work with:

(10.99)SZ,X¿1f2 = W…1f2SZ,X1f2 =
SZ,X1f2
G…1f2 .

wi

= a
q

i=0
wiRZ,X1k + i2,

= a
q

i=0
wiE3Zn+kXn- i4

RZ,X¿1k2 = E3Zn+kXnœ 4

H21f2 = a
q

m=0
RZ,X¿1m2e-j2pfm

Xn
œ

Zn

SX¿1f2 = ƒW1f2 ƒ 2SX1f2 =
ƒG1f2 ƒ 2
ƒG1f2 ƒ 2 = 1 for all f.

Xn
œ ,

W1f2 = 1>G1f2

SX1f2 = ƒG1f2 ƒ 2 = G1f2G…1f2,
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The inverse Fourier transform of Eq. (10.99) yields the desired which can
then be substituted into Eq. (10.97) to obtain 

In summary, the optimum filter is found using the following procedure:

1. Factor as in Eq. (10.96) and obtain a causal whitening filter 
2. Find from Eq. (10.98) or from Eq. (10.99).
3. is then given by Eq. (10.97).
4. The optimum filter is then

(10.100)

This procedure is valid for the continuous-time version of the optimum causal filter problem,
after appropriate changes are made from summations to integrals. The following example con-

siders a continuous-time problem.

Example 10.25 Wiener Filter

Find the optimum causal filter for estimating a signal Z(t) from the observation 
where Z(t) and N(t) are independent random processes, N(t) is zero-mean white noise

density 1, and Z(t) has power spectral density

The optimum filter in this problem is called the Wiener filter.
The cross-power spectral density between Z(t) and X(t) is

since the signal and noise are independent random processes. The power spectral density for the
observation process is

If we let

then it is easy to verify that is the whitening causal filter.
Next we evaluate Eq. (10.99):

(10.101)=
c

1 + j2pf
+

c

23 - j2pf
,

=
2

11 + j2pf2123 - j2pf2

SZ,X¿1f2 =
SZ,X1f2
G…1f2 =

2
1 + 4p2f2

1 - j2pf

23 - j2pf

W1f2 = 1>G1f2
G1f2 =

j2pf + 23

j2pf + 1
,

= ¢ j2pf + 23

j2pf + 1
≤ ¢ -j2pf + 23

-j2pf + 1
≤ .

=
3 + 4p2f2

1 + 4p2f2

SX1f2 = SZ1f2 + SN1f2

SZ,X1f2 = SZ1f2,

SZ1f2 =
2

1 + 4p2f2 .

N1t2,
X1t2 = Z1t2 +

H1f2 = W1f2H21f2.

H21f2
RZ,X¿1k2

W1f2 = 1>G1f2.SX1f2
H21f2.

RZ,X¿1k2,
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where If we take the inverse Fourier transform of we obtain

Equation (10.97) states that is given by the Fourier transform of the portion of

Note that we could have gotten this result directly from Eq. (10.101) by noting that only the first
term gives rise to the positive-time (i.e., causal) component.

The optimum filter is then

The impulse response of this filter is

10.5 THE KALMAN FILTER

The optimum linear systems considered in the previous section have two limitations:
(1) They assume wide-sense stationary signals; and (2) The number of equations grows
with the size of the observation set. In this section, we consider an estimation approach
that assumes signals have a certain structure. This assumption keeps the dimensionali-
ty of the problem fixed even as the observation set grows. It also allows us to consider
certain nonstationary signals.

We will consider the class of signals that can be represented as shown in Fig. 10.16(a):

(10.102)

where is the random variable at time 0, is a known sequence of constants, and is
a sequence of zero-mean uncorrelated random variables with possibly time-varying vari-
ances The resulting process is nonstationary in general.We assume that the
process is not available to us, and that instead, as shown in Fig. 10.16(a), we observe

(10.103)

where the observation noise is a zero-mean, uncorrelated sequence of random vari-
ables with possibly time-varying variances We assume that and are
uncorrelated at all times and In the special case where and are Gaussian
random processes, then and will also be Gaussian random processes. We will de-
velop the Kalman filter, which has the structure in Fig. 10.16(b).

Our objective is to find for each time n the minimum mean square estimate (ac-
tually prediction) of based on the observations using a linear esti-
mator that possibly varies with time:

(10.104)Yn = a
n

j= i
hj
1n-12Xn- j .

X0 ,X1 , Á ,Xn-1Zn

XnZn

NnWnn2 .n1

NnWn5E3Nn246.
Nn

Xn = Zn + Nn n = 0, 1, 2, Á ,

Zn

Zn5E3Wn246.
WnanZ0

Zn = an-1Zn-1 + Wn-1 n = 1, 2, Á ,

h1t2 = cet-23 t 7 0.

H1f2 =
1
G1f2H21f2 =

c

23 + j2pf
.

H21f2 = f5ce-Tu1t26 =
c

1 + j2pf
.

RZ,X¿1t2:
t 7 0H21f2

RZ,X¿1t2 = b ce-t t 7 0
ce23t t 6 0.

SZ,X¿1f2,c = 2>11 + 232.
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Unit
delay

(a)

(b)


 


�

Wn � 1

an � 1

Yn 
 1

Nn

Zn � 1

Zn

kn

an

Yn

Xn


 � 


�

Xn



�

Unit
delay

FIGURE 10.16
(a) Signal structure. (b) Kalman filter.

The orthogonality principle implies that the optimum filter satisfies

which leads to a set of n equations in n unknowns:

(10.105)

At the next time instant, we need to find

(10.106)

by solving a system of equations:

(10.107)

Up to this point we have followed the procedure of the previous section and we
find that the dimensionality of the problem grows with the number of observa-
tions. We now use the signal structure to develop a recursive method for solving
Eq. (10.106).

RZ,X1n + 1, l2 = a
n+1

j=1
hj
1n2RX1n + 1 - j, l2 for l = 0, 1, Á , n.

1n + 12 * 1n + 12
Yn+1 = a

n+1

j=1
hj
1n2Xn+1- j

RZ,X1n, l2 = a
n

j=1
hj
1n-12RX1n - j, l2 for l = 0, 1, Á , n - 1.

EB ¢Zn - a
n

j=1
hj
1n-12Xn- j≤XlR = 0 for l = 0, 1, Á , n - 1,

5hj1n-126
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We first need the following two results: For we have

(10.108)

since that is, is uncorrelated with the past of the
process and the observations prior to time n, as can be seen from Fig. 10.16(a).Also for

we have

(10.109)

since that is, the observation noise at time n is uncorre-
lated with prior observations.

We now show that the set of equations in Eq. (10.107) can be related to the set in
Eq. (10.105). For we can equate the right-hand sides of Eqs. (10.108) and (10.107):

(10.110)

From Eq. (10.109) we have so we can replace the first term on
the right-hand of Eq. (10.110) and then move the resulting term to the left-hand side:

(10.111)

By dividing both sides by we finally obtain

(10.112)

This set of equations is identical to Eq. (10.105) if we set

(10.113a)

Therefore, if at step n we have found and if somehow we have found 
then we can find the remaining coefficients from

(10.113b)

Thus the key question is how to find h1
1n2 .

hj+1
1n2 = 1an - h1

1n22hj1n-12 j = 1, Á , n.

h1
1n2,

h1
1n-12, Á , hn

1n-12,

hj
1n-12 =

hj+1
1n2

an - h1
1n2 for j = 1, Á , n.

for l = 0, 1, Á , n - 1.

RZ,X1n, l2 = a
n

j¿ =1

hj¿ +1
1n2

an - h1
1n2RX1n - j¿, l2

an - h1
1n2

= a
n

j¿ =1
hj¿ +1
1n2 RX1n - j¿, l2.

1an - h1
1n22RZ,X1n, l2 = a

n+1

j=2
hj
1n2RX1n + 1 - j, l2

RX1n, l2 = RZ,X1n, l2,
for l = 0, 1, Á , n - 1.

= h1
1n2RX1n, l2 + a

n+1

j=2
hj
1n2RX1n + 1 - j, l2

anRZ,X1n, l2 = a
n+1

j=1
hj
1n2RX1n + 1 - j, l2

l 6 n,

E3NnXl4 = E3Nn4E3Xl4 = 0,

= RX1n, l2 - E3NnXl4 = RX1n, l2,
RZ,X1n, l2 = E3ZnXl4 = E31Xn - Nn2Xl4

l 6 n,

WnE3WnXl4 = E3Wn4E3Xl4 = 0,

= anRZ,X1n, l2 + E3WnXl4 = anRZ,X1n, l2,
RZ,X1n + 1, l2 = E3Zn+1Xl4 = E31anZn + Wn2Xl4

l 6 n,
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Suppose we substitute the coefficients in Eq. (10.113b) into Eq. (10.106):

(10.114)

where the second equality follows from Eq. (10.104). The above equation has a very
pleasing interpretation, as shown in Fig. 10.16(b). Since is the prediction for time
n, is the prediction for the next time instant, based on the “old” informa-
tion (see Eq. (10.102)). The term is called the “innovations,” and it gives the 
discrepancy between the old prediction and the observation. Finally, the term is
called the gain, henceforth denoted by and it indicates the extent to which the in-
novations should be used to correct to obtain the “new” prediction If we de-
note the innovations by

(10.115)

then Eq. (10.114) becomes
(10.116)

We still need to determine a means for computing the gain 
From Eq. (10.115), we have that the innovations satisfy

where is the prediction error. A recursive equation can be obtained for
the prediction error:

(10.117)

with initial condition Since and are zero-mean, it then follows that
for all n. A recursive equation for the mean square prediction error is ob-

tained from Eq. (10.117):

(10.118)

with initial condition We are finally ready to obtain an expression for
the gain 

The gain must minimize the mean square error Therefore we can dif-
ferentiate Eq. (10.118) with respect to and set it equal to zero:

0 = -21an - kn2E3en24 + 2knE3Nn24.
kn

E3en+1
2 4.kn

kn .
E3e0

24 = E3Z0
24.

E3en+1
2 4 = 1an - kn22E3en24 + E3Wn24 + kn2E3Nn24,

E3en4 = 0
NnX0 ,Wn ,e0 = Z0 .

= 1an - kn2en + Wn - knNn ,

= an1Zn - Yn2 + Wn - kn1en + Nn2
en+1 = Zn+1 - Yn+1 = anZn + Wn - anYn - knIn

en = Zn - Yn

In = Xn - Yn = Zn + Nn - Yn = Zn - Yn + Nn = en + Nn ,

kn .

Yn+1 = anYn + knIn .

In = Xn - Yn

Yn+1 .anYn

kn ,
h1
1n2

1Xn - Yn2
n + 1,anYn

Yn

= anYn + h1
1n21Xn - Yn2,

= h1
1n2Xn + 1an - h1

1n22Yn

Yn+1 = h1
1n2Xn + a

n

j¿ =1
1an - h1

1n22hj¿1n-12Xn- j¿
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9We caution the student that there are two common ways of defining the gain. The statement of the Kalman
filter algorithm will differ accordingly in various textbooks.

Then we can solve for 

(10.119)

The expression for the mean square prediction error in Eq. (10.118) can be sim-
plified by using Eq. (10.119) (see Problem 10.72):

(10.120)

Equations (10.119), (10.116), and (10.120) when combined yield the recursive
procedure that constitutes the Kalman filtering algorithm:

Kalman filter algorithm:9

Initialization:
For

Note that the algorithm requires knowledge of the signal structure, i.e., the and the
variances and The algorithm can be implemented easily and has conse-
quently found application in a broad range of detection, estimation, and signal pro-
cessing problems. The algorithm can be extended in matrix form to accommodate a
broader range of processes.

Example 10.26 First-Order Autoregressive Process

Consider a signal defined by

where and and suppose the observations are made in additive
white noise

where Find the form of the predictor and its mean square error as 
The gain at step n is given by

The mean square error sequence is therefore given by

E3e0
24 = E3Z0

24 = 0

kn =
aE3en24
E3en24 + 1

.

n: q .E3Nn24 = 1.

Xn = Zn + Nn n = 0, 1, 2, Á ,

a = 0.8,E3Wn24 = sW2 = 0.36,

Zn = aZn-1 + Wn n = 1, 2, Á Z0 = 0,

E3Wn24.E3Nn24
an ,

E3en+1
2 4 = an1an - kn2E3en24 + E3Wn24.

Yn+1 = anYn + kn1Xn - Yn2
kn =

anE3en24
E3en24 + E3Nn24

n = 0, 1, 2, Á
Y0 = 0 E3e0

24 = E3Z0
24

E3en+1
2 4 = an1an - kn2E3en24 + E3Wn24.

kn =
anE3en24

E3en24 + E3Nn24 .
kn:
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The steady state mean square error must satisfy

For and the resulting quadratic equation yields and 
Thus at steady state the predictor is

10.6 ESTIMATING THE POWER SPECTRAL DENSITY

Let be k observations of the discrete-time, zero-mean, wide-sense sta-
tionary process The periodogram estimate for is defined as

(10.121)

where is obtained as a Fourier transform of the observation sequence:

(10.122)

In Section 10.1 we showed that the expected value of the periodogram estimate is

(10.123)

so is a biased estimator for However, as 

(10.124)

so the mean of the periodogram estimate approaches 
Before proceeding to find the variance of the periodogram estimate, we note that

the periodogram estimate is equivalent to taking the Fourier transform of an estimate
for the autocorrelation sequence; that is,

(10.125)

where the estimate for the autocorrelation is

(10.126)

(See Problem 10.77.)

rNk1m2 =
1
k a
k- ƒm ƒ -1
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'
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k-1

m=-1k-12
rNk1m2e-j2pfm,

SX1f2.
E3p'k1f24: SX1f2,

k: q ,SX1f2.p
'
k1f2

E3p'k1f24 = a
k-1

m¿ = -1k-12
e1 -

ƒm¿ ƒ
k
fRX1m¿2e-j2pfm¿,

x
'
k1f2 = a

k-1

m=0
Xme

-j2pfm.

x
'
k1f2

p
'
k1f2 =

1
k

ƒ x'k1f2 ƒ 2,
SX1f2Xn .

X0 , Á ,Xk-1

*

Yn+1 = 0.8Yn + 0.31Xn - Yn2.

eq = 0.6.kq = 0.3sW
2 = 0.36,a = 0.8

eq =
a2

1 + eq
eq + sW2 .

eq

= a¢ a

1 + E3en24 ≤E3en24 + sW2 for n = 1, 2, Á .

E3en+1
2 4 = a1a - kn2E3en24 + sW2
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FIGURE 10.17
Periodogram for 64 samples of white noise sequence iid uniform in (0, 1),
1>12 = 0.083.

SX1 f2 = sX
2 =Xn

We might expect that as we increase the number of samples k, the periodogram es-
timate converges to This does not happen. Instead we find that fluctuates
wildly about the true spectral density, and that this random variation does not decrease
with increased k (see Fig. 10.17).To see why this happens, in the next section we compute
the statistics of the periodogram estimate for a white noise Gaussian random process.We
find that the estimates given by the periodogram have a variance that does not approach
zero as the number of samples is increased. This explains the lack of improvement in the
estimate as k is increased. Furthermore, we show that the periodogram estimates are un-
correlated at uniformly spaced frequencies in the interval This explains
the erratic appearance of the periodogram estimate as a function of f. In the final section,
we obtain another estimate for whose variance does approach zero as k increases.

10.6.1 Variance of Periodogram Estimate

Following the approach of [Jenkins and Watts, pp. 230–233], we consider the peri-
odogram of samples of a white noise process with at the frequencies

which will cover the frequency range 
(In practice these are the frequencies we would evaluate if we were using the FFT al-
gorithm to compute ) First we rewrite Eq. (10.122) at as follows:

(10.127)= Ak1n2 - jBk1n2 -k>2 … n 6 k>2,

x
'
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m=0
Xmacosa2pmn
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k1f2.
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SX1f2 = sX2
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'
k1f2SX1f2.
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where

(10.128)

and

(10.129)

Then it follows that the periodogram estimate is

(10.130)

We find the variance of from the statistics of and 
The random variables and are defined as linear functions of the

jointly Gaussian random variables Therefore and are also
jointly Gaussian random variables. If we take the expected value of Eqs. (10.128) and
(10.129) we find

(10.131)

Note also that the and terms are different in that

(10.132a)

(10.132b)

The correlation between and (for n, m not equal to or 0) is

where we used the fact that since the noise is white.The second sum-
mation is equal to zero, and the first summation is zero except when Thus

(10.133a)

It can similarly be shown that

(10.133b)

(10.133c)E3Ak1n2Bk1m24 = 0 for all n,m.
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When or 0, we have

(10.133d)

Equations (10.133a) through (10.133d) imply that and are uncorrelated
random variables. Since and are jointly Gaussian random variables, this
implies that they are zero-mean, independent Gaussian random variables.

We are now ready to find the statistics of the periodogram estimates at the fre-
quencies Equation (10.130) gives

(10.134)

The quantity in brackets is the sum of the squares of two zero-mean, unit-variance, in-
dependent Gaussian random variables. This is a chi-square random variable with two
degrees of freedom (see Problem 7.6). From Table 4.1, we see that a chi-square random
variable with v degrees of freedom has variance 2v.Thus the expression in the brackets
has variance 4, and the periodogram estimate has variance

(10.135a)

For and 

The quantity in brackets is a chi-square random variable with one degree of freedom
and variance 2, so the variance of the periodogram estimate is

(10.135b)

Thus we conclude from Eqs. (10.135a) and (10.135b) that the variance of the peri-
odogram estimate is proportional to the square of the power spectral density and does not
approach zero as k increases. In addition, Eqs. (10.133a) through (10.133d) imply that the
periodogram estimates at the frequencies are uncorrelated random variables.A
more detailed analysis [Jenkins and Watts, p. 238] shows that for arbitrary f,

(10.136)

Thus variance of the periodogram estimate does not approach zero as the number of
samples is increased.

The above discussion has only considered the spectrum estimation for a white
noise, Gaussian random process, but the general conclusions are also valid for non-
white, non-Gaussian processes. If the are not Gaussian, we note from Eqs. (10.128)Xi
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and (10.129) that and are approximately Gaussian by the central limit theorem
if k is large.Thus the periodogram estimate is then approximately a chi-square random
variable.

If the process is not white, then it can be viewed as filtered white noise:

where and The periodograms of and are
related by

(10.137)

Thus

(10.138)

From our previous results, we know that is a chi-square random variable
with variance This implies that

(10.139)

Thus we conclude that the variance of the periodogram estimate for nonwhite noise is
also proportional to 

10.6.2 Smoothing of Periodogram Estimate

A fundamental result in probability theory is that the sample mean of a sequence of
independent realizations of a random variable approaches the true mean with proba-
bility one.We obtain an estimate for that goes to zero with the number of obser-
vations k by taking the average of N independent periodograms on samples of size k:

(10.140)

where are N independent periodograms computed using separate sets of k
samples each. Figures 10.18 and 10.19 show the and smoothed peri-
odograms corresponding to the unsmoothed periodogram of Fig. 10.17. It is evident
that the variance of the power spectrum estimates is decreasing with N.

The mean of the smoothed estimator is

(10.141)

where we have used Eq. (10.35). Thus the smoothed estimator has the same mean as
the periodogram estimate on a sample of size k.
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FIGURE 10.18
Sixty-four-point smoothed periodogram with iid uniform in (0, 1),
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The variance of the smoothed estimator is

Thus the variance of the smoothed estimator can be reduced by increasing N, the num-
ber of periodograms used in Eq. (10.140).

In practice, a sample set of size is divided into N blocks and a
separate periodogram is computed for each block. The smoothed estimate is then the
average over the N periodograms.This method is called Bartlett’s smoothing procedure.
Note that, in general, the resulting periodograms are not independent because the un-
derlying blocks are not independent. Thus this smoothing procedure must be viewed as
an approximation to the computation and averaging of independent periodograms.

The choice of k and N is determined by the desired frequency resolution and
variance of the estimate. The blocksize k determines the number of frequencies for
which the spectral density is computed (i.e., the frequency resolution). The variance of
the estimate is controlled by the number of periodograms N.The actual choice of k and
N depends on the nature of the signal being investigated.

10.7 NUMERICAL TECHNIQUES FOR PROCESSING RANDOM SIGNALS

In this chapter our discussion has combined notions from random processes with basic
concepts from signal processing. The processing of signals is a very important area in
modern technology and a rich set of techniques and methodologies have been devel-
oped to address the needs of specific application areas such as communication systems,
speech compression, speech recognition, video compression, face recognition, network
and service traffic engineering, etc. In this section we briefly present a number of gen-
eral tools available for the processing of random signals. We focus on the tools provid-
ed in Octave since these are quite useful as well as readily available.

10.7.1 FFT Techniques

The Fourier transform relationship between and is fundamental in the
study of wide-sense stationary processes and plays a key role in random signal analysis.
The fast fourier transform (FFT) methods we developed in Section 7.6 can be applied
to the numerical transformation from autocorrelation functions to power spectral den-
sities and back.

Consider the computation of and for continuous-time processes:

RX1t2 = L
 q

-q 
SX1f2e-j2pft df L L

W

-W 
SX1f2e-j2pft df.
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M
1
N
SX1f22.
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1
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First we limit the integral to the region where has significant power. Next we re-
strict our attention to a discrete set of frequency values at so that

and then approximate the
integral by a sum:

Finally, we also focus on a set of discrete lag values: so that 
We obtain the DFT as follows:

(10.142)

In order to have a discrete Fourier transform, we must have which is equiv-
alent to: and and We can use the FFT
function introduced in Section 7.6 to perform the transformation in Eq. (10.142) to ob-
tain the set of values from 
The transformation in the reverse direction is done in the same way. Since and

are even functions various simplifications are possible.We discuss some of these
in the problems.

Consider the computation of and for discrete-time processes.
spans the range of frequencies so we restrict attention to N points 1/N apart:

(10.143)

The approximation here involves neglecting autocorrelation terms outside 
Since the transformation in the reverse direction is scaled differently:

(10.144)

We assume that the student has already tried the FFT exercises in Section 7.6, so we
leave examples in the use of the FFT to the Problems.

The various frequency domain results for linear systems that relate input, output,
and cross-spectral densities can be evaluated numerically using the FFT.

Example 10.27 Output Autocorrelation and Cross-Correlation

Consider Example 10.12, where a random telegraph signal X(t) with is passed through a
lowpass filter with and Find 

The random telegraph has and the filter has transfer function
so is given by:
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FIGURE 10.20
(a) Transfer function and input power spectral density; (b) Autocorrelation of filtered random telegraph with filter b � 10.

We used an FFT to evaluate autocorrelation functions numerically for and
and Figure 10.20(a) shows and for It can be seen that the

transfer function (the dashed line) is close to 1 in the region of f where has most of its
power. Consequently we expect the output for to have an autocorrelation similar to that
of the input. For , on the other hand, the filter will attenuate more of the significant fre-
quencies of X(t) and we expect more change in the output autocorrelation. Figure 10.20(b)
shows the output autocorrelation and we see that indeed for is
close to the double-sided exponential of For the output autocorrelation differs
significantly from 

10.7.2 Filtering Techniques

The autocorrelation and power spectral density functions provide us with information
about the average behavior of the processes. We are also interested in obtaining sam-
ple functions of the inputs and outputs of systems. For linear systems the principal tools
for signal processing are the convolution and Fourier transform.

Convolution in discrete-time (Eq. (10.48)) is quite simple and so convolution is
the workhorse in linear signal processing. Octave provides several functions for per-
forming convolutions with discrete-time signals. In Example 10.15 we encountered the
function filter(b,a,x) which implements filtering of the sequence x with an ARMA
filter with coefficients specified by vectors b and a in the following equation.

Other functions use filter(b,a,x) to provide special cases of filtering. For example,
conv(a,b) convolves the elements in the vectors a and b.We can obtain the output of a
linear system by letting a be the impulse response and b the input random sequence.
The moving average example in Fig. 10.7(b) is easily obtained using this conv. Octave
provides other functions implementing specific digital filters.

Yn = -a
q

i=1
aiYn- i + a

p

j=0
bjXn- j .

RX1t2.
b = 1RX1t2.

b = 10 (the solid line), RY1t2
b = 1

b = 10
SX1f2

b = 10.SX1f2ƒH1f2 ƒ 2b = 10.b = 1
a = 1N = 256
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We can also obtain the output of a linear system in the frequency domain.We take
the FFT of the input sequence and we then multiply it by the FFT of the transfer
function.The inverse FFT will then provide of the linear system.The Octave function
fftconv(a,b,n) implements this approach. The size of the FFT must be equal to the
total number of samples in the input sequence, so this approach is not advisable for long
input sequences.

10.7.3 Generation of Random Processes

Finally, we are interested in obtaining discrete-time and continuous-time sample func-
tions of the inputs and outputs of systems. Previous chapters provide us with several tools
for the generation of random signals that can act as inputs to the systems of interest.

Section 5.10 provides the method for generating independent pairs of Gaussian
random variables. This method forms the basis for the generation of iid Gaussian se-
quences and is implemented in normal_rnd=(M,V,Sz). The generation of sequences of
WSS but correlated sequences of Gaussian random variables requires more work. One
approach is to use the matrix approaches developed in Section 6.6 to generate individ-
ual vectors with a specified covariance matrix. To generate a vector Y of n outcomes
with covariance we perform the following factorization:

and we generate the vector

where X is vector of iid zero-mean, unit-variance Gaussian random variables. The Oc-
tave function svd(B) performs a singular value decomposition of the matrix B, see
[Long]. When is a covariance matrix, svd returns the diagonal matrix D of
eigenvalues of as well as the matrices and 

Example 10.28 Generation of Correlated Gaussian Random Variables

Generate 256 samples of the autoregressive process in Example 10.14 with 
The autocorrelation of the process is given by We generate a vector r

of the first 256 lags of and use the function toeplitz(r) to generate the covariance ma-
trix. We then call the svd to obtain A. Finally we produce the output vector 

> n=[0:255]

> r=(-0.5).^n;
> K=toeplitz(r);

> [U,D,V]=svd(K);

> X=normal_rnd(0,1,1,256);

> y=V*(D^0.5)*transpose(X);

> plot(y)

Figure 10.21(a) shows a plot of Y. To check that the sequence has the desired autocovari-
ance we use the function autocov(X,H)which estimates the autocovariance function of the se-
quence X for the first H lag values. Figure 10.21(b) shows that the sample correlation coefficient
that is obtained by dividing the autocovariance by the sample variance. The plot shows the alter-
nating covariance values and the expected peak values of and 0.25 to the first two lags.-0.5

Y � AT X.
RX1k2

RX1k2 = 1-1/22 ƒk ƒ.
a = -0.5, sX = 1.

V = PT.U = PKY

B = KY

Y =  AT X

KY =  AT A P L P T,

KY ,

Yn

Xn
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An alternative approach to generating a correlated sequence of random variables with
a specified covariance function is to input an uncorrelated sequence into a linear filter with a
specific H( f ). Equation (10.46) allows us to determine the power spectral density of the out-
put sequence. This approach can be implemented using convolution and is applicable to ex-
tremely long signal sequences. A large choice of possible filter functions is available for both
continuous-time and discrete-time systems. For example, the ARMA model in Example 10.15
is capable of implementing a broad range of transfer functions. Indeed the entire discussion
in Section 10.4 was focused on obtaining the transfer function of optimal linear systems in
various scenarios.

Example 10.29 Generation of White Gaussian Noise

Find a method for generating white Gaussian noise for a simulation of a continuous-time com-
munications system.

The generation of discrete-time white Gaussian noise is trivial and involves the generation
of a sequence of iid Gaussian random variables.The generation of continuous-time white Gauss-
ian noise is not so simple. Recall from Example 10.3 that true white noise has infinite bandwidth
and hence infinite power and so is impossible to realize. Real systems however are bandlimited,
and hence we always end up dealing with bandlimited white noise. If the system of interest is
bandlimited to W Hertz, then we need to model white noise limited to W Hz. In Example 10.3 we
found this type of noise has autocorrelation:

The sampling theorem discussed in Section 10.3 allows us to represent bandlimited white Gauss-
ian noise as follows:

Xn 1t2 = a
q

n=-q
X1nT2p1t - nT2 where p1t2 =

sin1pt>T2
pt>T ,
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(a) Correlated Gaussian noise (b) Sample autocovariance.
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where The coefficients X(nT) have autocorrelation which is given by:

We thus conclude that X(nT) is an iid sequence of Gaussian random variables with variance
Therefore we can simulate sampled bandlimited white Gaussian noise by generating a se-

quence X(nT). We can perform any processing required in the discrete-time domain, and we can
then apply the result to an interpolator to recover the continuous-time output.

SUMMARY

• The power spectral density of a WSS process is the Fourier transform of its auto-
correlation function. The power spectral density of a real-valued random process
is a real-valued, nonnegative, even function of frequency.

• The output of a linear, time-invariant system is a WSS random process if its input
is a WSS random process that is applied an infinite time in the past.

• The output of a linear, time-invariant system is a Gaussian WSS random process
if its input is a Gaussian WSS random process.

• Wide-sense stationary random processes with arbitrary rational power spectral
density can be generated by filtering white noise.

• The sampling theorem allows the representation of bandlimited continuous-time
processes by the sequence of periodic samples of the process.

• The orthogonality condition can be used to obtain equations for linear systems that
minimize mean square error. These systems arise in filtering, smoothing, and predic-
tion problems.Matrix numerical methods are used to find the optimum linear systems.

• The Kalman filter can be used to estimate signals with a structure that keeps the di-
mensionality of the algorithm fixed even as the size of the observation set increases.

• The variance of the periodogram estimate for the power spectral density does not
approach zero as the number of samples is increased.An average of several inde-
pendent periodograms is required to obtain an estimate whose variance does ap-
proach zero as the number of samples is increased.

• The FFT, convolution, and matrix techniques are basic tools for analyzing, simu-
lating, and implementing processing of random signals.

CHECKLIST OF IMPORTANT TERMS

N0W.

=
N0W sin1pn2

pn
= bN0W for n = 0

0 for n Z 0.

RX1nT2 =
N0 sin12pWnT2

2pnT
=
N0 sin12pWn>2W2

2pn>2W

RX1nT21>T = 2W.

Amplitude modulation
ARMA process
Autoregressive process
Bandpass signal
Causal system

Cross-power spectral density
Einstein-Wiener-Khinchin theorem
Filtering
Impulse response
Innovations
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References [1] through [6] contain good discussions of the notion of power spectral
density and of the response of linear systems to random inputs. References [6] and [7]
give accessible introductions to the spectral factorization problem. References [7]
through [9] discuss linear filtering and power spectrum estimation in the context of
digital signal processing. Reference [10] discusses the basic theory underlying power
spectrum estimation.

1. A. Papoulis and S. Pillai, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, New York, 2002.

2. H. Stark and J. W. Woods, Probability, Random Processes, and Estimation Theory
for Engineers, 3d ed., Prentice Hall, Upper Saddle River, N.J., 2002.

3. R. M. Gray and L. D. Davisson, Random Processes:A Mathematical Approach for
Engineers, Prentice Hall, Englewood Cliffs, N.J., 1986.

4. R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, Wiley, New
York, 2005.

5. J.A. Gubner, Probability and Random Processes for Electrical and Computer En-
gineering, Cambridge University Press, Cambridge, 2006.

6. G. R. Cooper and C. D. MacGillem, Probabilistic Methods of Signal and System
Analysis, Holt, Rinehart & Winston, New York, 1986.

7. J. A. Cadzow, Foundations of Digital Signal Processing and Data Analysis,
Macmillan, New York, 1987.

8. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice
Hall, Englewood Cliffs, N.J., 1989.

9. M. Kunt, Digital Signal Processing, Artech House, Dedham, Mass., 1986.
10. G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, Holden

Day, San Francisco, 1968.
11. A. Einstein, “Method for the Determination of the Statistical Values of Observa-

tions Concerning Quantities Subject to Irregular Observations,” reprinted in
IEEE ASSP Magazine, October 1987, p. 6.

12. P. J. G. Long, “Introduction to Octave,” University of Cambridge, September,
2005, available online.

Kalman filter
Linear system
Long-range dependence
Moving average process
Nyquist sampling rate
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Transfer function
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PROBLEMS

Section 10.1: Power Spectral Density

10.1. Let g(x) denote the triangular function shown in Fig. P10.1.
(a) Find the power spectral density corresponding to 
(b) Find the autocorrelation corresponding to the power spectral density 

SX1f2 = g1f>W2.
RX1t2 = g1t>T2.

10.2. Let p(x) be the rectangular function shown in Fig. P10.2. Is a valid au-
tocorrelation function?

RX1t2 = p1t>T2

10.3. (a) Find the power spectral density of a random process with autocorrelation
function where is itself an autocorrelation function.

(b) Plot if is as in Problem 10.1a.
10.4. (a) Find the autocorrelation function corresponding to the power spectral density

shown in Fig. P10.3.
(b) Find the total average power.
(c) Plot the power in the range as a function of f0 7 0.ƒf ƒ 7 f0

RX1t2SY1f2
RX1t2RX1t2 cos12pf0t2,
SY1f2

FIGURE P10.1
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10.5. A random process X(t) has autocorrelation given by 
(a) Find the corresponding power spectral density.
(b) Find the amount of power contained in the frequencies where

10.6. Let Under what conditions does 
10.7. Show that

(a)
(b)

10.8. Let
(a) Find and 
(b) Find and 

10.9. Do Problem 10.8 if X(t) has the triangular autocorrelation function g( ) in Problem
10.1 and Fig. P 10.1.

10.10. Let X(t) and Y(t) be independent wide-sense stationary random processes, and define

(a) Show that Z(t) is wide-sense stationary.
(b) Find and 

10.11. In Problem 10.10, let where is a uniform random variable in
Find and 

10.12. Let
(a) Find
(b) Plot for and and comment on the effect of the value of 

10.13. Let
(a) Find
(b) Plot for and and comment on the effect of value

of
10.14. Let for and 0 elsewhere. Find and plot 
10.15. Let where is a uniformly distributed random variable in the

interval Find and plot for 
10.16. Let where d is an integer constant and is a zero-mean, WSS ran-

dom process.
(a) Find and in terms of and What is the impact of d?
(b) Find

10.17. Find and in Problem 10.16 if is the moving average process of Example
10.7 with 

10.18. Let be a zero-mean, bandlimited white noise random process with for
and 0 elsewhere, where 

(a) Show that 
(b) Find when 

10.19. Let be a zero-mean white noise sequence, and let be independent of 
(a) Show that is a white sequence, and find 
(b) Suppose is a Gaussian random process with autocorrelation 

Specify the joint pmf’s for Yn .
RX1k2 = 11>22 ƒk ƒ.Xn

s2
Y.Yn = WnXn

Wn .XnWn

fc = 1>4.RX1k2
RX1k2 = sin12pfck2>1pk2.

fc 6 1>2.ƒf ƒ 6 fc
SX1f2 = 1Xn

a = 1.
XnSD1f2RD1k2

E3D2
 n4.

SX1f2.RX1k2SD1f2RD1k2
XnDn = Xn - Xn-d ,

f0 = 0.5, 1, 1.75, p.SX1f210, 2p2.
®Xn = cos12pf0n + ®2,

SX1f2.ƒk ƒ 6 NRX1k2 = 911 - ƒk ƒ >N2,
a>b.

a = 0.75 = 3ba = b = 0.5SX1f2
SX1f2.

RX1k2 = 41a2 ƒk ƒ + 161b2 ƒk ƒ, a < 1, b < 1.
a.a = 0.75,a = 0.25SX1f2

SX1f2.
RX1k2 = 4a ƒk ƒ, ƒa ƒ 6 1.

SZ1f2.RZ1t210, 2p2.
®X1t2 = a cos12pf0 t + ®2

SZ1f2.RZ1t2
Z1t2 = X1t2Y1t2.

t/T
SY1f2.RY1t2
SX,Y1f2.RX,Y1t2

Y1t2 = X1t2 - X1t - d2.
SX,Y1f2 = S…Y,X1f2.
RX,Y1t2 = RY,X1-t2.

SZ1f2 = SX1f2 + SY1f2?Z1t2 = X1t2 + Y1t2.
k = 1, 2, 3.

ƒf ƒ 7 k /2pa,

RX1t2 = sX2 e-t
2>2a2

, a > 0.
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10.20. Evaluate the periodogram estimate for the random process 
where is a uniformly distributed random variable in the interval What hap-
pens as 

10.21. (a) Show how to use the FFT to calculate the periodogram estimate in Eq. (10.32).
(b) Generate four realizations of an iid zero-mean unit-variance Gaussian sequence of

length 128. Calculate the periodogram.
(c) Calculate 50 periodograms as in part b and show the average of the periodograms

after every 10 additional realizations.

Section 10.2: Response of Linear Systems to Random Signals

10.22. Let X(t) be a differentiable WSS random process, and define

Find an expression for and Hint: For this system,
10.23. Let Y(t) be the derivative of X(t), a bandlimited white noise process as in Example 10.3.

(a) Find and 
(b) What is the average power of the output?

10.24. Repeat Problem 10.23 if X(t) has 
10.25. Let Y(t) be a short-term integration of X(t):

(a) Find the impulse response h(t) and the transfer function H(f).

(b) Find in terms of 
10.26. In Problem 10.25, let for and zero elsewhere.

(a) Find
(b) Find
(c) Find

10.27. The input into a filter is zero-mean white noise with noise power density The filter
has transfer function

(a) Find and 
(b) Find and 
(c) What is the average power of the output?

10.28. A bandlimited white noise process X(t) is input into a filter with transfer function

(a) Find and in terms of and 
(b) Find and in terms of and 
(c) What is the average power of the output?

10.29. (a) A WSS process X(t) is applied to a linear system at Find the mean and auto-
correlation function of the output process. Show that the output process becomes
WSS as t: q .

t = 0.

SX1f2.RX1t2RY1t2SY1f2
SX1f2.RX1t2RY,X1t2SY,X1f2

H1f2 = 1 + j2pf.

RY1t2.SY1f2
RY,X1t2.SY,X1f2

H1f2 =
1

1 + j2pf
.

N0>2.
E3Y21t24.
RY1t2.
SY1f2.

ƒ t ƒ 6 TRX1t2 = 11 - ƒ t ƒ >T2
SX1f2.SY1f2

Y1t2 =
1
TL

t

t-T
X1t¿2 dt¿.

SX1f2 = b2e-pf
2
.

RY1t2.SY1f2
H1f2 = j2pf.RY1t2.SY1f2

Y1t2 =
d

dt
X1t2.

T: q?
10, 2p2.®

X1t2 = a cos12pf0t + ®2,
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10.30. Let Y(t) be the output of a linear system with impulse response h(t) and input X(t). Find
when the input is white noise. Explain how this result can be used to estimate the

impulse response of a linear system.
10.31. (a) A WSS Gaussian random process X(t) is applied to two linear systems as shown in

Fig. P10.4. Find an expression for the joint pdf of and 
(b) Evaluate part a if X(t) is white Gaussian noise.

W1t22.Y1t12

RY,X1t2

10.32. Repeat Problem 10.31b if and are ideal bandpass filters as in Example 10.11.
Show that Y(t) and W(t) are independent random processes if the filters have nonover-
lapping bands.

10.33. Let and as shown in Fig. P10.5.
(a) Find in terms of 
(b) Find E3Z21t24.

SX1f2.SZ1f2
Z1t2 = X1t2 - Y1t2Y1t2 = h1t2 * X1t2

h21t2h11t2

10.34. Let Y(t) be the output of a linear system with impulse response h(t) and input 
Let
(a) Find and 
(b) Find
(c) Find if X(t) and N(t) are independent random processes.

10.35. A random telegraph signal is passed through an ideal lowpass filter with cutoff frequency
W. Find the power spectral density of the difference between the input and output of the
filter. Find the average power of the difference signal.

SZ1f2
SZ1f2.

RZ1t2.RX,Y1t2
Z1t2 = X1t2 - Y1t2.

X1t2 + N1t2.
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hn

Yn
Wn Zngn

FIGURE P10.6

10.36. Let be applied to an ideal bandpass filter that passes 
the frequencies Assume that is uniformly distributed in Find
the ratio of signal power to noise power at the output of the filter.

10.37. Let be a “smoothed” version of Find 
and

10.38. Suppose is a white Gaussian noise process in Problem 10.37. Find the joint pmf for

10.39. Let where is a zero-mean, first-order autoregressive process with
autocorrelation
(a) Find and 
(b) Find and 
(c) For what value of is a white noise process?

10.40. A zero-mean white noise sequence is input into a cascade of two systems (see Fig. P10.6).
System 1 has impulse response and system 2 has impulse response

where for and 0 elsewhere.
(a) Find and 
(b) Find and find and Hint: Use a partial fraction

expansion of prior to finding 
(c) Find E3Z2

n4.
RW,Z1k2.SW,Z1f2

SW,Z1f2.SW,Y1f2RW,Z1k2;RW,Y1k2
SZ1f2.SY1f2

n Ú 0u1n2 = 1gn = 11>42nu1n2
hn = 11>22nu1n2

Ynb

E3Y2
n4.SY1f2, RY1k2,

SY,X1f2.RY,X1k2
RX1k2 = s2ak, ƒa ƒ 6 1.

XnYn = Xn + bXn-1 ,
1Yn , Yn+1 , Yn+22.

Xn

E3Y2
 n4.

RY1k2, SY1f2,Xn .Yn = 1Xn+1 + Xn + Xn-12>3
10, 2p2.®ƒf–fc ƒ 6 W>2.

Y1t2 = a cos12pfct + ®2 + N1t2

10.41. A moving average process is produced as follows:

where is a zero-mean white noise process.
(a) Show that for 
(b) Find by computing then find 
(c) Find the impulse response of the linear system that defines the moving average

process. Find the corresponding transfer function H( f ), and then Compare
your answer to part b.

10.42. Consider the second-order autoregressive process defined by

where the input is a zero-mean white noise process.
(a) Verify that the unit-sample response is for and 0 oth-

erwise.
(b) Find the transfer function.
(c) Find and RY1k2 = f-15SY1f26.SY1f2

n Ú 0,hn = 211>22n - 11>42n
Wn

Yn =
3
4
Yn-1 -

1
8
Yn-2 + Wn ,

SX1f2.
hn

SX1f2 = f5RX1k26.E3Xn+kXn4,RX1k2
ƒk ƒ 7 p.RX1k2 = 0

Wn

Xn = Wn + a1Wn-1 + Á + apWn-p ,

Xn
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10.43. Suppose the autoregressive process defined in Problem 10.42 is the input to the following
moving average system:

(a) Find and 
(b) Explain why is a first-order autoregressive process.
(c) Find a moving average system that will produce a white noise sequence when is

the input.
10.44. An autoregressive process is produced as follows:

where is a zero-mean white noise process.
(a) Show that the autocorrelation of satisfies the following set of equations:

(b) Use these recursive equations to compute the autocorrelation of the process in
Example 10.22.

Section 10.3: Bandlimited Random Processes

10.45. (a) Show that the signal x(t) is recovered in Figure 10.10(b) as long as the sampling rate
is above the Nyquist rate.

(b) Suppose that a deterministic signal is sampled at a rate below the Nyquist rate.
Use Fig. 10.10(b) to show that the recovered signal contains additional signal com-
ponents from the adjacent bands. The error introduced by these components is
called aliasing.

(c) Find an expression for the power spectral density of the sampled bandlimited ran-
dom process X(t).

(d) Find an expression for the power in the aliasing error components.
(e) Evaluate the power in the error signal in part c if is as in Problem 10.1b.

10.46. An ideal discrete-time lowpass filter has transfer function:

(a) Show that H( f ) has impulse response 
(b) Find the power spectral density of Y(kT) that results when the signal in Problem

10.1b is sampled at the Nyquist rate and processed by the filter in part a.
(c) Let Y(t) be the continuous-time signal that results when the output of the filter in

part b is fed to an interpolator operating at the Nyquist rate. Find 
10.47. In order to design a differentiator for bandlimited processes, the filter in Fig. 10.10(c) is

designed to have transfer function:

H1f2 = j2pf>T for ƒf ƒ 6 1/2.

SY1f2.

hn = sin12pfcn2>pn.

H1f2 = b1 for ƒf ƒ 6 fc 6 1>2
0 for fc 6 ƒf ƒ 6 1>2.

SX1f2

RY1k2 = a
q

i=1
aiRY1k - i2.

RY102 = a
q

i=1
aiRY1i2 + RW102

Yn

Wn

Yn = a1Yn-1 + Á + aqYn-q + Wn ,

Yn

Zn

Zn

RZ1k2.SZ1f2
Zn = Yn - 1/4Yn-1 .
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(a) Show that the corresponding impulse response is:

(b) Suppose that is sampled at a rate and then
input into the above digital filter. Find the output Y(t) of the interpolator.

10.48. Complete the proof of the sampling theorem by showing that the mean square error is
zero. Hint: First show that 

10.49. Plot the power spectral density of the amplitude modulated signal Y(t) in Example 10.18,
assuming Assume that A(t) is the signal in Problem 10.1b.

10.50. Suppose that a random telegraph signal with transition rate is the input signal in an am-
plitude modulation system. Plot the power spectral density of the modulated signal as-
suming and 

10.51. Let the input to an amplitude modulation system be where is uni-
formly distributed in Find the power spectral density of the modulated signal
assuming

10.52. Find the signal-to-noise ratio in the recovered signal in Example 10.18 if for
and zero elsewhere.

10.53. The input signals to a QAM system are independent random processes with power spec-
tral densities shown in Fig. P10.7. Sketch the power spectral density of the QAM signal.

ƒf ; fc ƒ 6 W
SN1f2 = af2

fc 7 f1 .
1-p, p2.

£2 cos12pf1 + £2,
fc = 10a>p.fc = a>p

a

fc 7 W; fc 6 W.

E31X1t2-1Xn 11t2X1kT24 = 0, all k.

1>T = 4f0X1t2 = a cos12pf0t + ®2
h0 = 0, hn =

pn cospn - sinpn
pn2T

=
1-12n
nT

n Z 0

10.54. Under what conditions does the receiver shown in Fig. P10.8 recover the input signals to
a QAM signal?

10.55. Show that Eq. (10.67b) implies that is a purely imaginary, odd function of f.SB,A1f2
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Section 10.4: Optimum Linear Systems

10.56. Let as in Example 10.22, where is a first-order process with
and is white noise with 

(a) Find the optimum filter for estimating 
(b) Find the mean square error of the resulting filter.

10.57. Let as in Example 10.21, where has and has 
where and are less than one in magnitude.

(a) Find the equation for the optimum filter for estimating 
(b) Write the matrix equation for the filter coefficients.
(c) Solve the case, if and 
(d) Find the mean square error for the optimum filter in part c.
(e) Use the matrix function of Octave to solve parts c and d for 

10.58. Let as in Example 10.21, where is the first-order moving average
process of Example 10.7, and is white noise.
(a) Find the equation for the optimum filter for estimating 
(b) For the and cases, write and solve the matrix equation for the filter co-

efficients.
(c) Find the mean square error for the optimum filter in part b.

10.59. Let as in Example 10.19, and suppose that an estimator for uses ob-
servations from the following time instants:
(a) Solve the case if and are as in Problem 10.56.
(b) Find the mean square error in part a.
(c) Find the equation for the optimum filter.
(d) Write the matrix equation for the filter coefficients.
(e) Use the matrix function of Octave to solve parts a and b for 

10.60. Consider the predictor in Eq. (10.86b).
(a) Find the optimum predictor coefficients in the case when 
(b) Find the mean square error in part a.
(c) Use the matrix function of Octave to solve parts a and b for 

10.61. Let X(t) be a WSS, continuous-time process.
(a) Use the orthogonality principle to find the best estimator for X(t) of the form

where and are given time instants.
(b) Find the mean square error of the optimum estimator.
(c) Check your work by evaluating the answer in part b for and Is the an-

swer what you would expect?
10.62. Find the optimum filter and its mean square error in Problem 10.61 if and

10.63. Find the optimum filter and its mean square error in Problem 10.61 if and 
and Compare the performance of this filter to the performance

of the optimum filter of the form Xn 1t2 = aX1t - d2.
RX1t2 = e-a ƒ t ƒ- 2d,

t2 = tt1 = t - d
t2 = t + d.

t1 = t - d

t = t2 .t = t1

t2t1

Xn 1t2 = aX1t12 + bX1t22,

p = 3, 4, 5.

RZ1k2 = 911>32 ƒk ƒ.p = 2

p = 2, 3.
2p + 1

NaZap = 1
I = 5n - p, Á , n, Á , n + p6.

ZaXa = Za + Na

p = 2p = 1
Za .

Na

ZaXa = Za + Na
p = 3, 4, 5.

r2 = 1>3.sZ
2 = 9, r1 = 2>3, sN

2 = 1,p = 2

Za .
r2r1RN1k2 = sN2 r2 ƒk ƒ,

NaRZ1k2 = sZ2 1r12 ƒk ƒZaXa = Za + Na

Za .p = 1
sN

2 = 1.NaRZ1k2 = 413>42 ƒk ƒ
ZaXa = Za + Na



Problems 643

10.64. Modify the system in Problem 10.33 to obtain a model for the estimation error in the op-
timum infinite-smoothing filter in Example 10.24. Use the model to find an expression
for the power spectral density of the error and then show that the
mean square error is given by:

Hint:

10.65. Solve the infinite-smoothing problem in Example 10.24 if Z(t) is the random telegraph
signal with and N(t) is white noise. What is the resulting mean square error?

10.66. Solve the infinite-smoothing problem in Example 10.24 if Z(t) is bandlimited white noise
of density and N(t) is (infinite-bandwidth) white noise of noise density What
is the resulting mean square error?

10.67. Solve the infinite-smoothing problem in Example 10.24 if Z(t) and N(t) are as given in
Example 10.25. Find the resulting mean square error.

10.68. Let where and are independent, zero-mean random processes.
(a) Find the smoothing filter given by Eq. (10.89) when is a first-order autoregressive

process with and and is white noise with 
(b) Use the approach in Problem 10.64 to find the power spectral density of the error 
(c) Find as follows: Let factor the denominator and take the in-

verse transform to show that:

(d) Find an expression for the resulting mean square error.
10.69. Find the Wiener filter in Example 10.25 if N(t) is white noise of noise density 

and Z(t) has power spectral density

10.70. Find the mean square error for the Wiener filter found in Example 10.25. Compare this
with the mean square error of the infinite-smoothing filter found in Problem 10.67.

10.71. Suppose we wish to estimate (predict) by

(a) Show that the optimum filter must satisfy

(b) Use the Wiener-Hopf method to find the optimum filter when 
10.72. Let where and are independent random processes, is a white

noise process with and is a first-order autoregressive process with 
We are interested in the optimum filter for estimating from Xn ,Xn-1 , Á .Zn411>22 ƒk ƒ.

RZ1k2 =Zns2
N = 1,

NnNnZnXn = Zn + Nn ,
RX1t2 = e-2 ƒt ƒ.

RX1t + d2 = L
q

0
h1x2RX1t - x2 dx t Ú 0.

Xn 1t + d2 = L
q

0
h1t2X1t - t2 dt.

X1t + d2

Sz1f2 =
4

4 + 4p2f2 .

N0>2 = 1>3

Re1k2 =
sX

2z1

a11 - z1
22 z1

ƒk ƒ where 0 6 z1 6 1.

Se1f2,Z = ej2pf,Re1k2
Se1f2.

sN
2 = 4.Nna = 1/2sX

2 = 9
Zn

NnZnXn = Zn + Nn ,

N0>2.N1>2
a = 1/2

E3e21t24 = Re102.

E3e21t24 = L
q

-q

SZ1f2SN1f2
SZ1f2 + SN1f2 df.

e1t2 = Z1t2 - Y1t2,
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(a) Find and express it in the form:

(b) Find the whitening causal filter.
(c) Find the optimal causal filter.

Section 10.5: The Kalman Filter

10.73. If and are Gaussian random processes in Eq. (10.102), are and Markov
processes?

10.74. Derive Eq. (10.120) for the mean square prediction error.
10.75. Repeat Example 10.26 with and 
10.76. Find the Kalman algorithm for the case where the observations are given by

where is a sequence of known constants.

Section 10.6: Estimating the Power Spectral Density

10.77. Verify Eqs. (10.125) and (10.126) for the periodogram and the autocorrelation function
estimate.

10.78. Generate a sequence of iid random variables that are uniformly distributed in (0, 1).
(a) Compute several 128-point periodograms and verify the random behavior of the pe-

riodogram as a function of f. Does the periodogram vary about the true power spec-
tral density?

(b) Compute the smoothed periodogram based on 10, 20, and 50 independent peri-
odograms. Compare the smoothed periodograms to the true power spectral density.

10.79. Repeat Problem 10.78 with a first-order autoregressive process with autocorrelation
function:

10.80. Consider the following estimator for the autocorrelation function

Show that if we estimate the power spectrum of by the Fourier transform of 
the resulting estimator has mean

Why is the estimator biased?

Section 10.7: Numerical Techniques for Processing Random Signals

10.81. Let X(t) have power spectral density given by 
(a) Before performing an FFT of you are asked to calculate the power in the

aliasing error if the signal is treated as if it were bandlimited with bandwidth kW0 .
SX1f2,

SX1f2 = b2e-f
2>2W0

2>22p .

E3p'k1f24 = a
k-1

m¿ = -1k-12
RX1m¿2e-j2pfm¿.

rN œk1m2,Xn

rN œk1m2 =
1

k - ƒm ƒ a
k- ƒm ƒ -1

n=0
XnXn+m .

RX1k2 = 1.12 ƒk ƒ.RX1k2 = 11>22 ƒk ƒ;RX1k2 = 1.92 ƒk ƒ;
Xn

Xn

*

bn

Xn = bnZn + Nn

a = 2.a = 0.5

XnZnNnWn

SX1f2 =

1
2z1
¢1 -

1
z1
e-j2pf≤ ¢1 - z1e

j2pf≤
a1 -

1
2
e-j2pfb a1 -

1
2
ej2pfb

.

SX1f2
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What value of W should be used for the FFT if the power in the aliasing error is to
be less than 1% of the total power? Assume and .

(b) Suppose you are to perform point FFT of Explore how W, T, and
vary as a function of Discuss what leeway is afforded by increasing N.

(c) For the value of W in part a, identify the values of the parameters T, and for

(d) Find the autocorrelation by applying the FFT to Try the options
identified in part c and comment on the accuracy of the results by comparing them
to the exact value of 

10.82. Use the FFT to calculate and plot for the following discrete-time processes:
(a) for and 
(b)
(c) where is a uniformly distributed in (0, 2 ] and .

10.83. Use the FFT to calculate and plot for the following discrete-time processes:
(a) for and 0 elsewhere, where 
(b) for

10.84. Use the FFT to find the output power spectral density in the following systems:
(a) Input with for for 
(b) Input where is a uniformly distributed random variable 

and for 
(c) Input with as in Problem 10.14 with N = 3 and for 

10.85. (a) Show that

(b) Use approximations to express the above as a DFT relating N points in the time do-
main to N points in the frequency domain.

(c) Suppose we meet the requirement by letting Compare
this to the approach leading to Eq. (10.142).

10.86. (a) Generate a sequence of 1024 zero-mean unit-variance Gaussian random variables
and pass it through a system with impulse response for 

(b) Estimate the autocovariance of the output process of the digital filter and compare
it to the theoretical autocovariance.

(c) What is the pdf of the continuous-time process that results if the output of the digi-
tal filter is fed into an interpolator?

10.87. (a) Use the covariance matrix factorization approach to generate a sequence of 1024
Gaussian samples with autocovariance 

(b) Estimate the autocovariance of the observed sequence and compare to the theoret-
ical result.

Problems Requiring Cumulative Knowledge

10.88. Does the pulse amplitude modulation signal in Example 9.38 have a power spectral den-
sity? Explain why or why not. If the answer is yes, find the power spectral density.

10.89. Compare the operation and performance of the Wiener and Kalman filters for the signals
discussed in Example 10.26.

h1t2 = e-2 ƒt ƒ.

n Ú 0.hn = e-2n

t0 = f0 = 1>2N .t0f0 = 1>N

RX1t2 = 2Reb Lq

0
SX1f2e-j2pft df r .

ƒf ƒ 6 1/2.H1f2 = 1RX(k)Xn

ƒf ƒ 6 1/2.H1f2 = j2pf
®Xn = cos12pf0n + ®2,

ƒf ƒ 6 1/4.H1f2 = 1a = 0.25,RX1k2 = 4a ƒk ƒ,Xn

ƒf ƒ 6 1/2.SX1f2 = 1/2 + 1/2 cos 2pf
fc = 1/8, 1/4, 3/8.ƒf ƒ 6 fcSX1f2 = 1

RX1k2
f0 = 1000p®Xn = cos12pf0n + ®2,

RX1k2 = 411>22 ƒk ƒ + 1611>42 ƒk ƒ..
a = 0.75.a = 0.25RX1k2 = 4a ƒk ƒ,

SX1f2
RX1t2.

SX1f2.5RX1kt026
N = 128, 256, 512, 1024.

t0f0 ,
f0 .

t0SX1f2.N = 2M
b = 1W0 = 1000
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10.90. (a) Find the power spectral density of the ARMA process in Example 10.15 by finding
the transfer function of the associated linear system.

(b) For the ARMA process find the cross-power spectral density from and
then the power spectral density from 

10.91. Let and be jointly WSS and jointly Gaussian random processes that are input
into two linear time-invariant systems as shown below:

(a) Find the cross-correlation function of and Find the corresponding cross-
power spectral density.

(b) Show that and are jointly WSS and jointly Gaussian random processes.
(c) Suppose that the transfer functions of the above systems are nonoverlapping, that is,

Show that and are independent random processes.
(d) Now suppose that and are nonstationary jointly Gaussian random

processes. Which of the above results still hold?
10.92. Consider the communication system in Example 9.38 where the transmitted signal X(t)

consists of a sequence of pulses that convey binary information. Suppose that the pulses
p(t) are given by the impulse response of the ideal lowpass filter in Figure 10.6.The signal
that arrives at the receiver is which is to be sampled and processed
digitally.
(a) At what rate should Y(t) be sampled?
(b) How should the bit carried by each pulse be recovered based on the samples Y(nT)?
(c) What is the probability of error in this system?

Y1t2 = X1t2 + N1t2

X21t2X11t2
Y21t2Y11t2ƒH11f2 ƒ ƒH21f2 ƒ = 0.

Y21t2Y11t2
Y21t2.Y11t2

X21t2: � h21t2 �: Y21t2
X11t2: � h11t2 �: Y11t2

X21t2X11t2
E3YnYm4.

E3YnXm4,



In general, the random variables within the family defining a stochastic process are not
independent, and in fact can be statistically dependent in very complex ways. In this
chapter we introduce the class of Markov random processes that have a simple form of
dependence and that are quite useful in modeling many problems found in practice.
We concentrate on integer-valued Markov processes, which are called Markov chains.

• Section 11.1 introduces Markov processes and the special case of Markov chains.
• Section 11.2 considers discrete-time Markov chains and examines the behavior of

their state probabilities over time.
• Section 11.3 discusses structural properties of discrete-time Markov chains that

determine their long-term behavior and limiting state probabilities.
• Section 11.4 introduces continuous-time Markov chains and considers the tran-

sient as well as long-term behavior of their state probabilities.
• Section 11.5 considers time-reversed Markov chains and develops interesting

properties of reversible Markov chains that look the same going forwards and
backwards in time.

• Finally, Section 11.6 introduces methods for simulating discrete-time and contin-
uous-time Markov chains.

11.1 MARKOV PROCESSES

A random process X(t) is a Markov process if the future of the process given the pre-
sent is independent of the past, that is, if for arbitrary times 

(11.1)

if X(t) is discrete-valued, and

(11.2a)= P3a 6 X1tk+12 … b ƒX1tk2 = xk4
P3a 6 X1tk+12 … b ƒX1tk2 = xk , Á ,X1t12 = x14

= P3X1tk+12 = xk+1 ƒX1tk2 = xk4
P3X1tk+12 = xk+1 ƒX1tk2 = xk , Á ,X1t12 = x14

t1 6 t2 6 Á 6 tk 6 tk+1 ,
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x1
x2

xk

xk�1

xk
1

X(t1) X(t2) X(tk)X(tk�1) X(tk
1)

FIGURE 11.1
Markov property: Given is independent of samples prior to tk.X1tk2, X1tk�12

if X(t) is continuous-valued. If the samples of X(t) are jointly continuous, then Eq. (11.2a)
is equivalent to

(11.2b)

We refer to Eqs. (11.1) and (11.2) as the Markov property. In the above expression is
the “present,” is the “future,” and is the “past,” as shown in Fig. 11.1.
Thus in Markov processes, pmf’s and pdf’s that are conditioned on several time instants
always reduce to a pmf/pdf that is conditioned only on the most recent time instant. For
this reason we refer to the value of X(t) at time t as the state of the process at time t.

Example 11.1 Sum Process

Consider the sum process discussed in Section 9.3:

where the are an iid sequence of random variables and where is a Markov
process since

The binomial counting process and the random walk processes introduced in Section 9.3
are sum processes and therefore Markov processes.

Example 11.2 Moving Average

Consider the moving average of a Bernoulli sequence:

where the are an independent Bernoulli sequence with We now show that is not a
Markov process.

Ynp = 1/2.Xi

Yn =
1
2
1Xn + Xn-12,

= P3Sn+1 = sn+1 ƒ Sn = sn4.
P3Sn+1 = sn+1 ƒ Sn = sn , Á , S1 = s14 = P3Xn+1 = sn+1 - sn4

S0 = 0. SnXi’s

Sn = X1 + X2 + Á + Xn = Sn-1 + Xn ,

t1 , Á , tk-1tk+1

tk

fX1tk + 121xk+1 ƒX1tk2 = xk , Á ,X1t12 = x12 = fX1tk + 121xk+1 ƒX1tk2 = xk2.
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The pmf of is

and

Now consider the following conditional probability for two consecutive values of 

Now suppose we have additional knowledge about the past:

since no sequence of leads to the sequence 1, 1/2, 1. Thus

and the process is not Markov.

Example 11.3 Poisson Process

The Poisson process is a continuous-time Markov process since

Example 11.4 Random Telegraph

The random telegraph signal of Example 9.24 is a continuous-time Markov process since

= P3X1tk+12 = a ƒX1tk2 = b4.
- tk seconds if a = b1a Z b24

= P3even 1odd2 number of jumps in tk+1

P3X1tk+12 = a ƒX1tk2 = b, Á ,X1t12 = x14

= P3N1tk+12 = j ƒ N1tk2 = i4.
= P3j - i events in tk+1 - tk seconds4

P3N1tk+12 = j ƒ N1tk2 = i,N1tk-12 = xk-1 , Á ,N1t12 = x14

P cYn = 1 |Yn-1 =
1
2

, Yn-2 = 1 d Z P cYn = 1 ƒ Yn-1 =
1
2
d ,

Xn’s

P cYn = 1 ƒ Yn-1 =
1
2

, Yn-2 = 1 d =
P3Yn = 1, Yn-1 = 1/2, Yn-2 = 14
P3Yn-1 = 1/2, Yn-2 = 14 = 0,

=
P3Xn = 1,Xn-1 = 1,Xn-2 = 04

1/2
=
11/223

1/2
=

1
4

.

P cYn = 1 |Yn-1 =
1
2
d =
P3Yn = 1, Yn-1 = 1/24
P3Yn-1 = 1/24

Yn:

P3Yn = 14 = P3Xn = 1,Xn-1 = 14 =
1
4

.

P cYn =
1
2
d = P3Xn = 0,Xn-1 = 14 + P3Xn = 1,Xn-1 = 04 =

1
2

,

P3Yn = 04 = P3Xn = 0,Xn-1 = 04 =
1
4

,

Yn
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1See Cox and Miller [6] for a discussion of continuous-valued Markov processes.

Example 11.5 Wiener Process

The Wiener process, from Section 9.5, is a Markov process. Since it satisfies the independent
increments property (Eq. 9.52), we have that:

The Wiener process is Gaussian and so it provides an example of a Gaussian Markov process.

An integer-valued Markov random process is called a Markov chain.1 In the remain-
der of this chapter we concentrate on Markov chains.

If X(t) is a Markov chain, then the joint pmf for three arbitrary time instants is

where we have used the definition of conditional probability and the Markov property.
In general, the joint pmf for arbitrary time instants is

(11.3)

Thus the joint pmf of X(t) at arbitrary time instants is given by the product of the pmf of
the initial time instant and the probabilities for the subsequent state transitions. Clearly,
the state transition probabilities determine the statistical behavior of a Markov chain.

11.2 DISCRETE-TIME MARKOV CHAINS

Let be a discrete-time integer-valued Markov chain that starts at with pmf

(11.4)pj102 ! P3X0 = j4 j = 0, 1, 2, Á .

n = 0Xn

= bqk
j=1
P3X1tj+12 = xj+1 |X1tj2 = xj4 rP3X1t12 = x14

P3X1tk2 = xk |X1tk-12 = xk-14Á P3X1t12 = x14
= P3X1tk+12 = xk+1 |X1tk2 = xk4

P3X1tk+12 = xk+1 ,X1tk2 = xk , Á ,X1t12 = x14
k + 1

= P3X1t32 = x3 |X1t22 = x24P3X1t22 = x2 |X1t12 = x14P3X1t12 = x14,
= P3X1t32 = x3 |X1t22 = x24P3X1t22 = x2 ,X1t12 = x14
= P3X1t32 = x3 |X1t22 = x2 ,X1t12 = x14P3X1t22 = x2 ,X1t12 = x14

P3X1t32 = x3 ,X1t22 = x2 ,X1t12 = x14

=

expb -1
2
B 1xk+1 - xk22
a1tk+1 - tk2 R r

212pa21tk+1 - tk2
.

fX1tk + 121xk+1 ƒX1tk2 = xk , Á ,X1t12 = x12 = fX1tk + 1- tk21xk+1 - xk2
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We will assume that takes on values from a countable set of integers, usually
We say that the Markov chain is finite state if takes on values from a

finite set.
From Eq. (11.3), the joint pmf for the first values of the process is

(11.5)

Thus the joint pmf for a particular sequence is simply the product of the probability for
the initial state and the probabilities for the subsequent one-step state transitions.

We will assume that the one-step state transition probabilities are fixed and do
not change with time, that is,

(11.6)

is said to have homogeneous transition probabilities. The joint pmf for 
is then given by

(11.7)

Thus is completely specified by the initial pmf and the matrix of one-step tran-
sition probabilities P :

(11.8)

We will call P the transition probability matrix. Note that each row of P must add to
one since

(11.9)

If the Markov chain is finite state, then the matrix P will be an nonnegative
square with rows that add up to 1.

Example 11.6 Two-State Markov Chain for Speech Activity

A Markov model for packet speech assumes that if the nth packet contains silence, then the
probability of silence in the next packet is and the probability of speech activity is Sim-
ilarly, if the nth packet contains speech activity, then the probability of speech activity in the next
packet is and the probability of silence is 

Let be the indicator function for speech activity in a packet at time n, then is a two-
state Markov chain with the state transition diagram shown in Fig. 11.2(a), and transition proba-
bility matrix

(11.10)P = B1 - a a

b 1 - b
R .

XnXn

b.1 - b

a.1 - a

n * n

1 = a
j
P3Xn+1 = j ƒXn = i4 = a

j
pij .

P = Ep00 p01 p02
Á

p10 p11 p12
Á

. . .
pi0 pi1 Á
. . Á

U .

pi102Xn

P3Xn = in , Á ,X0 = i04 = pin - 1,in Á pi0,i1pi0102.
Xn , Á ,X0Xn

P3Xn+1 = j |Xn = i4 = pij for all n.

= P3Xn = in |Xn-1 = in-14Á P3X1 = i1 |X0 = i04P3X0 = i04.
P3Xn = in , Á ,X0 = i04

n + 1

Xn50, 1, 2, Á 6.
Xn
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1 � a 1 � b

1 � p1 � p 1 � p 1 � p

1 � p
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1 � p 1 � p
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 1 

FIGURE 11.2
(a) State transition diagram for two-state Markov chain. (b) State transition diagram for Markov chain for
light bulb inventory. (c) State transition diagram for binomial counting process.
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FIGURE 11.3
Trellis diagrams for Markov chain examples.
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The sample functions of can be viewed as traversing the trellis diagram in Fig. 11.3(a) which
shows the possible values of the process over time. At any give time, the process occupies the
“state” that corresponds to its value. The sample function is realized as the process steps from
one state at a given time instant to a state in the next time instant.The transitions are determined
according to the transition probability matrix.

Example 11.7

On day 0 a house has two new light bulbs in reserve. The probability that the house will need a
single new light bulb during day n is p, and the probability that it will not need any is 
Let be the number of new light bulbs left in the house at the end of day n. is a Markov chain
with state transition diagram shown in Fig. 11.2(b), and transition probability matrix

The trellis diagram for this process in Fig. 11.3(b) shows that, unless the transition proba-
bilities bias the process towards the “trapping” state Thus the sample functions of are
nonincreasing functions of n.

Example 11.8 Binomial Counting Process

Let be the binomial counting process introduced in Example 9.15. In one step, can either
stay the same or increase by one. The state transition diagram is shown in Fig. 11.2(c), and the
transition probability matrix is given by

The trellis diagram for binomial process in Fig. 11.3(c) shows that, unless the transition
probabilities bias the process towards steady growth over time. The sample functions of are
nondecreasing functions of n.

11.2.1 The n-Step Transition Probabilities

To evaluate the joint pmf for arbitrary time instants (see Eq. 11.3), we need to know
the transition probabilities for an arbitrary number of steps. Let be
the matrix of n-step transition probabilities, where

(11.11)

Note that for all and since
the transition probabilities do not depend on time.

k Ú 0,n Ú 0P3Xn+k = j |Xk = i4 = P3Xn = j |X0 = i4
pij1n2 = P3Xn+k = j ƒXk = i4 n Ú 0, i, j Ú 0.

P1n2 = 5p ij1n26

Sn

q = 1,

P = D1 - p p 0 0 Á
0 1 - p p 0 Á
0 0 1 - p p Á
. . Á Á

T .

SnSn

YnYn = 0.
q = 1,

P = C 1 0 0
p q 0
0 p q

S .

YnYn

q = 1 - p.

Xn
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First, consider the two-step transition probabilities.The probability of going from
state i at passing through state k at and ending at state j at is

Note that and are components of P, the one-step transition probability
matrix. We obtain the probability of going from i at to j at by sum-
ming over all possible intermediate states k:

(11.12a)

Equation (11.12a) states that the ij entry of P(2) is obtained by multiplying the ith row
of P(1) by the jth column of P(1). In other words, P(2) is obtained by multiplying the
one-step transition probability matrices:

(11.12b)

Now consider the probability of going from state i at passing through state
k at and ending at state j at time Following the same procedure as
above we obtain the Chapman–Kolmogorov equations:

(11.13a)

Therefore the matrix of step transition probabilities 
is obtained by the following matrix multiplication:

(11.13b)

It is easy to show by an induction argument that this implies that:

(11.14)

When the Markov chain has finite state, we can use computer programs to calculate
the powers of P numerically.

11.2.2 The State Probabilities

Now consider the state probabilities at time n. Let denote the row vec-
tor of state probabilities at time n. The probability is related to by

(11.15a)= a
i
pijpi1n - 12.

pj1n2 = a
i
P3Xn = j ƒXn-1 = i4P3Xn-1 = i4

p1n - 12pj1n2
p1n2 = 5pj1n26

P1n2 = Pn.

P1n + m2 = P1n2P1m2.
P1n + m2 = 5pij1n + m26n + m

pij1m + n2 = a
k
pik1m2pkj1n2 for all n,m Ú 0 all i, j.

t = m + n.t = m,
t = 0,

P122 = P112P112 = P2.

pij122 = a
k
pik112pkj112 for all i, j.

t = 2,t = 0pij122,
pkj112pik112

= pik112pkj112.
= P3X2 = j |X1 = k4P3X1 = k |X0 = i4
=
P3X2 = j |X1 = k4P3X1 = k |X0 = i4P3X0 = i4

P3X0 = i4

P3X2 = j,X1 = k |X0 = i4 =
P3X2 = j,X1 = k,X0 = i4

P3X0 = i4

t = 2t = 1,t = 0,
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Equation (11.15a) states that p(n) is obtained by multiplying the row vector 
by the matrix P:

(11.15b)

Similarly, is related to p(0) by

(11.16a)

and in matrix notation

(11.16b)

Thus the state pmf at time n is obtained by multiplying the initial state pmf by

Example 11.9

To find the n-step transition probability in Example 11.7, note that

The other terms in P(n) are found in similar fashion, thus

Note that if then, as 

As a result, the state pmf approaches

where is the row vector of initial state probabilities and 
since we start with two light bulbs. As time progresses, In words,

the above equation states that we eventually run out of light bulbs!
p01n2: 1.p21022 = 10, 0, 12

1p0102, p1102,1p0102, p1102, p21022

: 10, 0, 12C1 0 0
1 0 0
1 0 0

S = 11, 0, 02,

= 10, 0, 12P1n2
p1n2 = 1p0102, p1102, p21022P1n2

p1n2 = 1p01n2, p11n2, p21n22

P1n2: C1 0 0
1 0 0
1 0 0

S .

n: q ,q 6 1

P1n2 = C 1 0 0
1 - qn qn 0

1 - qn - npqn-1 npqn-1 qn
S .

p201n2 = 1 - p221n2 - p211n2.
p211n2 = P31 light bulb needed in n days4 = npqn-1

p221n2 = P3no new light bulbs needed in n days4 = qn

Pn.

p1n2 = p102P1n2 = p102Pn n = 1, 2, Á .

= a
i
pij1n2pi102,

pj1n2 = a
i
P3Xn = j |X0 = i4P3X0 = i4

pj1n2
p1n2 = p1n - 12P.

p1n - 12
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Example 11.10

Let and in Example 11.6. Find P(n) for and 16.

and similarly

There is a clear trend here: It appears that as 

We can use matrix diagonalization methods from linear algebra to find [Anton, p. 246].
First we find that the eigenvalues of P are 1 and from:

The corresponding eigenvectors are:

so the matrix with eigenvectors as columns is:

We then have that:

The payoff is in the calculation of 

= D b

a + b
a

a + b
b

a + b
a

a + b

T +
11 - a - b2n
a + b

B a a

-b b
R .

=
1

a + b
B1 a

1 -b
R B1 0

0 11 - a - b2nR Bb a

1 -1
R= E¶¶ Á ¶E-1 = E¶nE-1

Pn = 1E¶E-121E¶E-12Á 1E¶E-12 = E¶1E-1E2¶ Á ¶1E-1E2¶E-1

Pn:

P = E¶E-1 =
1

a + b
B1 a

1 -b
R B1 0

0 1 - a - b
R Bb a

1 -1
R .

E = 3e1 e24 = B1 a

1 -b
R .

e1 = B1
1
R  and e2 = B a

-b
R

= 11 - l211 - a - b - l2.
 0 = det1P - lI2 = ` 1 - a - l a

b 1 - b - l ` = 11 - a - l211 - b - l2 - ab

1 - a - b
Pn

Pn: B2/3 1/3
2/3 1/3

R .

n: q ,

P8 = B .6859 .3141
.6282 .3718

R P16 = B .6678 .3322
.6644 .3356

R .

P4 = B .83 .17
.34 .66

R2

= B .7467 .2533
.5066 .4934

RP2 = B .9 .1
.2 .8

R2

= B .83 .17
.34 .66

Rn = 2, 4, 8,b = 1/5a = 1/10
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FIGURE 11.4
State-transition diagrams for PageRank examples.

As long as the second term goes to zero as and so

Note that all the rows are the same in the limiting matrix.

Example 11.11

Let the initial state probabilities in Example 11.10 be

Find the state probabilities as 
The state probability vector at time n is:

As we have that

We see that the state probabilities do not depend on the initial state probabilities as 

Example 11.12 Google PageRank

A Web surfer browses pages in a five-page Web universe shown in Fig. 11.4(a). The surfer selects
the next page to view by selecting with equal probability from the pages pointed to by the cur-
rent page. If a page has no outgoing link (e.g., page 2), then the surfer selects any of the pages in
the universe with equal probability. Find the probability that the surfer views page i.

n: q .

p1n2: 1p0102, 1 - p01022D2
3

1
3

2
3

1
3

T = B 2
3

,
1
3
R .

n: q ,

= 1p0102, 1 - p0102D b

a + b
a

a + b
b

a + b
a

a + b

T +
11 - a - b2n
a + b

1p0102, 1 - p0102B a a

-b b
R .

p1n2 = 1p0102, 1 - p0102Pn

n: q .

P3X0 = 04 = p0102 and P3X0 = 14 = 1 - p0102.

Pn: D b

a + b
a

a + b
b

a + b
a

a + b

T = D2
3

1
3

2
3

1
3

T .

n: qƒ1 - a - b ƒ 6 1,
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The viewing behavior can be modeled by a Markov chain where the state represents the
page currently viewed. If the current page points to k pages, then the next page is selected from
that group with probability 1/k. If the current page does not point to any pages, then the next page
can be any of the 5 pages with probability 1/5. The transition probability for the Markov chain is:

We can obtain the limiting state probabilities numerically by letting Octave calculate a high
power of P, say We then obtain a matrix in which all the rows are equal:

In the next subsection we will show an easier way of finding the steady state pmf.
The random surfer model forms the basis for the PageRank algorithm that was introduced

by Google to rank the importance of a page in the Web.The rank of a page is given by the steady
state probability of the page in the Markov chain model. The size of the state space in this
Markov chain is in the billions of pages!

11.2.3 Steady State Probabilities

Example 11.11 is typical of Markov chains that settle into stationary behavior after the
process has been running for a long time. As the n-step transition probability
matrix approaches a matrix in which all the rows are equal to the same pmf, that is,

(11.17a)

We can express the above in matrix notation as:

(11.17b)

where 1 is a column vector of all 1’s, that is,
From Eq. (11.16a), the convergence of implies the convergence of the state pmf’s:

(11.18)

We say that the system reaches “equilibrium” or “steady state.”
We can find the pmf in Eq. (11.18) (when it exists) by noting that as

and so Eq. (11.15) approaches

(11.19a)

which in matrix notation is

(11.19b)P = PP.

pj = a
i
pijpi ,

pi1n - 12: pi ,n: q , pj1n2: pj
P ! 5pj6

pj1n2 = a
i
pij1n2pi102: a

i
pjpi102 = pj .

Pn
1T = 11, 1, Á 2 and P = 1p0 , p1 , Á 2.

Pn: 1P

pij1n2: pj for all i.

n: q ,

p1n2: 10.12195, 0.18293, 0.25610, 0.12195, 0.317072.
5 * 5P50.

P = 3pij4 = E 0 1/2 1/2 0 0
1/5 1/5 1/5 1/5 1/5
1/3 1/3 0 1/3 0
0 0 0 0 1
0 0 1/2 0 1/2

U .
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Equation (11.19b) is underdetermined and requires the normalization equation:

(11.19c)

We refer to as the stationary state pmf of the Markov chain. If we start the
Markov chain with initial state pmf then by Eqs. (11.16b) and (11.19b) we
have that the state probability vector

The resulting process is a stationary random process as defined in Section 9.6, since the
probability of the sequence of states starting at time k is, by Eq. (11.5),

which is independent of the initial time k.Thus the probabilities are independent of the
choice of time origin, and the process is stationary.

Example 11.13

Find the stationary state pmf in Example 11.6.
Equation (11.19a) gives

which imply that Thus

In this section we have shown the typical behavior of many Markov chains where
the n-step transition probabilities and the state probabilities converge to constants that
are independent of the initial conditions.These constant probabilities are found by solving
the set of linear equations (11.19). It is worth noting, however, that not all Markov chains
settle into stationary behavior where the process “forgets” the initial conditions. For ex-
ample, the binomial counting process (Example 9.15) with grows steadily so that
for any fixed as The following example shows two atypical situations
where the initial conditions determine the behavior for all time.

Example 11.14 Two-State Process with Atypical Behavior

Consider the two-state process with state transition diagram shown in Fig. 11.2(a). In Example
11.10 we found that the two-state process settles into steady state behavior so long as

Let’s see what happens when this condition is not satisfied.ƒ1 - a - b ƒ 6 1.

n:q.j, pj1n2: 0
p 7 0

p0 =
b

a + b
=

2
3

p1 =
a

a + b
=

1
3

.

ap0 = bp1 = b11 - p02 since p0 + p1 = 1.

p1 = ap0 + 11 - b2p1 ,

p0 = 11 - a2p0 + bp1

= pin - 1,in Á pi0,i1pi0 ,
= P3Xn+k = in ƒXn+k-1 = in-14Á P3X1+k = i1 ƒXk = i04pi0
= P3Xn+k = in ƒXn+k-1 = in-14Á P3X1+k = i1 ƒXk = i04P3Xk = i04

P3Xn+k = in , Á ,Xk = i04
i0 , i1 , Á , in

p1n2 = PPn = p for all n.

p102 = P,
P

a
i
pi = 1.
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Consider first the case where and suppose that we start the process in state 0,
that is, The state probabilities at time n are:

The process in this case alternates between state 0 at even time instants and state 1 at odd time
instants. does not converge, and instead alternates assuming the values P and The
state probability vector alternates between the values (1, 0) and (0, 1) so it does not exhibit
convergence.

Now consider the case and suppose again that we start the process in state 0,
that is, The state probabilities at time n are:

In this case, the process remains fixed at state 0, which was selected at the initial time instant.
Note that the process would have remained fixed at state 1 if state 1 had been selected initially.
The state probability vector remains fixed at (1, 0) if the initial state was 0 or (0, 1) if the initial
state was 1. In this case, both and p(n) converge immediately but to values that are deter-
mined by the initial condition.

The previous example demonstrates that we need to identify the conditions
under which the state probability of Markov chains will converge to a stationary pmf
that is found from Eq. (11.19). This is the topic of the next section.

11.3 CLASSES OF STATES, RECURRENCE PROPERTIES, AND LIMITING PROBABILITIES

In this section we take a closer look at the relation between the behavior of a Markov
chain and its transition probability matrix. First we see that the states of a discrete-time
Markov chain can be divided into one or more separate classes and that these classes
can be of several types.We then show that the long-term behavior of a Markov chain is
related to the types of its state classes. Figure 11.5 summarizes the types of classes to
which a state can belong and identifies the associated long-term behavior.

11.3.1 Classes of States

We say that state j is accessible from state i if for some that is, if
there is a sequence of transitions from i to j that has nonzero probability. We say that
states i and j communicate if they are accessible to each other; we then write 
Note that a state communicates with itself since 

If state i communicates with state j and state j communicates with state k, that is,
and then state i communicates with k. To see this, note that implies

that there is a nonzero probability path from i to j and implies that there is a sub-
sequent nonzero probability path from j to k. The combined paths form a nonzero
probability path from i to k. A nonzero probability path in the reverse direction exists
for the same reasons.

j4 k
i4 jj4 k,i4 j

pii102 = 1.
i4 j.

n Ú 0, pij1n2 7 0,

Pn

p1n2 = 11, 02B1 0
0 1

Rn = 11, 02 for all n.

p0102 = 1.
a = b = 0,

P2 = I.Pn

p1n2 = 1p0102, 1 - p0102Pn = 11, 02B0 1
1 0

Rn.p0102 = 1.
a = b = 1,
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We say that two states belong to the same class if they communicate with each
other. Note that two different classes of states must be disjoint since having a state in
common would imply that the states from both classes communicate with each other.
Thus the states of a Markov chain consist of one or more disjoint communication classes.
A Markov chain that consists of a single class is said to be irreducible.

Example 11.15

Figure 11.6(a) shows the state transition diagram for a Markov chain with three classes:
and

Example 11.16

Figure 11.6(b) shows the state transition diagram for a Markov chain with one class:
Thus the chain is irreducible.

Example 11.17 Binomial Counting Process

Figure 11.6(c) shows the state transition diagram for a binomial counting process. It can be seen
that the classes are: 506, 516, 526, Á .

50, 1, 2, 36.

536.506, 51, 26,

State
j

Transient
pj � 0

Recurrent

Positive
recurrent
pj � 0

Null
recurrent
pj � 0

Aperiodic
lim pjj(n) � pj

Periodic
lim pjj(nd) � dpj

�n�n

FIGURE 11.5
Classification of states and associated long-
term behavior. The proportion of time spent
in state j is denoted by pj .
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Example 11.18 Random Walk

Figure 11.6(d) shows the state transition diagram for the random walk process. If then the
process has only one class, so it is irreducible.

11.3.2 Recurrence Properties

Suppose we start a Markov chain in state i. State i is said to be recurrent if the process
returns to the state with probability one, that is,

(11.20a)fi = P3ever returning to state i4 = 1.

50, ;1, ;2, Á 6,
p 7 0,

1 � p 1 � p 1 � p 1 � p 1 � p

1 � p1 � p1 � p1 � p

p

p p p p

p p p

1
1

1

2 3 1

(a)

(b)

(c)

(d)

0

0

0

1

2 3

2 j j 
 1

1

1

1

0�2 2�1

1
2

1
4

1
4

4
5

1
5

1
2 1

2

1
10

9
10

FIGURE 11.6
(a) A three-class Markov chain. (b) A periodic Markov chain. (c) A binomial counting
process. (d) The random walk process.
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State i is said to be transient if

(11.20b)

If we start the Markov chain in a recurrent state i, then the state reoccurs an infi-
nite number of times. If we start the Markov chain in a transient state, the state does
not reoccur after some finite number of returns. Each reoccurrence of the state can be
viewed as a failure in a Bernoulli trial. The probability of failure is Thus the number
of returns to state i terminating with a success (no return) is a geometric random vari-
able with mean If then the probability of an infinite number of suc-
cesses is zero. Therefore a transient state reoccurs only a finite number of times.

Let denote the Markov chain with initial state i, Let be the in-
dicator function for state i, that is, is equal to 1 if and equal to 0 otherwise.
The expected number of returns to state i is then

(11.21)

since by Example 4.16

A state is recurrent if and only if it reoccurs an infinite number of times, thus from
Eq. (11.21) state i is recurrent if and only if

(11.22)

Similarly, state i is transient if and only if

(11.23)

Example 11.19

In Example 11.15 (Fig. 11.6a), state 0 is transient since so

On the other hand, if the process were started in state 1, we would have the two-state process dis-
cussed in Example 11.10. For such a process we found that

so that

Therefore state 1 is recurrent.

a
q

n=1
p111n2 = a

q

n=1
¢2

3
+
17/102n

3
≤ = q .

p111n2 =
b + a11 - a - b2n

a + b
=

1/2 + 1/417/102n
3/4

a
q

n=1
p001n2 =

1
2

+ a1
2
b2

+ a1
2
b3

+ Á = 1 6 q .

p001n2 = 11/22n,

a
q

n=1
pii1n2 6 q .

a
q

n=1
pii1n2 = q .

E3Ii1Xn2 ƒX0 = i4 = P3Xn = i ƒX0 = i4 = pii1n2.

EBaq
n=1
Ii1Xn2 ƒX0 = iR = a

q

n=1
E3Ii1Xn2 ƒX0 = i4 = a

q

n=1
pii1n2

X = iIi1X2
Ii1X2X0 = i.Xn

fi 6 1,11 - fi2-1.

fi .

fi 6 1.
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Example 11.20 Binomial Counting Process

In the binomial counting process all the states are transient since so that for

Example 11.21 Random Walk

Consider state zero in the random walk process in Fig. 11.6(d). The state reoccurs in 2n steps if
and only if and occur during the 2n steps. This occurs with probability

Stirling’s formula for n! can be used to show that

where when 
Thus Eq. (11.21) for state 0 is

If then and the series diverges. It then follows that state 0 is recurrent.
If then and the above series converges. This implies that state 0 is
transient. Thus when the random walk process maintains a precarious balance about 0.
As soon as a positive or negative drift is introduced and the process grows towards 

Recurrence and transience are class properties: If a state i is recurrent, then all
states in its class are recurrent; if a state is transient, then all the states in its class are
transient. If state i is recurrent, then all states in its class will be visited eventually as the
process forever returns to state i over and over again. Indeed all other states in its class
will appear an infinite number of times.

To show the recurrence class property, let i be a recurrent state and let j be an-
other state in the class, then and there are probabilities and

that corresponds to nonzero probability paths that lead from j to i in m
steps, and back from i to j in l steps. We can identify many nonzero probability paths
that go from j to j by splicing the above two paths to recurrent paths for state i: go from
j to i using the above path; then from i to i using an n-step recurrent path; then back
from i to j using the above path. The probabilities for these paths provide a lower
bound to the recurrence probabilities for j:

a
k
pjj1k2 7 a

n
pji1m2pii1n2pij1l2 = pji1m2pij1l2a

n
pii1n2 = q ,

pij1l2 7 0
pji1m2 7 0i4 j,

;q.p Z 1/2,
p = 1/2,

14p11 - p22 6 1,p Z 1/2,
4p11 - p2 = 1p = 1/2,

a
q

n=1
p0012n2 ' a

q

n=1

14p11 - p22n
1pn .

limn:qan>bn = 1.an ' bn

¢2n
n
≤pn11 - p2n ' 14p11 - p22n

1pn ,

p0012n2 = ¢2n
n
≤pn11 - p2n.

n - 1sn +1s

a
q

n=1
pii1n2 = a

q

n=1
11 - p2n =

1 - p
p

6 q .

p 7 0,
pii1n2 = 11 - p2n
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since state i is recurrent. This implies that state j is also recurrent. Now suppose that
state i is transient, and let j be another state in its class. State j cannot be recurrent, for
this would imply that i is recurrent, in contradiction to our assumption. Therefore j
must be transient.

If a Markov chain is irreducible then either all its states are transient or all its states
are recurrent. If the Markov chain has a finite state space, it is impossible for all of its
states to be transient. At least some of the states must occur an infinite number of
times as time progresses, implying that all states are recurrent. Therefore, the states of a
finite-state, irreducible Markov chain are all recurrent. If the state space is countably in-
finite, then all the states can be transient. The random walk with provides an
example of such a Markov chain.

The structure of the state transition diagram and the associated nonzero transi-
tion probabilities can impose periodicity in the realizations of a discrete-time
Markov chain. We say that state i has period d if it can only reoccur at times that are
multiples of d, that is, whenever n is not a multiple of d, where d is the
largest integer with this property. We say that state i is aperiodic if it has period

Periodicity is a class property, that is, all states in a class have the same period. An
irreducible Markov chain is said to be aperiodic if the states in its single class have pe-
riod one. An irreducible Markov chain is said to be periodic if its states have period

To show that periodicity is a class property, suppose that state i has period d
and let j be another state in the same class. Since there are probabilities

and that corresponds to paths that lead from j to i in m steps,
and back from i to j in l steps. We can create a path from j to j by splicing the m-step
path for j to i with the l-step path from i to j; this path has length and proba-
bility The length must be divisible by the period of state
j. Now create multiple paths from j to j by attaching the above two paths to nonzero
probability paths that go from i to i in n steps. These paths have length 
and probability All these paths go from j to j so
must be divisible by We already showed that is divisible by so we have
that n must also be divisible by But n can be the length of any path that goes
from i to i, and so d, the period of state i, is the largest value that divides all such n.
This implies that must divide d. By reversing the roles of state i and state j, the
same series of arguments imply that d must divide Thus and state i and
state j have the same period.

Example 11.22 Two-State Process with Atypical Behavior

Characterize the two “atypical” Markov chains in Example 11.14.
In the case where Fig. 11.2(a) shows that we have a single communication

class with period This explains why the process alternates between state 0 at even time in-
stants and state 1 at odd time instants

In the case we have two communication classes: and The selection of
the initial state at effectively picks one of the two classes, and the process remains in that
class forever.

t = 0
516.506a = b = 0,

d = 2.
a = b = 1,

d = d¿d¿.
d¿

d¿.
d¿,m + ld¿.
m + n + lpji1m2pii1n2pij1l2 7 0.
m + l + n

d¿,m + lpji1m2pij1l2 7 0.
m + l

pij1l2 7 0pji1m2 7 0
i4 j,

d 7 1.

d = 1.

pii1n2 = 0

p Z 1/2
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(a)

(b)

Infinite State

Irreducible

Multi-Class

Transient

Recurrent

Aperiodic

Periodic

Finite State

Irreducible

Multi-Class

Transients 

1 Irreducible

Recurrent

Multiple
Irreducibles

Aperiodic

Periodic

FIGURE 11.7
Possible structures for Markov chains.

Example 11.23

In Example 11.15 (Fig 11.6a), all the states have the property that for 
Therefore all three classes in the Markov chain have period 1.

Example 11.24

In the Markov chain in Fig 11.6(b), the states 0 and 1 can reoccur at time 2, 4, 6, and states 2
and 3 at times 4, 6, 8, Therefore the Markov chain has period 2.

Example 11.25

In the random walk process in Fig 11.6(d), a state reoccurs when the number of successes 
equals the number of failures This can only happen after an even number of steps. The
process therefore has period 2.

Figure 11.7(a) summarizes the possible structures that can be encountered for
Markov chains. In the case of irreducible finite-state Markov chains, all states in the single
class must be recurrent and the class can either be aperiodic or periodic. If a finite-state

1-1s2.
1+1s2

Á .
Á

n = 1, 2, Á .pii1n2 7 0
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Ti(1) Ti(2) Ti(3) Ti(4)

Xn

i

n
0

FIGURE 11.8
Recurrence times for state i.

Markov chain consists of multiple transient classes and a single irreducible class, then the
chain will eventually settle in the states of the irreducible class. Thus in the long-run the
behavior is the same as that of an irreducible chain.A finite-state Markov chain with mul-
tiple irreducible classes will eventually enter and remain thereafter in one of the irre-
ducible classes. Over the long run, the chain will exhibit the behavior of an irreducible
Markov chain with the given class of states. Thus the case of multi-irreducible classes can
be viewed as a two stage random experiment in which the first stage involves selecting one
of the irreducible classes.

Figure 11.7(b) summarizes the possible structures for Markov chains with infinite
state space.The major difference from the finite case is that an irreducible class can have
all of its states be transient. Consequently when a chain has multiple classes it is now pos-
sible for the chain to enter and remain in a class that is either transient or recurrent.

11.3.3 Limiting Probabilities

If all the states in a Markov chain are transient, then all the state probabilities ap-
proach zero as If a Markov chain has some transient classes and some recur-
rent classes, as in Fig. 11.6(a), then eventually the process enters and remains thereafter
in one of the recurrent classes. Therefore we can concentrate on individual recurrent
classes when studying the limiting probabilities of a chain. For this reason we assume in
this section that we are dealing with an irreducible Markov chain.

Suppose we start a Markov chain in a recurrent state i at time Let
be the times when the process returns to state i, where is

the time that elapses between the and kth returns (see Fig. 11.8).The form
an iid sequence since each return time is independent of previous return times.

The proportion of time spent in state i after k returns to i is

(11.24)proportion of time in state i =
k

Ti112 + Ti122 + Á + Ti1k2 .

Ti1k - 12th Ti1k2Ti112, Ti112 + Ti122, Á
n = 0.

n: q .
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Since the state is recurrent, the process returns to state i an infinite number of times.
Thus the law of large numbers implies that, with probability one, the reciprocal of the
above expression approaches the mean recurrence time so the long-term pro-
portion of time spent in state i approaches

(11.25)

where is the long-term proportion of time spent in state i.
If then we say that state i is positive recurrent. Equation (11.25) then

implies that

If then we say that state i is null recurrent. Equation (11.25) then implies that

It can be shown that positive and null recurrence are class properties.
Positive recurrent, aperiodic states are called ergodic. Once a Markov chain en-

ters an ergodic state, then the process will remain in the state’s class forever. Further-
more the process will visit all states in the class sufficiently frequently that the
long-term proportion of time in a given state will be governed by Eq. (11.25) and ap-
proach a nonzero value. Thus the process will reveal its underlying state probabilities
through time averages. Given our previous discussion on ergodicity in Chapter 9, it is
not surprising that an ergodic Markov chain is defined as an irreducible, aperiodic, pos-
itive recurrent Markov chain.

Example 11.26

The process in Fig. 11.6(b) returns to state 0 in two steps with probability 1/2 and in four steps
with probability 1/2. Therefore the mean recurrence time for state 0 is

Therefore state 0 is positive recurrent and the long-term proportion of time spent in state 0 is

Example 11.27 Random Walk

In Example 11.21 it was shown that the random walk process is recurrent if However,
the mean recurrence time can be shown to be infinite when (Feller, 1968, p. 314). Thus
all the states in the chain are null recurrent.

The in Eq. (11.25) satisfy the equations that define the stationary state pmf:

(11.26a)pj = a
i
piPij for all j

pj’s

p = 1/2
p = 1/2.

p0 =
1
3

.

E3T04 =
1
2
122 +

1
2
142 = 3.

pi = 0 if state i is null recurrent.

E3Ti4 = q ,

pi 7 0 if state i is positive recurrent.

E3Ti4 6 q ,
pi

proportion of time in state i: 1
E3Ti4 = pi ,

E3Ti4
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2A proof to Theorem 1 is given by [Ross, pp. 108–110].

and

(11.26b)

To see this, note that since is the proportion of time spent in state i, then
is the proportion of time in which state j follows i. If we sum over all i, we then obtain
the long-term proportion of time in state 

Example 11.28

The stationary state pmf for the periodic Markov chain in Fig. 11.6(b) is found from Eqs. (11.26a)
and (11.26b):

These equations imply that and Since the probabilities must add to
one, we obtain

Note that was obtained for the mean recurrence time in Example 11.26.

In Section 11.2 we found that for certain Markov chains, the n-step transition ma-
trix approaches a fixed matrix of equal rows as (see Eq. 11.17). We also saw
that the rows of this limiting matrix consisted of a pmf that satisfied Eqs. (11.26a) and
(11.26b). We are now ready to state under what conditions this occurs.

Theorem 12

For an irreducible aperiodic Markov chain exactly one of the following assertions holds:

(i) All states are transient or all states are null recurrent; as for all i and j
and there exists no stationary pmf

(ii) All states are positive recurrent, so

(11.27)

where is the unique stationary pmf solution to Eq. (11.26ab).5pj , j = 1, 2, 3, Á 6
lim
n:q
pij1n2 = pj for all j

n: qpij1n2: 0

n: q

p0 = 1/3

p1 = p0 =
1
3

and p2 = p3 =
1
6

.

p2 = p3 = p0>2.p1 = p0

p3 = p2 .

p2 =
1
2
p1

p1 = p0

p0 =
1
2
p1 + p3

j, pj .

piPijpi

1 = a
i
pi .
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1 � a

1 � a

1 � a 1 � a 1 � a

1 2 3 4 5

a a a a a

FIGURE 11.9
Age of a device.

Theorem 1 states that for ergodic Markov chains, the n-step transition proba-
bilities approach constant values given by the steady state pmf. Note that Eq. (11.27)
can be written in matrix form as shown in Eq. (11.17b). From Eq. (11.18), it then fol-
lows that the state probabilities approach steady state values that are independent of
the initial conditions. These steady state probabilities correspond to the stationary
probabilities obtained by solving Eq. (11.26ab), and thus correspond to the long-
term proportion of time spent in a given state. Theorem 1 also states that if the irre-
ducible Markov chain is transient or null recurrent, then a stationary pmf solution to
Eq. (11.26ab) does not exist. This implies that when we do find a solution, and the
chain is irreducible and aperiodic, then the Markov chain must be positive recurrent
and hence ergodic.

Example 11.29 Age of a Device

Consider a Markov Chain that counts the age of a device in service at the end of each day.At the
end of each day, the device either increases its age by 1 (with probability a) or fails and returns to
the “1” state (with probability ).A failed device is replaced at the beginning of the next day
and the age counting processes is resumed. Determine whether the Markov chain has a station-
ary distribution.

The state transition diagram for the Markov chain is shown in Fig. 11.9. If then
every state i can access any state and consequently any state i can access any state 
In addition every state i can access state 1. This implies that there is a nonzero probability path
between any two states, and so the Markov chain is irreducible. State 1 can reoccur in intervals of
1, 2, 3, 4, and so state 1 has period 1. Therefore all the states have period 1 and the Markov
chain is aperiodic.

The equations for the stationary probabilities are:

By a simple induction argument we can show that:

Therefore the Markov chain is positive recurrent and has this stationary pmf.

pi = 11 - a2ai-1    for i Ú 1.

pi+1 = api for i Ú 1.

p1 = 11 - a2p1 + 11 - a2p2 + Á = 11 - a21p1 + p2 + Á 2 = 1 - a

Á ,

j 7 i.i + 1,
a 7 0,

1 - a
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Example 11.30 Google PageRank Algorithm

In Example 11.12 we showed the basic approach for ranking Web pages according to an associ-
ated Markov chain. The approach included a strategy to deal with the case where users become
trapped in a page with no outgoing links, i.e., page 2 in Fig. 11.4(a). The approach, however, is
not sufficient to ensure that the Markov chain is irreducible and aperiodic. For example, in
Fig. 11.4(b) users can also become trapped in the periodic class This poses a problem for
the rank algorithm which uses the power of the transition probability matrix to obtain the sta-
tionary pmf. To deal with this problem, the PageRank algorithm also assumes that each time a
new page is selected, the procedure in Example 11.12 is used with probability but otherwise
(with probability ) any of all possible Web pages is selected with equal probability. The
value is usually cited as appropriate.The modified ranking method then has a transition
probability matrix that is aperiodic and irreducible and the conditions of Theorem 1 are satisfied.

For the example in Fig. 11.4(b) we have:

The matrix P has a stationary state pmf given by:

See [Langville] for more details on the PageRank algorithm.

For periodic processes, we have the following result.

Theorem 2

For an irreducible, periodic, and positive recurrent Markov chain with period d,

(11.28)

where is the unique nonnegative solution of Eqs. (11.26a) and (11.26b).

As before, represents the proportion of time spent in state j. However, the fact
that state j is constrained to occur at multiples of d steps implies that the probability of
occurrence of the state j is d times greater at the allowable times and zero elsewhere.

pj

pj

lim
n:q
pjj1nd2 = dpj for all j

p1n2 = 10.13175, 0.18772, 0.24642, 0.13173, 0.302392.

= E0.0300 0.4550 0.4550 0.0300 0.0300
0.2000 0.2000 0.2000 0.2000 0.2000
0.3133 0.3133 0.0300 0.3133 0.0300
0.0300 0.0300 0.0300 0.0300 0.8800
0.0300 0.0300 0.4550 0.0300 0.4550

U .

P = 10.852E 0 1/2 1/2 0 0
1/5 1/5 1/5 1/5 1/5
1/3 1/3 0 1/3 0
0 0 0 0 1
0 0 1/2 0 1/2

U + 10.152E1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

U

a = 0.85
1 - a

a,

54, 56.
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Example 11.31

In Examples 11.26 and 11.28 we found that the long-term proportion of time spent in state 0 is
If we start in state 0, then only even states can occur at even time instants.Thus at these

even time instants the probability of state 0 is 2/3 and of state 2 is 1/3. At odd time instants, the
probabilities of states 0 and 2 are zero.

Theorems 1 and 2 only address the most important cases of irreducible, periodic
and aperiodic Markov chains indicated by the checkmarks in Fig. 11.7. The following
example considers a case not covered by Theorems 1 and 2.

Example 11.32 Markov Chain with Multiple Irreducible Classes

Does the Markov chain in Fig. 11.6(a) have a unique stationary pmf?
The equations for the stationary probabilities are:

The first equation implies that which reduces the fourth equation to which im-
poses no constraints on The middle two equations are equivalent and both imply that

The normalization condition requires that Therefore
the equations are underdetermined and there are many solutions with the form:

where
Now let’s approach the problem according to its three classes: and The

first class is transient and the other two classes are recurrent. Suppose the initial state is 3, then
the process remains in that state forever.The stationary pmf for class by itself is (0, 0, 0, 1). If
the initial state is 1 or 2, then the process remains in this class forever; the stationary pmf for this
class in isolation is (0, 2/3, 1/3, 0). Finally if the initial state is 0, then the process will eventually
leave and enter one of the other two classes with equal probability. In the general case, if the ini-
tial state is selected according to the pmf then the class will be
entered with probability and class will be entered with probability

The stationary pmf would then have the form:

If we let we see that this solution has the form we derived before.
For example, suppose the initial pmf was (0, 1/3, 1/6, 1/2), then this pmf satisfies the condi-

tion for a stationary pmf and the repeated multiplication by P will yield the same pmf. In this
sense this multiclass Markov chain has a stationary pmf. Note however that the relative frequen-
cies of the states depend on which irreducible class is actually entered. Thus if we record long-
term average frequencies we will observe either (0, 2/3, 1/3, 0) or (0, 0, 0, 1). The stationary pmf

g/3 = p2

= 10, 2g>3, g>3, 1 - g2.
= g10, 2/3, 1/3, 02 + 11 - g210, 0, 0, 12

E1/2p0102 + p1102 + p2102F10, 2/3, 1/3, 02 + E1/2p0102 + p3102F 10, 0, 0, 12
1/2p0102 + p3102.

5361/2p0102 + p1102 + p2102,
51, 261p0102, p1102, p2102, p31022

536
536.506, 51, 26,

0 … p2 … 1/3.10, 2p2 , p2 , 1 - 3p22
1 = p1 + p2 + p3 = 3p2 + p3 .p1 = 2p2 .

p3 .
p3 = p3 ,p0 = 0,

p3 = 1/4p0 + p3.

p2 = 1/4p0 + 1/10p1 + 4/5p2

p1 = 9/10p1 + 1/5p2

p0 = 1/2p0

p0 = 1/3.
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does not correspond to either of these two pmf’s; instead the stationary pmf gives us the expected
value of the two pmf’s:

where is the probability of entering the two irreducible classes for this choice of initial pmf.

Example 11.32 illustrates the behavior of multiclass finite-state Markov chain. In
these chains the process will eventually enter and remain forever in one of its recurrent
classes. Each recurrent class can be considered as a separate irreducible Markov chain
with its own stationary pmf. The multiclass Markov chain will then have stationary
pmf’s that depend on the stationary pmf’s of its constituent recurrent classes according
to the initial state probabilities. These multiclass Markov chains are not ergodic since
the relative frequencies of the states do not correspond to the stationary pmf.

If a multiclass chain has infinite state space, then the situation discussed above
can occur as a special case: the process initially works its way through transient classes
and eventually settles in one of a number of ergodic classes. However, in general, it is
possible for some or all of the classes to be transient and/or null recurrent. In such case
the process may never settle into stationary behavior.

11.4 CONTINUOUS-TIME MARKOV CHAINS

In Section 11.2 we saw that the transition probability matrix determines the behavior
of a discrete-time Markov chain. In this section we see that the same is true for contin-
uous-time Markov chains.

The joint pmf for arbitrary time instants of a Markov chain is given by
Eq. (11.3):

(11.29)

This result holds regardless of whether the process is discrete-time or continuous-time.
In the continuous-time case, Eq. (11.29) requires that we know the transition probabil-
ities from an arbitrary time s to an arbitrary time 

We assume here that the transition probabilities depend only on the difference
between the two times:

(11.30)

We say that X(t) has homogeneous transition probabilities.

t Ú 0, all s.

P3X1s + t2 = j ƒX1s2 = i4 = P3X1t2 = j ƒX102 = i4 = pij1t2

P3X1s + t2 = j ƒX1s2 = i4 t Ú 0.

s + t:

* P3X1t22 = x2 ƒX1t12 = x14P3X1t12 = x14.
= P3X1tk+12 = xk+1 ƒX1tk2 = xk4Á

P3X1tk+12 = xk+1 ,X1tk2 = xk , Á ,X1t12 = x14

k + 1

1/2

10, 1/3, 1/6, 1/22 = 1/210, 2/3, 1/3, 02 + 1/210, 0, 0, 12
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Let denote the matrix of transition probabilities in an interval of
length t. Since and for we have

(11.31)

where I is the identity matrix.

Example 11.33 Poisson Process

For the Poisson process, the transition probabilities satisfy

Therefore

As t approaches zero, Thus for a small time interval 

where all terms of order or higher have been neglected.Thus the probability of more than one
transition in a very short time interval is negligible. Note that this is consistent with the assump-
tions made in deriving the Poisson process in Section 9.4.

Example 11.34 Random Telegraph

In the random telegraph example, the process X(t) changes with each occurrence of an event
in a Poisson process. From Eqs. (9.40) and (9.41) we see that the transition probabilities are as
follows:

Thus the transition probability matrix is

P1t2 = B1/251 + e-2at6 1/251 - e-2at6
1/251 - e-2at6 1/251 + e-2at6R .

P3X1t2 = a ƒX102 = b4 =
1
2
51 - e-2at6 if a Z b.

P3X1t2 = a ƒX102 = a4 =
1
2
51 + e-2at6

d2

P1d2 L D1 - ad ad 0 Á
0 1 - ad ad Á
0 0 1 - ad Á
# # # Á

T ,

d,e-at L 1 - at.

P1t2 = De-at ate-at 1at22e-at>2! # Á
0 e-at ate-at 1at22e-at>2! Á
0 0 e-at ate-at Á
# # # # Á

T .

=
1at2j- i
1j - i2! e-at j Ú i.

= p0, j- i1t2
pij1t2 = P3j - i events in t seconds4

P102 = I,

i Z j,pij102 = 0pii102 = 1
P1t2 = 5pij1t26
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3This view of Markov chains is useful in setting up computer simulation models of Markov chain processes.

11.4.1 State Occupancy Times

Since the random telegraph signal changes polarity with each occurrence of an event in
a Poisson process, it follows that the time spent in each state is an exponential random
variable. It turns out that this is a property of the state occupancy time for all continu-
ous-time Markov chains, that is: X(t) remains at a given value (state) for an exponential-
ly distributed random time. To see why, let be the time spent in a state i. The
probability of spending more than t seconds in this state is then

Now suppose that the process has already been in state i for s seconds; then the proba-
bility of spending t more seconds in this state is

since the implies that the system has been in state i during the time interval
(0, s). The Markov property implies that if then the past is irrelevant and we
can view the system as being restarted in state i at time s:

(11.32)

Only the exponential random variable satisfies this memoryless property (see
Section 4.4). Thus the time spent in state i is an exponential random variable with
some mean 

(11.33)

The mean state occupancy time will usually be different for each state.
The above result provides us with another way of looking at continuous-time

Markov chains. Each time a state, say i, is entered, an exponentially distributed state occu-
pancy time is selected. When the time is up, the next state j is selected according to a
discrete-time Markov chain, with transition probabilities Then the new state occupancy 
time is selected according to and so on.3 We call an embedded Markov chain. We will
see in the last part of this section that the properties of the continuous-time Markov chain
depends on the class properties of its embedded chain.

Example 11.35

The random telegraph signal in Example 11.34 spends an exponentially distributed time with
mean in each state. When a transition occurs, the transition is always from the present state
to the only other state, thus the embedded Markov chain is

q
'

10 = 1 q
'

11 = 0.

q
'

00 = 0 q
'

01 = 1

1/a

q
'
ijTj ,
q
'
ij .

Ti

1>vi
P3Ti 7 t4 = e-vit.

1>vi:

P3Ti 7 t + s ƒ Ti 7 s4 = P3Ti 7 t4.
X1s2 = i,

5Ti 7 s6
P3Ti 7 t + s ƒ Ti 7 s4 = P3Ti 7 t + s ƒX1s¿2 = i, 0 … s¿ … s4,

P3Ti 7 t4.

Ti
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11.4.2 Transition Rates and Time-Dependent State Probabilities

Consider the transition probabilities in a very short time interval of duration seconds.
The probability that the process remains in state i during the interval is

where denotes terms that become negligible relative to as approaches zero.4

The exponential distributions of the state occupancy times imply that the probability
of two or more transitions in an interval of duration is Thus for small is
approximately equal to the probability that the process remains in state i for seconds:

or equivalently,
(11.34)

We call the rate at which the process X(t) leaves state i.
Once the process leaves state i, it will enter state j with probability where 

is the transition probability of the embedded Markov chain. Thus

(11.35a)

We call the rate at which the process X(t) enters state j from state i. For com-
pleteness, we define so that by Eq. (11.34),

(11.35b)

If we divide both sides of Eqs. (11.35a) and (11.35b) by and take the limit 
we obtain

(11.36a)

and

(11.36b)

since

because is of order higher than d.o1d2
lim
d:0

o1d2
d

= 0,

lim
d:0

pii1d2 - 1
d

= gii ,

lim
d:0

pij1d2
d

= gij i Z j

d: 0,d

pii1d2 - 1 = giid + o1d2.
gii = -vi ,

gij = viq
'
ij

= gijd + o1d2.
= viq

'
ijd + o1d2

pij1d2 = 11 - pii1d22q'ij

q
'
ijq

'
ij ,

vi

1 - pii1d2 = vid + o1d2.

= 1 - vid + o1d2
pii1d2 = P3Ti 7 d4 + o1d2

d

d, pii1d2o1d2.d

ddo1d2
= 1 - vid + o1d2,
= 1 -

vid

1!
+
vi

2d2

2!
- Á

P3Ti 7 d4 = e-vid

d

4A function g(h) is said to be o(h) if that is, g(h) goes to zero faster than h does.limh:0g1h2>h = 0,
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We are now ready to develop a set of equations for finding the state probabilities
at time t, which will be denoted by

For we have (see Fig. 11.10)

(11.37)

If we subtract from both sides, we obtain

(11.38)

If we divide by apply Eqs. (11.36a) and (11.36b) and let we obtain

(11.39)

Equation (11.39) is a form of the Chapman–Kolmogorov equations for continuous-
time Markov chains. To find we need to solve this system of differential equations
with initial conditions specified by the initial state pmf 

Note that if we solve Eq. (11.39) under the assumption that the state at time zero
was i, that is, with initial condition and for all then the solu-
tion is actually the ij component of P(t).Thus Eq. (11.39) can also be used to find
the transition probability matrix.

pij1t2,
j Z i,pj102 = 0pi102 = 1

5pj102, j = 0, 1, Á 6.
pj1t2

pj
œ1t2 = a

i
gijpi1t2.

d: 0,d,

pj1t + d2 - pj1t2 = a
iZ j
pij1d2pi1t2 + 1pjj1d2 - 12pj1t2.

pj1t2
= a

i
pij1d2pi1t2.

= a
i
P3X1t + d2 = j ƒX1t2 = i4P3X1t2 = i4

pj1t + d2 = P3X1t + d2 = j4
d 7 0,

pj1t2 ! P3X1t2 = j4.

t t 
 d

i'

i

j

Pi'j(d)

Pij(d)

X(t)
X(t 
 d)

FIGURE 11.10
Transitions into state j.
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Example 11.36 A Simple Queueing System

A queueing system alternates between two states. In state 0, the system is idle and waiting for a
customer to arrive.This idle time is an exponential random variable with mean In state 1, the
system is busy servicing a customer.The time in the busy state is an exponential random variable
with mean Find the state probabilities and in terms of the initial state probabilities

and
The system moves from state 0 to state 1 at a rate and from state 1 to state 0 at a

rate

Equation (11.39) then gives

Since the first equation becomes

which is a first-order differential equation:

The general solution of this equation is

We obtain C by setting and solving in terms of then we find

and

Note that as 

Thus as the state probabilities approach constant values that are independent of the ini-
tial state probabilities.

Example 11.37 The Poisson Process

Find the state probabilities for the Poisson process.
The Poisson process moves only from state i to state at a rate a.i + 1

t: q ,

p01t2: b

a + b
and p11t2: a

a + b
.

t: q ,

p11t2 =
a

a + b
+ ap1102 -

a

a + b
be-1a+b2t.

p01t2 =
b

a + b
+ ap0102 -

b

a + b
be-1a+b2t

p0102;t = 0

p01t2 =
b

a + b
+ Ce-1a+b2t.

p0
œ1t2 + 1a + b2p01t2 = b p0102 = p0 .

p0
œ1t2 = -ap01t2 + b11 - p01t22,

p01t2 + p11t2 = 1,

p1
œ1t2 = ap01t2 - bp11t2.
p0

œ1t2 = -ap01t2 + bp11t2

g10 = b g11 = -b.

g00 = -a g01 = a

b:
a,

p1102.p0102
p11t2p01t21/b.

1/a.
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t1

p1(t) � ate�at

pj(t1)

pj(t2)

pj(t3)

at
t

t3

t2

0 1 2 3

FIGURE 11.11
State pmf of Poisson process vs. time.

Thus

Equation (11.39) then gives

The initial condition for the Poisson process is so the solution for the equation is

The equation for is

which is also a first-order differential equation for which the solution is

It can be shown by an induction argument that the solution of the state j equation is

For any fixed time t, the sum of is one. Note however, that for any as 
Figure 11.11 shows how the pmf drifts to higher values as time progresses. Thus for the Poisson
process, the probability of any finite state approaches zero as This is consistent with the
fact that the process grows steadily with time.

t: q .

t: q .j, pj1t2: 05pj1t26
pj1t2 =

1at2j
j!
e-at.

p11t2 =
at

1!
e-at.

p1
œ1t2 = -ap11t2 + ae-at p1102 = 0,

j = 1
p01t2 = e-at.

j = 0p0102 = 1,

pj
œ1t2 = -apj1t2 + apj-11t2  for j Ú 1.

p0
œ1t2 = -ap01t2 for j = 0

gii = -a and gi, i+1 = a.
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j � 1 j 
 1j

�ji'

�i'j �ij

�ji

�j, j
1�j, j�1

�j �1, j �j 
1, j

i' i

FIGURE 11.12
Global balance of probability flows.

5The last part of this section discusses conditions under which the stationary pmf exists.

11.4.3 Steady State Probabilities and Global Balance Equations

As the state probabilities in the two-state queueing system in Example 11.36
converge to a pmf that does not depend on the initial conditions. This is typical of
systems that reach “equilibrium” or “steady state.” For such a system, and

so Eq. (11.39) becomes

(11.40a)

or equivalently, recalling that 

(11.40b)

where

(11.40c)

Equation (11.40b) can be rewritten as follows:

(11.40d)

since

The system of linear equations given by Eq. (11.40b) or (11.40d) are called the global
balance equations. These equations state that at equilibrium, the rate of probability
flow out of state j, namely is equal to the rate of flow into state j, as shown in
Fig. 11.12. By solving this set of linear equations we can obtain the stationary state pmf
of the system (when it exists).5

We refer to as the stationary state pmf of the Markov chain. Since p sat-
isfies Eq. (11.39), if we start the Markov chain with initial state pmf given by p, then the
state probabilities will be

pi1t2 = pi for all t.

p = 5pi6

vjpj ,

vj = a
iZ j
gji .

pj¢a
iZ j
gji≤ = a

iZ j
gijpi

a
j
pj = 1.

vjpj = a
iZ j
gijpi for all j,

gjj = -vj ,

0 = a
i
gijpi for all j,

pj¿1t2: 0,
pj1t2: pj

t: q ,



Section 11.4 Continuous-Time Markov Chains 681

l l l l l l l

m m m m m m m

1 2 3 j 
 10 j

FIGURE 11.13
Transition rate diagram for M/M/1 queueing system.

The resulting process is a stationary random process as defined in Section 9.6 since the
probability of the sequence of states at times is,
by Eq. (11.29),

The transition probabilities depend only on the difference between the associated times.
Thus the above joint probability depends on the choice of origin only through

But for all t.Therefore we conclude that the above joint
probability is independent of the choice of time origin and thus that the process is stationary.

Example 11.38

Find the stationary state pmf for the two-state queueing system discussed in Example 11.36.
Equation (11.40b) for this system gives

Noting that we obtain

Example 11.39 The M/M/1 Single-Server Queueing System

Consider a queueing system in which customers are served one at a time in order of arrival. The
time between customer arrivals is exponentially distributed with rate and the time required to
service a customer is exponentially distributed with rate Find the steady state pmf for the
number of customers in the system.

The state transition rates are as follows. Customers arrive at a rate so

When the system is nonempty, customers depart at the rate Thus

The transition rate diagram is shown in Fig. 11.13. The global balance equations are

gi , i-1 = m i = 1, 2, 3, Á .

m.

gi , i+1 = l i = 0, 1, 2, Á .

l,

m.
l,

p0 =
b

a + b
and p1 =

a

a + b
.

p0 + p1 = 1,

ap0 = bp1 and bp1 = ap0 .

P3X1t2 = i04 = pi0P3X1t2 = i04.

* P3X1t1 + t2 = i1 ƒX1t2 = i04P3X1t2 = i04.
= P3X1tn + t2 = in ƒX1tn-1 + t2 = in-14Á

P3X1t2 = i0 ,X1t1 + t2 = i1 , Á ,X1tn + t2 = in4

t 6 t1 + t 6 Á 6 tn + ti0 , i1 , Á , in
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(11.41a)

(11.41b)

We can rewrite Eq. (11.41b) as follows:

which implies that

(11.42)

Equation (11.42) with and Eq. (11.41a) together imply that

Thus Eq. (11.42) becomes

or equivalently,

and by a simple induction argument

where We obtain by noting that the sum of the probabilities must be one:

where the series converges if and only if 
Thus

(11.43)

This queueing system is discussed in detail in Section 12.3.
The condition for the existence of a steady state solution has a simple explanation. The

condition is equivalent to

that is, the rate at which customers arrive must be less than the rate at which the system can
process them. Otherwise the queue builds up without limit as time progresses.

Example 11.40 A Birth-and-Death Process

A birth-and-death process is a Markov chain in which only transitions between adjacent states
occur as shown in Fig. 11.14. The single-server queueing system discussed in Example 11.39 is an
example of a birth-and-death process.

The global balance equations for a general birth-and-death process are

(11.44a)

(11.44b)ljpj - mj+1pj+1 = lj-1pj-1 - mjpj j = 1, 2, Á .

l0p0 = m1p1 j = 0

l 6 m,

r 6 1

pj = 11 - r2rj j = 0, 1, 2, Á .

r 6 1.

1 = a
q

j=0
pj = 11 + r + r2 + Á2p0 =

1
1 - r

p0 ,

p0r = l>m.

pj = rjp0 ,

pj = rpj-1 j = 1, 2, Á

lpj-1 = mpj ,

constant = lp0 - mp1 = 0.

j = 1

lpj-1 - mpj = constant for j = 1, 2, Á .

lpj - mpj+1 = lpj-1 - mpj for j = 1, 2, Á ,

1l + m2pj = lpj-1 + mpj+1 for j = 1, 2, Á .

lp0 = mp1 for j = 0
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As in the previous example, it then follows that

and

(11.45)

where If we define

then is found from

If the series in the above equation converges, then the stationary pmf is given by

(11.46)

If the series does not converge, then a stationary pmf does not exist, and for all j. In
Chapter 12, we will see that many useful queueing systems can be modeled by birth-and-death
processes.

11.4.4 Limiting Probabilities for Continuous-Time Markov Chains

We saw above that a continuous-time Markov chain X(t) can be viewed as consisting of
a sequence of states determined by some discrete-time Markov chain with transi-
tion probabilities and a corresponding sequence of exponentially distributed state
occupancy times. In this section we use this approach to investigate the limiting proba-
bilities of continuous-time Markov chains.

First we consider the construction of stationary solutions for X(t) from the steady
state solutions of Suppose that the embedded Markov chain is irreducible
and positive recurrent, so that Eq. (11.25) holds. Let denote the number of
times state i occurs in the first n transitions, and let denote the occupancy time
the jth time state i occurs. The proportion of time spent by X(t) in state i after the
first n transitions is

Ti1j2
Ni1n2

XnXn .

q
'
ij

Xn

pj = 0

pj =
Rj

a
q

i=0
Ri

.

1 = ¢aq
j=0
Rj≤p0 .

p0

Rj = rjrj-1 Á r1 and R0 = 1,

rj = 1lj-12>mj .
pj = rjrj-1 Á r1p0 j = 1, 2, Á ,

pj = rjpj-1 j = 1, 2, Á

l0 l1 l2 l3 lj � 1 lj lj 
 1

m1 m2 m3 m4 mj mj 
 1 mj 
 2

1 2 3 j 
 10 j

FIGURE 11.14
Transition rate diagram for general birth-and-death process.
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(11.47)

As by Eqs. (11.25) and (11.26ab), with probability one,

(11.48)

the stationary pmf of the embedded Markov chain. In addition, we also have that
so that by the strong law of large numbers, with probability one,

(11.49)

where we have used the fact that the state occupancy time in state i has mean 
Similarly the denominator in Eq. (11.47) must approach Equations (11.48) 

and (11.49) when applied to Eq. (11.47) imply that if with probability 
one, the long-term proportion of time spent in state i approaches

(11.50)

where is the unique pmf solution to

(11.51)

and c is a normalization constant.
We obtain the global balance equation, Eq. (11.40b), by substituting 

from Eq. (11.50) and into Eq. (11.51):

Thus the are the unique solution of the global balance equations.pi’s

vjpj = a
iZ j
pigij for all j.

q
'
ij = gij>vi

pi = vipi>c

pj = a
i
piq

'
ij for all j

pj

pi =
pi>vi
a
j
pj>vj

= cpi>vi ,

apj>vj 6 q ,

Aapj>vj B .
1>vi .

1
Ni1n2 a

Ni1n2
j=1
Ti1j2: E3Ti4 = 1>vi ,

Ni1n2: q  as n: q ,

Ni1n2
n
: pi ,

n:q,

=

Ni1n2
n

1
Ni1n2 a

Ni1n2
j=1
Ti1j2

a
i

Ni1n2
n

1
Ni1n2 a

Ni1n2
j=1
Ti1j2

.

time spent in state i

time spent in all states
=

a
Ni1n2
j=1
Ti1j2

a
i
a
Ni1n2
j=1
Ti1j2
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We have proved the following result:

Theorem 3

Assume a time-continuous Markov chain, for which the embedded Markov chain is irreducible
and positive recurrent with stationary pmf and then the following asser-
tions hold:

(i)

(ii) The solution is unique and satisfies Eqs. (11.40bc);

(iii) For each j, is the long-term proportion of time spent in state j.

Now assume that we know that the Markov chain is irreducible and that we have
a solution to the global balance equations (11.40bc):

Substituting Eq. (11.50) into the above equation

implies that the following choice of gives a solution for the stationary pmf of the
embedded Markov chain:

Note that we must require that the denominator be finite. From Theorem 1 in Section 11.4,
if there is a stationary pmf then it is unique and positive recurrent. Furthermore the
construction of from the ensures that is the long-term proportion of time
in state j as well as the limiting state probability for X(t).

We have shown the following theorem:

Theorem 4

Assume a time-continuous Markov chain, for which the embedded Markov chain is irreducible.
Suppose that is a solution to the global balance equations (11.40bc), and that 
then the following assertions hold:

(i) The solution is unique;

(ii) for all j;lim
t:q
pj1t2 = pj

5pi6
a
j
pjvj 6 q ,5pj6

pj5pj65pj6

pj =
pjvj

a
i
pivi

.

5pj6
cpj = ¢ cpj

vj
≤vj = a

iZ j
¢ cpi
vi
≤gij = ca

iZ j
pi¢gijvi ≤ = ca

iZ j
piq

'
ij

pjvj = a
iZ j
pigij.

5pj6

pj

5pi6
lim
t:q
pj1t2 = pj for all j;

a
j
pj>vj 6 q ,5pj6
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6That is, let it be an irreducible, aperiodic, stationary Markov chain.

(iii) For each is the long-term proportion of time spent in state j;

(iv) The embedded Markov chain is positive recurrent.

Example 11.41

In the two-state system in Example 11.36,

The equation implies that

In addition, and Thus

and

11.5 TIME-REVERSED MARKOV CHAINS

We now consider the random process that results when we play a Markov chain back-
wards in time. We will see that the resulting process is also a Markov chain and so de-
velop another method for obtaining the stationary probabilities of the forward and
reverse processes. The insights gained by looking at the reverse process prove useful in
developing certain results in queueing theory in Chapter 12.

Let be a stationary ergodic Markov chain6 with one-step transition probability
matrix and stationary state pmf Consider the dependence of 
the “future” in the reverse process, on the “present and past”:

(11.52)= P3Xn-1 = j ƒXn = i4.
=
pjpji
pi

=
pjpjipi,i1 Á pik - 1,ik

pipi,i1 Á pik - 1,ik

=
P3Xn-1 = j,Xn = i,Xn+1 = i1 , Á ,Xn+k = ik4

P3Xn = i,Xn+1 = i1 , Á ,Xn+k = ik4

P3Xn-1 = j ƒXn = i,Xn+1 = i1 , Á ,Xn+k = ik4
Xn ,Xn+1 , Á ,Xn+k ,

Xn-1 ,5pj6.P = 5pij6
Xn

*

p1 =
a

a + b
.

p0 =
1/211/a2

1/211/a + 1/b2 =
b

a + b

v1 = b.v0 = a

p0 = p1 =
1
2

.

P = P3q'ij4
3q'ij4 = B0 1

1 0
R .

j, pj
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b2

b1

b3 bj

1 32 j
1 � b1 1 � b2 1 � bj 

1
1 1 1

32 j

(a)

(b)

FIGURE 11.15
(a) Transition diagram for age of a renewal process. (b) Transition diagram for
time-reversed process.

The above equations show that the time-reversed process is also a Markov chain with
one-step transition probabilities

(11.53)

Since is irreducible and aperiodic, its stationary state probabilities repre-
sent the proportion of time that the state is in state j. This proportion of time does not
depend on whether one goes forward or backward in time, so must also be the sta-
tionary pmf for the reverse process.Thus the forward and reverse process must have the
same stationary pmf.

Example 11.42

Suppose that a new light bulb is put in use at day and suppose that each time a light bulb
fails it is replaced the next day. Let be the age of the light bulb (in days) at the end of day n.
If is the probability that the lifetime L of a light bulb is i days, then the probability that the
light bulb fails on day j given that it has not failed up to then is

Thus the transition probabilities for are

Figure 11.15(a) shows the state transition diagram of and Fig. 11.16(a) shows a typical sam-
ple function that consists of a sawtooth-shaped function that increases linearly and then falls
abruptly to one when a light bulb fails.

Figure 11.16(b) shows a sample function of the reverse process from which we deduce that
the state transition diagram must be as shown in Fig. 11.15(b).The transition probabilities for the
reverse process are obtained from Eq. (11.53):

Xn ,

pij = 0     otherwise.

pi1 = bi        i = 1, 2, Á
pi, i+1 = 1 - bi i = 1, 2, Á

Xn

bj =
P3L = j4
P3L Ú j4 =

aj

a
q

k= j
ak

j = 1, 2, Á .

ai

Xn

n = 0,

pj

pjXn

P3Xn-1 = j ƒXn = i4 = qij =
pjpji
pi

.
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For now we defer the problem of finding the stationary state probabilities 

Example 11.42 shows that Eq. (11.53) provides us with conditions that must be
satisfied by the stationary probabilities Suppose we were able to guess a pmf 
so that Eq. (11.53) holds, that is,

(11.54)

It then follows that is the stationary pmf. To see this, sum Eq. (11.54) over all j,
then

(11.55)

But Eq. (11.55) is the condition for to be the stationary pmf for the forward process,
thus is the stationary pmf. Equation (11.54) thus provides us with another method
for finding the stationary pmf of a discrete-time Markov chain: If we can guess a set of
transition probabilities for the reverse process and a pmf so that Eq. (11.54) is sat-
isfied, then it follows that the is the stationary pmf for the Markov chain and the
are the transition probabilities for the reverse process.

Example 11.43

The sample function of the reverse process in Example 11.42 suggests that for the process
moves from state i to state with probability one; that is,

qi, i-1 =
pi-111 - bi-12

pi
= 1,

i - 1
i 7 1,

qi,jpj

pjqi,j

pj

pj

a
j
pjpji = pia

j
qij = pi for all i.

5pj6
piqij = pjpji for all i, j.

5pj6pj .

pj .

qi,j = 0 otherwise.

q1,i =
pi

p1
bi i = 1, 2, Á

qi, i-1 =
pi-1

pi
11 - bi-12 i = 2, 3, 4, Á

n

Xn

(a)
n

(b)

FIGURE 11.16
(a) Age of light bulb in use at time n. (b) Time-reversed process of Xn .
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which implies that

(11.56)

However, from Example 11.42 for 

so in Eq. (11.56), the denominator of cancels the numerator of the de-
nominator of cancels the numerator of and so on. Thus

We obtain by using the fact that the probabilities sum to one:

where we have used Eq. (4.29) for E[L]. Thus

(11.57)

11.5.1 Time-Reversible Markov Chains

A stationary ergodic Markov chain is said to be reversible if the one-step transition
probability matrix of the forward and reverse processes are the same, that is, if

(11.58)

Equations (11.53) and (11.58) together imply that a Markov chain is reversible if and
only if

(11.59)

Since and are the long-term proportion of transitions out of states i and j, respec-
tively, Eq. (11.59) implies that a chain is reversible if the proportion of transitions from
i to j is equal to the proportion of transitions from j to i.

Example 11.44 Discrete-Time Birth-and-Death Process

Figure 11.17 shows the state transition diagram for a discrete-time birth-and-death process with
transition probabilities

p00 = 0 p01 = 1 = a0

pi, i+1 = ai pi, i-1 = 1 - ai i = 1, 2, Á
pij = 0 otherwise.

pjpi

pipij = pjpji for all i, j.

qij = pij for all i, j.

pi =
P3L Ú i4
E3L4 i = 1, 2, Á .

1 = p1a
q

i=1
P3L Ú i4 = p1E3L4,

p1

pi = baq
k= i
ak rp1 = P3L Ú i4p1 i = 2, 3, Á .

11 - bi-32,11 - bi-22
11 - bi-22,11 - bi-12

11 - bi-12 = 1 -
ai-1

a
q

k= i-1
ak

=
a
q

k= i
ak

a
q

k= i-1
ak

,

i Ú 2,

= 11 - bi-1211 - bi-22Á 11 - b12p1.

pi = 11 - bi-12pi-1 i = 2, 3, Á
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For any sample path, the number of transitions from i to can differ by at most 1 from the
number of transitions from to i since the only way to return to i is through Thus the
long-term proportion of transitions from i to is equal to that from to i. Since these are
the only possible transitions, it follows that birth-and-death processes are reversible.

Equation (11.59) implies that

which allows us to write all the in terms of 

(11.60)

The probability is found from (11.61)

The series in Eq. (11.61) must converge in order for to exist.

11.5.2 Time-Reversible Continuous-Time Markov Chains

Now consider a stationary, continuous-time Markov chain played backward in time. If
(i.e., the process is in state i at time t), then the probability that the reverse

process remains in state i for an additional s seconds is

(11.62)

where because X(t) is a stationary process, and
where is the time spent in state i for the forward process. Thus the reverse process
also spends an exponentially distributed amount of time with rate in state i.

The jumps in the forward process X(t) are determined by the embedded Markov
chain so the jumps in the reverse process are determined by the discrete-time Markov
chain corresponding to the time-reversed embedded Markov chain given by Eq. (11.53):

(11.63)qij =
pjq

'
ji

pi
.

q
'
ij ,

vi

Ti

P3X1t - s2 = i4 = P3X1t2 = i4
= P3Ti 7 s4 = e-vis,

=
P3X1t - s2 = i4P3Ti 7 s4

P3X1t2 = i4

P3X1t¿2 = i,  t - s … t¿ … t ƒX1t2 = i4 =
P3X1t - s2 = i, Ti 7 s4

P3X1t2 = i4

X1t2 = i

pj

1 = p0a
q

j=0
Rj .p0

! Rjp0 .=
aj-1

Á a0

11 - aj2Á 11 - a12p0pj = ¢ aj-1

1 - aj
≤ Á ¢ a0

1 - a1
≤p0

p0:pj’s

ajpj = 11 - aj+12pj+1 j = 0, 1, 2, Á ,

i + 1i + 1
i + 1.i + 1

i + 1

aia11

1 � ai
11 � a21 � a1

1 2 i 
 10 i

FIGURE 11.17
Transition diagram for a discrete-time birth-and-death process.
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It follows that the transition rates for the time-reversed continuous-time process are
given by

(11.64)

where we used the fact that and In comparing Eq. (11.64) to
Eq. (11.53), note that the transition rates have simply replaced the transition proba-
bilities in going from the discrete-time to the continuous-time case.

The discussion that led to Eq. (11.54) provides us with another method for deter-
mining the stationary pmf of X(t). If we can guess a set of transition rates and a
pmf such that

(11.65a)
and

(11.65b)

then is the stationary pmf for X(t) and are the transition rates for the reverse process.
Since the state occupancy times in the forward and reverse processes are expo-

nential random variables with the same mean, the continuous-time Markov chain X(t)
is reversible if and only if its embedded Markov chain is reversible. Equation (11.59)
implies that the following condition must be satisfied:

(11.66)

where is the stationary pmf of the embedded Markov chain.Recall from Eq. (11.50) that
where is the stationary pmf of X(t). Substituting into Eq. (11.66), we obtain

which is equivalent to
(11.67)

Thus we conclude that X(t) is reversible if and only if Eq. (11.67) is satisfied. As in the
discrete-time case, Eq. (11.67) can be interpreted as stating that the rate at which X(t)
goes from state i to state j is equal to the rate at which X(t) goes from state j to state i.

Example 11.45 Continuous-Time Birth-and-Death Process

Consider the general continuous-time birth-and-death process introduced in Example 11.40.The
embedded Markov chain in this process is a discrete-time birth-and-death process of the type
discussed in Example 11.44. It therefore follows that all continuous-time birth-and-death
processes are time-reversible.
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In Chapter 12 we will see that the time reversibility of certain Markov chains im-
plies some remarkable properties about the departure processes of queueing systems.

11.6 NUMERICAL TECHNIQUES FOR MARKOV CHAINS

In this section we present several numerical techniques that are useful in the analysis of
Markov chains. The first part of the section presents methods for finding the stationary as
well as transient solutions for the state probabilities of Markov chains. The second part of
the section addresses the simulation of discrete-time and continuous-time Markov chains.

11.6.1 Stationary Probabilities of Markov Chains

The most basic calculation with finite-state discrete-time Markov chains involves find-
ing their stationary state probabilities. To do so, we consider the equation:

(11. 68a)

In general the above set of linear equations is undetermined. To see this, note that the
sum of the columns of the matrix is zero. Therefore we need the normalization
equation: We can incorporate this equation by replacing one
of the columns of with the all 1’s column vector. Let Q be the matrix that results
when we replace the first column of the system of linear equations becomes:

(11. 68b)

where b is a row vector with 1 in the first entry and zeros elsewhere. If the Markov
chain is irreducible, then a unique stationary pmf exists and is obtained by inverting the
above equation.

Example 11.46 Google PageRank

Find the stationary pmf for the PageRank algorithm in Example 11.30.
After we take from the example and replace the first column with all 1’s we obtain:

We then invert Q to obtain the pmf:

The Octave commands for the above procedure are given below:

> Q=[1 0.455 0.455 0.03 0.03

> 1 -.8 .2 .2 .2
> 1 0.3133 -.97 0.3133 0.03
> 1 0.03 0.03 -0.97 0.88

P = 10.13175, 0.18772, 0.24642, 0.13172, 0.302392.

Q = E1     0.4550        0.4550        0.0300      0.0300
1 -0.8000        0.2000        0.2000       0.2000
1     0.3133 -0.9700        0.3133       0.0300
1     0.0300        0.0300     -0.9700       0.8800
1     0.0300        0.4550        0.0300     -0.5450

U .

P - I

b = PQ,

P - I;
P - I

p1 + p2 + Á + pK = 1.
P - I

P = PP or equivalently 0 = P1P - I2.
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> 1 0.03 0.455 0.03 -.545];
> b=[1 0 0 0 0];

> p=b*inv(Q)

p =

0.13175 0.18772 0.24642 0.13172 0.30239

In the case of infinite-state Markov chains, we can apply matrix inversion by trun-
cating the state space at some value where the state probabilities become negligible.
Another method, discussed in the next chapter, involves the application of the proba-
bility generating function for the state of the system.

To find the stationary pmf for finite-state continuous-time Markov chains, we
need to find a pmf that satisfies Eq. (11.40a) as well as the normalization condition:

(11.69a)
where

(11.69b)

The columns of sum to zero, so as before we need to replace a column of with e.We
obtain p by multiplying b by the inverse of the resulting matrix.

Example 11.47 Cartridge Inventory

An office orders laser printer cartridges in batches of four cartridges. Suppose that each car-
tridge lasts for an exponentially distributed time with mean 1 month.Assume that a new batch of
four cartridges becomes available as soon as the last cartridge in a batch runs out. Find the sta-
tionary pmf for N(t), the number of cartridges available at time t.

N(t) takes on values from the set and follows a periodic sequence of values
The rate out of each state is 1 and the rate into each state from the previous

state is also 1. Therefore the transition rate matrix and the modified global balance equations are:

It is easy to show that the In a more complicated case we would use nu-
merical inversion to solve for p.

11.6.2 Time-Dependent Probabilities of Markov Chains

We now consider finding the time-dependent probabilities of a finite-state discrete-time
Markov chain as given by Eq. (8.16b). Example 11.9 described the general approach for
finding First, however, we note a few facts about the transition probability matrix P.Pn.

p = 11/4, 1/4, 1/4, 1/42.

≠ = D -1 0 0 1
1 -1 0 0
0 1 -1 0
0 0 1 -1

T b = pD1 0 0 1
1 -1 0 0
1 1 -1 0
1 0 1 -1

T .

4: 3: 2: 1: 4 Á .
51, 2, 3, 46

≠≠

≠ = D -y0 g01 g02 g03

g10 -y1 Á g1K-1

Á Á Á Á
gK-1 0 gK-1 1 Á -yK-1

T and e = D 1
1
Á
1

T .

0 = p≠ and 1 = pe
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A stochastic matrix is defined as a nonnegative matrix for which the elements of
each row add to one. Thus P is a stochastic matrix. A stochastic matrix always has

as an eigenvalue and as a right eigenvector: This fol-
lows from the fact that all the row elements of P add to one. On the other hand, the sta-
tionary pmf is a left eigenvector for the eigenvalue of P: It can be
shown [Gallager, pp. 116–117] that if P corresponds to an aperiodic irreducible
Markov chain, then is the largest eigenvalue and the magnitude of all other
eigenvalues are less than 1.

Let P correspond to an aperiodic irreducible Markov chain. Proceeding as in
Example 11.19, to find we first find the eigenvalues 
and right eigenvectors of P: Letting E be the matrix with eigenvectors as
columns, we then have that:

(11.70)

Note how all but the 1-1 entry in the diagonal matrix approach zero as n increases.
Note as well that the first column of E is the all 1’s vector. This implies that the first
row of contains the stationary pmf In Octave the eigenvalues and eigenvec-
tors of P are obtained using the eig(P) function, which was discussed previously in
Section 10.7. In practice it is simpler and more convenient to use the command P^n.

Next we consider finding the time-dependent probabilities of a finite-state
continuous-time Markov chain that are the solution to Eq. (11.39):

(11.71)

We are now dealing with first-order vector differential equations. Electrical engineer-
ing students encounter this equation in an introductory linear systems course. The so-
lution is given by:

(11.72a)

where is the matrix of transition probabilities in an interval of length t sec-
onds, and where the exponential matrix function is defined by:

(11.72b)

Furthermore, using matrix diagonalization the exponential matrix can be evaluated as:

(11.72c)

where E is a matrix whose columns are the eigenvectors of and the middle matrix is
a diagonal matrix with exponential functions as its elements. [Gallager, p. 194] shows

≠

P1t2 = E3elit4E-1

P1t2 = 3pij1t24 = e≠t = a
q

j=0

1≠t2j
j!

.

P1t2 = e≠t
p1t2 = p102P1t2 = p102e≠t

p¿1t2 = 3pjœ1t24 = a
K

i=1
pi1t2gij = p1t2≠ subject to p102 = 1pi102, Á , pK1022.

p.E-1

= ED1 0 Á 0
0 l2

 n Á 0
0 0 Á 0
0 0 Á lK

 n

TE-1.

Pn = E¶nE-1

e1 , e2 , Á , eK .
1 = l1 7 ƒl2 ƒ 7 Á 7 ƒlK ƒPn

l = 1

1P = PP.l = 1p

1e = Pe.eT = 11, Á , 12l = 1
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that if the Markov chain is finite state and irreducible, then has an eigenvalue 
which has right eigenvector also has a left eigenvector p corre-
sponding to which is the unique stationary state pmf. Furthermore the remain-
ing eigenvalues of have negative real parts. This implies that all but the 
exponential terms in the diagonal matrix decay to zero as t increases. If we let oc-
cupy the 1-1 entry in the diagonal matrix, then as approaches the product of
the e and the first row of 

Example 11.48 Cartridge Inventory

Find the state probabilities for N(t) in Example 11.47 if 
We use the eig(Γ) function to obtain the eigenvalues and eigenvectors of and the asso-

ciated matrices, and 

Note that two of the eigenvalues and their corresponding eigenvectors are complex. The state
probabilities are given by:

Figure 11.18 shows the four state probabilities vs. time. It can be seen that all of the probability
mass is initially in state 4 and that the mass first transfers to state 3, then state 2, and finally to
state 1. Eventually all state probabilities approach the steady state value of 

11.6.3 Simulation of Markov Chains

We simulate a Markov chain by emulating its underlying random experiments. We
begin by selecting the initial state according to an initial state pmf. We then generate
the sequence of states by producing outcomes according to the associated transition

1/4.

=
1
4
11 - 2e-t sin t - e-2t, 1 - 2e-t cos t + e-2t, 1 + 2e-t sin t - e-2t, 1 + 2e-t cos t + e-2t2.

=
1
4
11, -j, j, -12D 1 1 1 1

e-11+ j2t -je-11+ j2t -e-11+ j2t je-11+ j2t
e-11- j2t je-11- j2t -e-11- j2t -je-11- j2t
e-2t -e-2t e-2t -e-2t

T
= 10, 0, 0, 12 1

4
D1 1 1 1

1 j -j -1
1 -1 -1 1
1 -j j -1

T D1 0 0 0
0 e-11+ j2t 0 0
0 0 e-11- j2t 0
0 0 0 e-2t

T D1 1 1 1
1 -j -1 j

1 j -1 -j
1 -1 1 -1

T
p1t2 = p102ED1 0 0 0

0 e-11+ j2t 0 0
0 0 e-11- j2t 0
0 0 0 e-2t

TE-1

E =
1
2
D1 1 1 1

1 j -j -1
1 -1 -1 1
1 -j j -1

T ¶ = D0 0 0 0
0 -1 - j 0 0
0 0 -1 + j 0
0 0 0 -2

T E-1 =
1
2
D1 1 1 1

1 - j -1 j

1 j -1 -j
1 -1 1 -1

T
E-1:E, ¶,

≠
N102 = 4.

E-1.
t: q , P1t2

l = 0
l = 0≠

l = 0
eT = 11, 1,...,12. ≠

l = 0≠
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Discrete-time
Markov chain

simulator

Number of
stepsS P p0

{s0,..., sn}

Continuous-time
Markov chain

simulator

Simulation
timeS G p0

{s0,..., sn} {T0,..., Tn}

(a) (b)

FIGURE 11.19
Generic modules for simulating Markov chains.

probabilities. In the case of continuous-time Markov chains we also need to generate a
state occupancy time after each state transition has been determined. Figure 11.19
shows the inputs and outputs of generic modules for generating realizations of a
Markov chain.

Discrete-Time Markov Chains The module for generating a sequence of states for a
Markov chain requires the following inputs: i. The state space; ii. The matrix of state
transition probabilities; iii. The initial state probability mass function; and iv. The num-
ber of steps in the simulation sequence. The module operates as follows:

1. Generates the initial state according to 
2. Repeatedly generates the next state according to the transition probabilities of

the current state.
3. Stops when the required number of steps has been simulated.

p0 .

0 1

p1(t)

p2(t)

p3(t)

p4(t)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

FIGURE 11.18
Time-dependent probabilities in cartridge inventory.
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p00

p01

p10 p21 p32 p43

p11 p22 p33

p34p23p12

0 1 2 3 Nmax

pNmax Nmax�1

pNmax�1Nmax pNmaxNmax

l0 l1 l2 l3

m1 m2 m3 m4

0 1 2 3 Nmax

mNmax

lNmax�1

(a)

(b)

FIGURE 11.20
Generic Markov chains: (a) discrete-time; (b) birth-death continuous-time.

Example 11.49 Discrete-Time Markov Chain

Develop a program to generate Markov chains with the state transition diagram as shown
in Fig. 11.20(a). Note that the Markov chain is similar to that of a birth-death process except that
transitions from a state to itself are allowed. Use the program to simulate 1000 time steps in a
data multiplexer where in each time unit a packet is received with probability a, and/or a packet
transmitted from its buffer with probability b. Assume the data multiplexer is initially empty.

For this example we wrote the function Discrete_MC(Nmax,P,IC,L). The state space is
Since Octave uses indices from 1 onwards, the array state ranges from 1 to

For the Markov chains under consideration we need to specify only three probabili-
ties for the transition probabilities for each state. Therefore P is an row by 3 column
matrix. The initial state pmf is a by 1 vector. The output of the function is a vector of
states of size L.

The Markov chain for the data multiplexer has the following transition probabilities. If
that is, the system is empty, the next state is either with probability a, or

with probability that is: If the next state is with
probability with probability ab; or with probability that is:

If the next state is with
probability or with probability since the system is not allowed to
grow beyond 

The code below prepares the inputs and then calls the function Discrete_MC(S, P,IC,N).
The basic step in the function involves generating a discrete random variable that determines
whether the chain increases by 1, decreases by 1, or remains the same.

Nmax=50;

P=zeros(Nmax+1,3);

a=0.45;

b=0.50;

P(1,:)=[0,1-a,a];
r=[(1-a)*b,a*b+(1-a)*(1-b),(1-b)*a];
for n=2:Nmax;

P(n,:)=r;

end

Nmax .
1 - b11 - a2,Nmax11 - a2b;

Nmax - 1N = Nmax ,pn n+1 = 11 - b2a, pn n = ab, pn-1 n = 11 - a2b.
b11 - a2,n - 111 - b2a; n

n + 1N = n 7 0,p00 = 1 - a, p01 = a.1 - a,
N = 0N = 1N = 0,

Nmax + 1
Nmax + 1

Nmax + 1.
50, 1, Á ,Nmax6.
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FIGURE 11.21
(a) Simulation of discrete-time data multiplexer; (b) histogram of number of packets in data multiplexer.

P(Nmax+1,:)=[(1-a)*b,1-(1-a)*b,0];
IC=zeros(Nmax+1,1);

IC(1,1)=1;

L=1000

Seq=Discrete_MC(Nmax,P,IC,L);

plot(Seq-1)

function stseq = Discrete_MC(Nmax,P,IC,L)

stseq=zeros(1,L);

s=[1:Nmax+1];

step=[-1,0,1];
InitSt=discrete_rnd(1,s,IC);

stseq(1)=InitSt;

for n=2:L+1;

nextst=stseq(n-1)+discrete_rnd(1,step,P(stseq(n-1),:));
stseq(n)=nextst;

end

Figure 11.21(a) shows a graph of a 1000-step realization of the Markov chain. The para-
meters in the simulation are and The latter parameter implies that a packet re-
quires two time units on average of service before it departs the system. During the two time
units that it takes to service the above packet, packets arrive on average.This is
an example of a “heavy traffic” situation which is characterized by the sporadic but sustained
buildups of packets seen in the simulation. Figure 11.21(b) shows the histogram of the state oc-
currences in the simulation. It can be seen that the probability mass is concentrated at the lower
state values.

Continuous-Time Markov Chains The module for generating a sequence of states for
a continuous-time Markov chain requires the following inputs: i.The state space; ii.The

2 * 10.452 = 0.9

b = 0.5.a = 0.45
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matrix of state transition rates; iii. The initial state probability mass function; and iv.
The duration of the simulation. The module operates as follows:

1. Generates the initial state according to 
2. Repeatedly generates the next state using the transition probabilities from the

current state, and the state occupancy times for the new state.
3. Stops when the elapsed time has been simulated.

Example 11.50 Continuous-Time Birth-Death Process

Develop a program to generate continuous-time Markov chains with the state transition dia-
gram shown in Figure 11.20(b). Use the program to simulate 1000 seconds of an M/M/1 queueing
system. Assume the system is initially empty.

For this example we wrote the function Continuous_MC(S,G,IC,T), given below. The mod-
ule uses the embedded Markov chain approach and sequentially generates next state and occu-
pancy time pairs. The transition probabilities for the embedded Markov chain are

and the mean occupancy times are exponential
random variables with mean The basic step involves generating a binary random
variable that determines whether the chain increases or decreases by 1, and then determines the
occupancy time in the resulting state.

function [stseq,OccTime,n] = Continuous_MC(Nmax,G,IC,T)

Taggr=-1;
L=T*(G(Nmax-1,1)+G(Nmax-1,2));  % Estimate max number of state transitions.
stseq=zeros(1,L);

OccTime=zeros(1,L);

Q=zeros(1,2);

s=[1:Nmax+1];

step=[-1,1];
InitSt=discrete_rnd(1,s,IC);

stseq(1)=InitSt;

n=1;

OccTime(n)=exponential_rnd(G(stseq(n),1)+G(stseq(n),2));

Taggr=OccTime(n);

while (Taggr < T);

n=n+1;

Q(stseq(n-1),:)=[G(stseq(n-1),1),G(stseq(n-1),2)]/(G(stseq(n-
1),1)+G(stseq(n-1),2));

nextst=stseq(n-1)+discrete_rnd(1,step,Q(stseq(n-1),:));
stseq(n)=nextst;

OccTime(n)=exponential_rnd((G(stseq(n),1)+G(stseq(n),2)));

Taggr=Taggr+OccTime(n);

End

Figure 11.22 shows a graph of a realization of the Markov chain. The simulated queueing
system has an arrival rate of jobs/second and a mean job service time of second.
Therefore the system is operating in heavy traffic and experiences surges in job backlogs. The

m = 1l = 0.9

51>1lj + mj26.
5q'jj-1 = mj>1lj + mj2, q'jj+1 = lj>1lj + mj26

p0 .
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calculation of the proportion of time that the system spends in each state is more complicated
than for discrete-time systems because the occupancy times must be taken into account. These
calculations will be addressed in the next chapter.

SUMMARY

• A random process is said to be Markov if the future of the process, given the pre-
sent, is independent of the past.

• A Markov chain is an integer-valued Markov process.
• The joint pmf for a Markov chain at several time instants is equal to the product

of the probability of the state at the first time instant and the probabilities of the
subsequent state transitions (Eq. 11.3).

• For discrete-time Markov chains: (1) the n-step transition probability matrix P(n)
is equal to where P is the one-step transition probability; (2) the state proba-
bility after n steps p(n) is equal to where p(0) is the initial state probabil-
ity; and (3) approaches a constant matrix as for Markov chains that
settle into steady state.

• The states of a discrete-time Markov chain can be divided into disjoint classes.
The long-term behavior of a Markov chain is determined by the properties of its
classes. In particular, for ergodic Markov chains the stationary state probabilities
represent the long-term proportion of time spent in each state.

• A continuous-time Markov chain can be viewed as consisting of a discrete-time
embedded Markov chain that determines the state transitions and of exponen-
tially distributed state occupancy times.

• For continuous-time Markov chains: (1) the state probabilities and the transi-
tion probability matrix can be found by solving Eq. (11.39); (2) the steady state

n: qPn
p102Pn,Pn,
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FIGURE 11.22
Simulation of M/M/1 continuous-time Markov chain.
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Accessible state
Birth-and-death process
Chapman–Kolmogorov equations
Class of states
Embedded Markov chain
Ergodic Markov chain
Global balance equations
Homogeneous transition probabilities
Irreducible Markov chain
Markov chain
Markov process
Markov property
Mean recurrence time
Null recurrent state

Period of a state/class
Positive recurrent state
Recurrent state/class
Reversible Markov chain
State
State occupancy time
State probabilities
Stationary state pmf
Stochastic matrix
Time-reversed Markov chain
Transient state/class
Transition probability matrix
Trellis diagram

ANNOTATED REFERENCES

References [1] and [2] contain very good discussions of discrete-time Markov chains.
Feller has a rich set of classic examples that are a pleasure to read. Reference [3] gives
a concise but quite complete introduction to Markov chains. Reference [4] provides an
introduction to discrete-time and continuous-time Markov chains at about the same
level as this chapter. References [6] and [7] give a more rigorous and complete cover-
age of Markov chains and processes.

1. K. L. Chung, Elementary Probability Theory with Stochastic Processes, Springer-
Verlag, New York, 1975.

2. W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1,
Wiley, New York, 1968.

3. Y. A. Rozanov, Probability Theory: A Concise Course. Dover Publications, New
York, 1969.

4. S. M. Ross, Introduction to Probability Models, Academic Press, Orlando, FL, 2003.

probabilities can be found by solving the global balance equation, Eq. (11.40b)
or (11.40c).

• A continuous-time Markov chain has a steady state if its embedded Markov
chain is irreducible and positive recurrent with unique stationary pmf given by
the solution of the global balance equations.

• The time-reversed version of a Markov chain is also a Markov chain. A discrete-
time (continuous-time) irreducible, stationary ergodic Markov chain is reversible
if the transition probability matrix (transition rate matrix) for the forward and re-
verse processes is the same.

• Matrix numerical methods can be used to find the time-dependent and the sta-
tionary probabilities of Markov chains.

CHECKLIST OF IMPORTANT TERMS
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5. S. M. Ross, Stochastic Processes, Wiley, New York, 1983.
6. D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Chapman and

Hall, London, 1972.
7. R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Press, Boston,

1996.
8. J. Kohlas, Stochastic Methods of Operations Research, Cambridge University

Press, London, 1982.
9. H. Anton, Elementary Linear Algebra, Wiley, New York, 1981.

10. A. M. Langville and C. D. Meyer, Google’s PageRank and Beyond, Princeton Uni-
versity Press, Princeton, NJ, 2006.

PROBLEMS

Section 11.1: Markov Processes

11.1. Let denote the sequence of sample means from an iid random process 

(a) Is a Markov process?
(b) If the answer to part a is yes, find the following state transition pdf:

11.2. An urn initially contains five black balls and five white balls. The following experiment is
repeated indefinitely:A ball is drawn from the urn; if the ball is white, it is put back in the
urn, otherwise it is left out. Let be the number of black balls remaining in the urn after
n draws from the urn.
(a) Is a Markov process? If so, find the appropriate transition probabilities and the

corresponding trellis diagram.
(b) Do the transition probabilities depend on n?
(c) Repeat part a if the urn initially has K black balls and K white balls.

11.3. An urn initially contains two black balls and two white balls. The following experiment is
repeated indefinitely:A ball is drawn from the urn; with probability a, the color of the ball
is changed to the other color and is then put back in the urn, otherwise it is put back with-
out change. Let be the number of black balls in the urn after n draws from the urn.
(a) Is a Markov process? If so, find the appropriate transition probabilities.
(b) Do the transition probabilities depend on n?
(c) Repeat part a if What changes?
(d) Repeat parts a and c if the urn contains K black balls and K white balls.

11.4. Michael and Marisa initially have four pens each. Out of the total of eight pens, half are
good and half are dry. The following experiment is repeated indefinitely: Michael and
Marisa exchange a randomly selected pen from their set. Let be the number of good
pens in Marisa’s set after n draws.
(a) Is a Markov process? If so, find the appropriate transition probabilities.
(b) Do the transition probabilities depend on n?

Xn

Xn

a = 1.

Xn

Xn

Xn

Xn

fMn1x ƒMn-1 = y2.

Mn

Mn =
X1 + X2 + Á + Xn

n
.

Xn:Mn
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(c) Repeat part a if Michael and Marisa initially have a total of K good pens and K dry
pens.

11.5. Does a Markov process have independent increments? Hint: Use the process in Problem 11.2
to support your answer.

11.6. Let be the Bernoulli iid process, and let be given by

It was shown in Example 11.2 that is not a Markov process. Consider the vector
process defined by 
(a) Show that is a Markov process.
(b) Find the state transition diagram for 

11.7. (a) Show that the following autoregressive process is a Markov process:

where is an iid process.
(b) Find the transition pdf if is an iid Gaussian sequence.

11.8. The amount of water in an aquifer at year end is a random variable The amount of
water drawn from the aquifer in a year is a random variable and the amount restored
by rainfall is 
(a) Find a set of equations to describe the total amount of water in the aquifer over time.
(b) Under what conditions is a Markov process?

Section 11.2: Discrete-Time Markov Chains

11.9. Let be an iid integer-valued random process. Show that is a Markov process and
give its one-step transition probability matrix.

11.10. An information source generates iid bits for for which 
(a) Suppose that is transmitted over a binary symmetric channel with error proba-

bility Find the probabilities of the outputs of the channel.
(b) Suppose that is transmitted over K consecutive identical and independent binary

symmetric channels. Does the sequence of channel outputs form a Markov chain?
(c) Find the K-step transition probabilities that relate the input bits from the source to

the outputs of the Kth channel.
(d) What are the probabilities of the outputs of the Kth channel as 

11.11. Each time unit a data multiplexer receives a packet with probability a, and/or transmits a
packet from its buffer with probability b.Assume that the multiplexer can hold at most N
packets. Let be the number of packets in the multiplexer at time n.
(a) Show that the system can be modeled by a Markov chain.
(b) Find the transition probability matrix P.
(c) Find the stationary pmf.

11.12. Let be the Markov chain defined for the urn experiment in Problem 11.2.
(a) Find the one-step transition probability matrix P for
(b) Find the two-step transition probability matrix by matrix multiplication. Check

your answer by computing and comparing it to the corresponding entry in 
(c) What happens to as n approaches infinity? Use your answer to guess the limit of

as n: q .Pn
Xn

P2.p54122
P2

Xn .
Xn

Xn

K: q?

Xn

e.
Xn

P304 = a = 1 - P314.Xn

XnXn

Xn

Xn

Wn .
Dn

Xn .
Xn

Xn

Yn = rYn-1 + Xn Y0 = 0,

Zn .
Zn

Zn = 1Xn ,Xn-12.
Yn

Yn = Xn + Xn-1 .

YnXn
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11.13. Let be the Markov chain defined in Problem 11.3.
(a) Find the one-step transition probability matrix P for with 
(b) Find and by matrix multiplication.
(c) What happens to as n approaches infinity?
(d) Repeat parts a, b, and c if 

11.14. In the Ehrenfest model of heat exchange, two containers hold a total of particles
[Feller, pp. 121]. Each time instant a particle is selected at random and moved to the other
container. Let be the number of particles in the first container.
(a) Show that this model is the same as in Problem 11.3(d).
(b) Use the state transition diagram to explain why the model exhibits a “central

force.”
(c) Show that the stationary pmf is given by a binomial pmf with parameters and 

Give an intuitive explanation for this result.
11.15. Let be the pen-exchange Markov chain defined in Problem 11.4.

(a) Find P.

(b) Use Octave or a numerical program to find and by matrix multiplication.
(c) What happens to as n approaches infinity?

11.16. In the Bernoulli–Laplace model for diffusion, a total of particles are distributed
between two containers, and half of the particles are black and half are white [Feller,
1968, pp. 378]. Each time instant a particle is selected at random from each container
and moved to the other container. Let be the number of white particles in the first
container.
(a) Show that this model is the same as in Problem 11.4(c).
(b) Show that the stationary pmf is given by:

11.17. The vector process in Problem 11.6 has four possible states, so in effect it is equivalent
to a Markov chain with states 
(a) Find the one-step transition probability matrix P.
(b) Find and check your answer by computing the probability of going from state

(0, 1) to state (0, 1) in two steps.
(c) Show that for all Give an intuitive justification for why this is true

for this random process.
(d) Find the steady state probabilities for the process.

11.18. Consider a sequence of Bernoulli trials with probability of success p and let denote
the number of consecutive successes in a streak up to time n.
(a) Show that is a Markov chain.
(b) Find the one-step transition probability and draw the corresponding state transition

diagram.
(c) Find the stationary pmf assuming 

11.19. Two gamblers play the following game. A fair coin is flipped; if the outcome is heads,
player A pays player B $1, and if the outcome is tails player B pays player A $1.The game
is continued until one of the players goes broke. Suppose that initially player A has $1
and player B has $2, so a total of $3 is up for grabs. Let denote the number of dollars
held by player A after n trials.

Xn

p 6 1.

Xn

Xn

n 7 2.Pn = P2

P2

50, 1, 2, 36.
Zn

pj = ¢r
j
≤2n ¢2r

r
≤  for j = 0, 1, Á , r.

Xn

2r
Xn

P8P2, P4,

Xn

1/2.r

Xn

r

a = 1.
Xn

P8P2, P4,
a = 1/10.Xn

Xn



Problems 705

(a) Show that is a Markov chain.
(b) Sketch the state transition diagram for and give the one-step transition probabil-

ity matrix P.
(c) Use the state transition diagram to help you show that for n even (i.e., ),

(d) Find the n-step transition probability matrix for n even using part c.
(e) Find the limit of as 
(f) Find the probability that player A eventually wins.

11.20. A certain part of a machine can be in two states: working or undergoing repair. A working
part fails during the course of a day with probability a.A part undergoing repair is put into
working order during the course of a day with probability b. Let be the state of the part.
(a) Show that is a two-state Markov chain and give its one-step transition probabili-

ty matrix P.
(b) Find the n-step transition probability matrix 
(c) Find the steady state probability for each of the two states.

11.21. A machine consists of two parts that fail and are repaired independently. A working part
fails during any given day with probability a. A part that is not working is repaired by the
next day with probability b. Let be the number of working parts in day n.
(a) Show that is a three-state Markov chain and give its one-step transition proba-

bility matrix P.
(b) Show that the steady state pmf is binomial with parameter 
(c) What do you expect is the steady state pmf for a machine that consists of n parts?

11.22. A stochastic matrix is defined as a nonnegative matrix for which the elements of each
row add to one.
(a) Show that the transition probability matrix P for a Markov chain is a stochastic matrix.
(b) Show that if P and Q are stochastic matrices, then PQ is also a stochastic matrix.
(c) Show that if P is a stochastic matrix, then is also a stochastic matrix.

11.23. Show that if has identical rows, then has identical rows for all 
11.24. Prove Eq. (11.14) by induction.

Section 11.3: Classes of States, Recurrence Properties, and Limiting Probabilities

11.25. (a) Sketch the state-transition diagrams for the Markov chains with the following tran-
sition probability matrices.

(b) Specify the classes of the Markov chains and classify them as recurrent or transient.
(c) Use Octave to calculate the first few powers of each matrix. Note any interesting

behavior.

(i) (ii) (iii)

(iv) (v) D1/2 1/2 0 0
1 0 0 0

1/2 0 1/4 1/4
0 1/4 1/4 1/2

TD0 1/2 1/2 0
0 0 1 0
0 0 1 0
1 0 0 0

T
C1/2 1/2 0

0 1 0
1/2 0 1/2

SC1 0 0
0 0 1
0 1 0

SC 0 1 0
1/2 0 1/2
1 0 0

S

j Ú k.PjPk
Pn

p = b>1a + b2.p

Xn

Xn

Pn.

Xn

Xn

n: q .Pn

pii1n2 = a1
2
bn for i = 1, 2 and p101n2 =

2
3
a1 - a1

4
bkb = p231n2.

n = 2k

Xn

Xn
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11.26. Characterize the long-term behavior of the Markov chains in Problem 11.25. Find the
long-term proportion of time spent in each state. Find the stationary pmf where applica-
ble and determine whether it is unique.

11.27. Consider a three-state Markov chain. Select transition probabilities and sketch the asso-
ciated transition diagram to produce the following attributes:
(a) is irreducible.
(b) is has one transient class and one recurrent class.
(c) is has two recurrent classes.

11.28. (a) Find the transition probability matrices for the Markov chains with the state transi-
tion diagrams shown in Fig. P11.1.

Xn

Xn

Xn

(b) Specify the classes of the Markov chains and classify them as recurrent or transient;
periodic or aperiodic.

(c) Characterize the long-term behavior of the Markov chains and find the long-term
proportion of time spent in each state, and the stationary pmf where applicable.

(d) Use Octave to evaluate for Explain any interesting results you
may find.

11.29. (a) Apply the PageRank modeling procedure to the Markov chains in Problem 11.28 to
find the transition probability matrix.

(b) Find the PageRank value for each node.
11.30. Consider a random walk in the set with transition probabilities

(a) Sketch the state transition diagram.
(b) Find the long-term proportion of time spent in each state, and the limit of as

Evaluate the special case when 
11.31. Repeat Problem 11.30 if the random walk is modified so that

p01 = p, p00 = q, pM,M-1 = q, and pM,M = p.

p = 1/2.n: q .
pii1n2

p01 = 1, pM,M-1 = 1, and pi, i-1 = q pi, i+1 = p for i = 1, Á ,M - 1.

50, 1, Á ,M6

n = 1, 2, 3, 4, 5.Pn
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11.32. For a finite-state, irreducible Markov chain, explain why none of the states can have zero
probability.

11.33. Suppose that state i belongs to a recurrent class of a finite-state Markov chain and that
Show that i belongs to a class which is aperiodic.

11.34. Prove that positive and null recurrence are class properties.
11.35. In this problem we develop expressions for recurrence probabilities and expectations.

Let be the probability that a first return to state i from state i occurs after n
steps; and let be the probability of a return to state i from state i after n steps.

(a) Show that: where Hint: Use conditional probability.

(b) Let A(z) and B(z) be the generating functions of and as defined in Eq. (4.84).

Explain why the series converge for and show that 

(c) Show that 

(d) Show that state i is recurrent if and only if 

11.36. Consider a Markov chain with state space and the following transition prob-
abilities:

(a) Sketch the state transition diagram.
(b) Determine whether the Markov chain is irreducible.
(c) Determine whether state 0 is transient, or null/positive recurrent.
(d) Find an expression for the stationary pmf, if it exists.
(e) Provide specific answers to parts c and d if is given by the following pmfs: (i) geo-

metric; (ii) Zipf. (See Eq. (3.51).)
11.37. Consider a Markov chain with state space and the following transition proba-

bilities:

(a) Sketch the state transition diagram.
(b) Determine whether the Markov chain is irreducible.
(c) Determine whether state 1 is transient, or null/positive recurrent.
(d) Find an expression for the stationary pmf, if it exists.
(e) Provide specific answers to parts c and d if:

(i) (ii) (iii)
(iv) (v)

11.38. Let and be two ergodic Markov chains with the same state space but different tran-
sition probability matrices, and respectively, and different stationary pmf’s.
(a) A new process is constructed as follows. A coin is flipped and if the outcome is heads,

is used to generate the entire sequence; but if the outcome is tails, is used instead.
Is the resulting process Markov and does it have a stationary pmf? Is it ergodic?

(b) Repeat part a if the process is constructed as follows. A coin is flipped before every
time instant and the associated transition probability matrix is used to determine the
next state.

(c) Repeat part a if the state for odd (even) time instants is determined according to P1 1P22.

P2P1

P2 ,P1

YnXn

aj = 1 - 11/22j.aj = 11/22j
aj = 1>jaj = 1j - 12>jaj = 1/2 all j

pjj+1 = aj and pj1 = 1 - aj where 0 6 aj 6 1.

51, 2, Á 6
5fi6

p0j = fj and pjj-1 = 1 where 1 = f1 + f2 + Á + fj + Á .

50, 1, 2, Á 6
lim
z:1
B1z2 = q .

fi = lim
z:1
A1z2.

B1z2 =
1

1 - A1z2 .ƒ z ƒ 6 1,

5bn65an6
b0 = 1, a0 = 0.bn = a

n

j=0
bjan- j

bn = pii1n2
an = fii1n2

pii112 7 0.
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11.39. Find the probability of state 1 for the processes in Problem 11.38(a–c) if and are
two processes from Problem 11.37(e) with two different geometric pmfs in (i) and (iv).

11.40. Construct a multiclass infinite-state Markov chain that has the following attributes:
(a) One class is transient and one class is null recurrent.
(b) One class is null recurrent and one class is positive recurrent.

Section 11.4: Continuous-Time Markov Chains

11.41. Consider the simple queueing system discussed in Example 11.36.
(a) Use the results in Example 11.36 to find the state transition probability matrix.
(b) Find the following probabilities:

11.42. A rechargeable battery in a depot is in one of three states: fully charged, in use, or
recharging. Assume the mean time in each of these states is: 1 hour; 3 hours. Batter-
ies are not put into use unless they are fully charged.
(a) Find a Markov model for the battery states and sketch the state transition diagram.
(b) Find the stationary pmf. Explain how the pmf varies with 

11.43. Suppose that the depot in Problem 11.42 has two batteries. Define the state at time t by
that is, by the number of batteries in each state.

(a) Sketch the state transition diagram for a six-state Markov chain for the system.
(b) Find the stationary pmf and evaluate it for various values of 

11.44. Rolo, a Chihuahua, spends most of the daytime sleeping in the kitchen. When a person
enters the kitchen, Rolo greets him or her and wags her tail for an average time of one
minute. At the end of this period Rolo is fed with probability patted briefly with 
probability or taken for a walk with probability If fed, Rolo spends an average of
two minutes eating. The walks take 15 minutes on average. After eating, being patted, or
walking, she returns to sleep.Assume that people enter the kitchen on average every hour.
(a) Find a Markov chain model with four states: Specify the

transition rate matrix.
(b) Find the steady state probabilities.

11.45. A critical part of a machine has an exponentially distributed lifetime with parameter
Suppose that spare parts are initially in stock, and let N(t) be the number of

spares left at time t.
(a) Find
(b) Find the transition probability matrix.
(c) Find
(d) Plot versus time for 
(e) Give the general solution for for arbitrary and n.

11.46. A shop has machines and one technician to repair them. A machine remains in the
working state for an exponentially distributed time with parameter The techni-
cian works on one machine at a time, and it takes him an exponentially distributed time of
rate to repair each machine. Let X(t) be the number of working machines at time t.
(a) Show that if then the time until the next machine breakdown is an expo-

nentially distributed random variable with rate km.
X1t2 = k,

a = 1

m = 1/3.
n = 3

a 7 0pj1t2
j = 0, 1, 2, 3, 4.pj1t2

pj1t2.
pij1t2 = P3N1s + t2 = j ƒ N1s2 = i4.

n = 4a = 1.

5sleep, greet, eat, walk6.

1/8.5/8,
1/4,

l.

5NF1t2,NU1t2,NC1t26,
l.

1>l;

P3X11.52 = 1,X132 = 14.
P3X11.52 = 1,X132 = 1 ƒX102 = 04

YnXn
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(b) Find the transition rate matrix and sketch the transition rate diagram for X(t).
(c) Write the global balance equations and find the steady state probabilities for X(t).
(d) Redo parts b and c if the number of technicians is increased to 2.
(e) Find the steady state probabilities for arbitrary values of n, and

11.47. A speaker alternates between periods of speech activity and periods of silence. Suppose
that the former are exponentially distributed with mean ms and the latter expo-
nentially distributed with mean Consider a group of independent
speakers and let N(t) denote the number of speakers in speech activity at time t.
(a) Find the transition rate diagram and the transition rate matrix for this system.
(b) Write the global balance equations and show that the steady state pmf is given by a

binomial distribution. Why is this solution not surprising?
(c) Find the steady state probabilities for arbitrary values of n, and

11.48. A continuous-time Markov chain X(t) can be approximated by a sampled-time discrete-
time Markov chain where the sampling interval is seconds.
(a) Find the transition probabilities for if X(t) is the M/M/1 queue in Example 11.39.
(b) Find the stationary pmf for part a. Compare to the answer in the example.

11.49. Consider the single-server queueing system in Example 11.39. Suppose that at most K
customers can be in the system at any time. Let N(t) be the number of customers in the
system at time t. Find the steady state probabilities for N(t).

11.50. (a) Find the embedded Markov chain for the process described in Example 11.39.
(b) Find the stationary pmf of the embedded Markov chain.
(c) Characterize the long-term probabilities of the process using Eq. (11.50).

11.51. Repeat Problem 11.50 for the process described in Example 11.40.
11.52. Suppose that the embedded Markov chain for the process N(t) is given by the discrete-

time Markov chain in Problem 11.36 with given by a geometric pmf. Find the steady
state probabilities of N(t), if they exist, in the following cases:
(a) The occupancy times of all states are exponentially distributed with mean 1.
(b) The occupancy time of state j is exponentially distributed with mean j.
(c) The occupancy time of state j is exponentially distributed with mean 

Section 11.5: Time-Reversed Markov Chains

11.53. N balls are distributed in two urns. At time n, a ball is selected at random, removed from
its present urn, and placed in the other urn. Let denote the number of balls in urn 1.
(a) Find the transition probabilities for 
(b) Argue that the process is time reversible and then obtain the steady state probabili-

ties for 
11.54. A point moves in the unit circle in jumps of Suppose that the process is initially at

0°, and that the probability of is p.
(a) Find the transition probabilities for the resulting Markov chain and obtain the

steady state probabilities.
(b) Is the process reversible? Why or why not?

11.55. Find the transition probabilities for the time-reversed version of the random walk dis-
cussed in Problem 11.31. Is the process reversible?

11.56. Is the Markov chain in Problem 11.16 time reversible?
11.57. Is the Markov chain in Problem 11.17 time reversible?

+90°
;90°.

Xn .

Xn .
Xn

*

2j.

5fi6

Xn

dXn = X1nd2
b.a,

n = 41>b = 400 ms.
1>a = 200

m.a,

3gij4
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11.58. (a) Specify the time-reversed version of the process defined in Problem 11.49. Is the
process reversible?

(b) Find the steady state probabilities of the process using Eq. (11.67).
11.59. Use the results of Example 11.42 to find the stationary pmf of the Markov chains in

Problem 11.37(i).
11.60. Determine whether the simple queueing system in Example 11.36 is reversible.
11.61. Determine whether the machine repair model in Problem 11.46 is reversible.
11.62. (a) Is the speech activity model in Problem 11.47 reversible?

(b) Is the model reversible if 

Section 11.6: Numerical Techniques for Markov Chains

11.63. Consider the urn experiment in Problem 11.2.
(a) Use matrix diagonalization to find an expression for the state pmf as a function of

time. Plot the state pmf vs. time.
(b) Run a simulation for this urn experiment 100 times and build a histogram of the

number of steps that take place until the last black ball is removed.
(c) Derive the pmf for the number of steps that elapse until the last black ball is re-

moved. Compare the theoretical pmf with the observed histogram in part b.
11.64. Consider the Bernoulli–Laplace diffusion model from Problem 11.16 with 

(a) Use matrix diagonalization to obtain an expression for the time-dependent state
pmf. Plot the state pmf vs. time for different initial conditions.

(b) Write a simulation for the model and make several observations of 200-step sample
functions. Is the process ergodic? Is it necessary to perform multiple realizations of
the process, or does it suffice to collect statistics from one long realization?

(c) Compare histograms of the state occupancy and compare to the theoretical result
for: 5 separate realizations of 200 steps; 1 realization of 1000 steps.

(d) Use the autocov function in Octave to estimate the covariance function of the process.
11.65. Consider the data multiplexer in Problem 11.11.

(a) Derive the transition probabilities for the multiplexer assuming a maximum state of
Find the steady state pmf for the following parameters: and

(b) Simulate the data multiplexer for each of the cases in part a. Run the simulation for
1000 steps.

(c) For each realization record a histogram of the length of idle periods (when the sys-
tem remains continuously empty) and the length of the busy periods (when the sys-
tem remains continuously nonempty). Which of the three choices of parameters
above correspond to “heavy traffic”; “light traffic?”

11.66. Consider the gamblers’ experiment in Problem 11.19 with player A beginning with $6
and player B with $3.
(a) Find the transition probability P and obtain an expression for What is the probabil-

ity that player A wins? What is the average time until player A wins (when he wins)?
(b) Simulate 500 trials of the experiment. Find the relative frequency of player A win-

ning and compare to the theoretical result.
(c) Find the mean time until player A wins; until player B wins. Compare to the theoret-

ical results.

Pn.

a = 0.1, a = 0.25, a = 0.50.
b = 0.5N = 100.

r = 5.

*

a = b?
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11.67. Consider the residual lifetime process in Problem 11.36. Assume a machine state of 100.
(a) Simulate 1000 steps of the process with a geometric random variable with mean 5.

Record histograms of the state pmf and obtain the autocovariance of the realization.
(b) Repeat part a with a Zipf random variable of mean 5. Compare the histogram and

autocovariance to those found in part a.
11.68. Consider the age process in Problem 11.37. Assume a machine state of 100.

(a) Simulate 1000 steps of the process with Does the process behave as
expected?

(b) Repeat part a with 
11.69. Consider the battery experiment in Problem 11.43.

(a) Use matrix diagonalization to obtain the time-dependent state transition probabili-
ties for What are the steady state probabilities? What are the corre-
sponding embedded state probabilities?

(b) Simulate 500 hours of operation and observe the histogram of the embedded state
occupancies. Compare to the theoretical results.

11.70. Consider the machine repair model in Problem 11.46. Assume machines,
average working time, and 

(a) Obtain the time-dependent state transition probabilities for 1 and 2 technicians.
What are the steady state probabilities? What are the corresponding embedded
state probabilities?

(b) Simulate 1000 hours of operation and observe the histogram of the embedded state
occupancies. Compare to the theoretical results.

11.71. Use the simulator developed in Example 11.49 to simulate a sampled-time approxima-
tion to the birth-death process shown in Figure 11.20(b). Simulate 200 seconds of an
M/M/1 queue in which jobs arrive at rate jobs per second and jobs complete pro-
cessing at a rate of 1 job every second. Assume the system is initially empty. Show the re-
alizations of the sampled process and measure the proportion of time spent in each state.
Compare these to the theoretical values.

Problems Requiring Cumulative Knowledge

11.72. (a) The Markov chain in Fig. 11.6(b) is started in state 0 at time 0. Find the n-step tran-
sition probability matrix for even and odd numbers of steps. What happens as

(b) Let be an irreducible, periodic, positive recurrent Markov chain in steady state. Is
a cyclostationary random process?

11.73. Let be an ergodic Markov chain. Let be the indicator function for state j at time
n, that is, is 1 if the state at time n is j, and 0 otherwise. What is the limiting value of
the time average of Is this result an ergodic theorem?

11.74. Let X(t) be a continuous-time model for speech activity, in which a speaker is active
(state 1) for an exponentially distributed time with rate and is silent (state 0) for an ex-
ponentially distributed time with rate Assume all active and silence durations are in-
dependent random variables.
(a) Find a two-state Markov chain for X(t).
(b) Find and 
(c) Find the autocorrelation function of X(t).

p11t2.p01t2

b.
a

Ij1n2?
Ij1n2

Ij1n2Xn

Xn

Xn

n: q?

l = 0.9

a = 1.m = 1/10
n = 10

l = 0.1, 1, 10.

aj = 1 - 11/22j.
aj = 1j - 12>j.
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(d) If X(t) is asymptotically wide-sense stationary, find its power spectral density.
(e) Suppose we have n independent speakers, and let N(t) be the total number of speak-

ers active at time t. Find the autocorrelation function of N(t), and its power spectral
density if it is asymptotically wide-sense stationary.

11.75. Let be a continuous-valued discrete-time Markov process.
(a) Find the expression for the joint pdf corresponding to Eq. (11.5).
(b) Find the expression for the two-step transition pdf corresponding to Eq. (11.12a).

11.76. Consider the aquifer in Problem 11.8.
(a) Find a recursive equation for the amount of water in the aquifer in year 

in terms of the amount of water in year n, the amount withdrawn from use and
the amount restored by rainfall Note that the amount of water must be nonneg-
ative.

(b) Find an integral expression relating the steady state pdf of X to the pdf’s of W and
D. Assume that W and D are independent and Gaussian random variables. Propose
possible approaches to solving these equations.

(c) Write a computer simulation to investigate the distribution of X as a function of W
and D assuming: and are iid random variables with the same mean; is iid
random variable, but is independent with a slowly varying mean (with period 100
years) that is equal to that of when averaged over the entire period.Dn

Wn

DnDnWn

Wn .
Dn ,
n + 1Xn+1

Xn



In many applications, scarce resources such as computers and communication sys-
tems are shared among a community of users. Users place demands for these
resources at random times, and they require use of these resources for time periods
whose durations are random. Inevitably requests for the resource arrive while the
resource is occupied, and a mechanism to provide an orderly access to the resource
is required. The most common access control mechanism is to file user requests in a
waiting line or “queue” such as might be formed at a bank by customers waiting to
be served. Resource sharing can also take place in systems of very large scale, e.g.,
peer-to-peers networks, where the “queues” are not as readily apparent.

Queueing theory deals with the study of waiting lines and resource sharing. The
random nature of the demand behavior of customers implies that probabilistic mea-
sures such as average delay, average throughput, and delay percentiles are required
to assess the performance of such systems. Queueing theory provides us with the
probability tools needed to evaluate these measures.

This chapter is organized as follows:

• Section 12.1 introduces the basic structure of a queueing system.
• Section 12.2 develops Little’s formula which provides a fundamental relationship

that is applicable in most queueing systems.
• In Section 12.3 we examine the M/M/1 queue and use it to develop many of the

basic insights into queueing systems.
• Sections 12.4 and 12.5 develop multiserver systems and finite-source systems

which can both be represented by Markov chains.
• Sections 12.6 and 12.7 develop M/G/1 queues which require more complex

modeling.
• Section 12.8 and 12.9 presents Burke’s and Jackson’s theorems which allow us to

model networks of queues.
• Finally Section 12.10 considers the simulation of queueing systems.
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System

Server 1

Server 2

Waiting
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Arriving
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Departing
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(a)

(b)

Blocked
customers

Servers
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N(t)
Ns(t)

Nq(t)
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T

1

2

c

FIGURE 12.1
(a) Elements of a queueing system. (b) Elements of a queueing system model: N(t), number in system;
number in queue; number in service; W, waiting time in queue; service time; and T, total time in the
system.

t,Ns1t2,
Nq1t2,

12.1 THE ELEMENTS OF A QUEUEING SYSTEM

Figure 12.1(a) shows a typical queueing system and Fig. 12.1(b) shows the elements of
a queueing system model. Customers from some population arrive at the system at the
random arrival times where denotes the arrival time of the ith
customer. We denote the customer arrival rate by

The queueing system has one or more identical servers, as shown in Fig. 12.1(a).
The ith customer arrives at the system seeking a service that will require seconds of
service time from one server. If all the servers are busy, then the arriving customer joins
a queue where he remains until a server becomes available. Sometimes, only a limited
number of waiting spaces are available so customers that arrive when there is no room
are turned away. Such customers are called “blocked” and we will denote the rate at
which customers are turned away by lb .

ti

l.
SiS1 , S2 , S3 , Á , Si , Á ,
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The queue or service discipline specifies the order in which customers are select-
ed from the queue and allowed into service. For example, some common queueing dis-
ciplines are first come, first served, and last come, first served. The queueing discipline
affects the waiting time that elapses from the arrival time of the ith customer until
the time when it enters service. The total delay of the ith customer in the system is
the sum of its waiting time and service time:

(12.1)

From the customer’s point of view, the performance of the system is given by the
statistics of the waiting time W and the total delay T, and the proportion of customers
that are blocked, From the point of view of resource allocation, the performance
of the system is measured by the proportion of time that each server is utilized and the
rate at which customers are serviced by the system, These quantities are
a function of N(t), the number of customers in the system at time t, and the num-
ber of customers in queue at time t.

The notation a/b/m/K is used to describe a queueing system, where a specifies
the type of arrival process, b denotes the service time distribution, m specifies the
number of servers, and K denotes the maximum number of customers allowed in
the system at any time. If a is given by M, then the arrival process is Poisson and the
interarrival times are independent, identically distributed (iid) exponential ran-
dom variables. If b is given by M, then the service times are iid exponential random
variables. If b is given by D, then the service times are constant, that is, determinis-
tic. If b is given by G, then the service times are iid according to some general dis-
tribution. For example, in this chapter we deal with M/M/1, M/M/1/K, M/M/c,
M/M/c/c, M/D/1, and M/G/1 queues.

Queueing system models find many applications in electrical and computer engi-
neering. The “servers” in Fig. 12.1 can represent a variety of resources that perform
“work.” For example, in communication networks, the server can represent a communi-
cations line that transmits packets of information. In computer systems, the servers could
represent processes in a computer that each handles Web queries from a particular
client. Modern distributed applications combine these communications and computing
resources into vast networks of interacting queueing systems.

12.2 LITTLE’S FORMULA

We now develop Little’s formula, which states that, for systems that reach steady state,
the average number of customers in a system is equal to the product of the average ar-
rival rate and the average time spent in the system:

(12.2)

This formula is valid under very general conditions, so it is applicable in an amazing
number of situations.

Consider the queueing system shown in Fig. 12.2. The system begins empty at time
and the customer arrival times are denoted by Let A(t) be the number

of customer arrivals up to time t. The ith customer spends time in the system and thenTi

S1 , S2 , Á .t = 0,

E3N4 = lE3T4.

Nq1t2,
ld = l - lb .

lb>l.

Ti = Wi + ti .

Ti

Wi
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at time Si
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time Di

Ti � Di � Si

N(t) � A(t) � D(t)A(t) D(t)

Queueing
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FIGURE 12.2
Time in system is departure time minus arrival time.
Number in system at time t is number of arrivals
minus number of departures.
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FIGURE 12.3
Total time spent by the first seven customers is the area in up to
time t0 .

A1t2 - D1t2

departs at time We will let D(t) be the number of customer departures up to
time t.The number of customers in the system at time t is the number of arrivals that have
not yet left the system:

(12.3)

Figure 12.3 shows a possible sample path for A(t), D(t), and N(t) in a queueing system
with “first come, first served” service discipline.

Consider the time average of the number of customers in the system N(t) during
the interval (0, t]:

(12.4)

In Fig. 12.3, N(t) is the region between A(t) and D(t), so the above integral is given by
the area of the enclosed region up to time t. It can be seen that each customer who has

8N9t = 1
tL

t

0
N1t¿2 dt¿.

N1t2 = A1t2 - D1t2.

Di = Si + Ti .



Section 12.2 Little’s Formula 717

departed the system by time t contributes to the integral, and thus the integral is sim-
ply the total time all customers have spent in the system up to time t.

Consider, for now, a time instant for which as in Fig. 12.3, then
the integral is exactly given by the sum of the of the first A(t) customers:

(12.5)

The average arrival rate up to time t is given by

(12.6)

If we solve Eq. (12.6) for t and substitute into Eq. (12.5), we obtain

(12.7)

Let be the average of the times spent in the system by the first A(t) cus-
tomers, then

(12.8)

Comparing Eqs. (12.7) and (12.8), we conclude that

(12.9)

Finally, we assume that as with probability one, the above time averages
converge to the expected value of the corresponding steady state random processes,
that is,

(12.10)

Equations (12.9) and (12.10) then imply Little’s formula:

(12.11)

The restriction of t to instants where is not necessary.The time average
of N(t) up to an arbitrary time as shown in Fig. 12.3 is given by the average up to time 
plus a contribution from the interval from to If then as t becomes large,
this contribution becomes negligible.

The assumption of first come, first served service discipline is not necessary. It
turns out that Little’s formula holds for many service disciplines. See Problem 12.2 for
examples. In addition, Little’s formula holds for systems with an arbitrary number of
servers.

Up to this point we have implicitly assumed that the “system” is the entire queue-
ing system, so N is the number in the queueing system and T is the time spent in the

E3N4 6 q ,t¿.t0

t0t¿
N1t02 = 0t0

E3N4 = lE3T4.

8T9t: E3T4.
8l9t: l
8N9t: E3N4

t: q ,

8N9t = 8l9t8T9t .

8T9t = 1
A1t2a

A1t2
i=1
Ti .

8T9t
8N9t = 8l9t 1

A1t2a
A1t2
i=1
Ti .

8l9t = A1t2t .

8N9t = 1
ta
A1t2
i=1
Ti .

Ti

N1t2 = 0t = t0
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queueing system. However, Little’s formula is so general that it applies to many inter-
pretations of “system.” Examples 12.1 and 12.2 show other designations for “system.”

Example 12.1 Mean Number in Queue

Let be the number of customers waiting in queue for the server to become available, and
let the random variable W denote the waiting time. If we designate the queue to be the “system,”
then Little’s formula becomes

(12.12)

Example 12.2 Server Utilization

Let be the number of customers that are being served at time t, and let denote the service
time. If we designate the set of servers to be the “system,” then Little’s formula becomes

(12.13)

is the average number of busy servers for a system in steady state.
For single-server systems, can only be 0 or 1, so represents the proportion of

time that the server is busy. If denotes the steady state probability that the
system is empty, then we must have that

(12.14)

or

(12.15)

since is the proportion of time that the server is busy. For this reason, the utilization of a
single-server system is defined by

(12.16)

We similarly define utilization of a c-server system by

(12.17)

From Eq. (12.13), represents the average fraction of busy servers.

12.3 THE M/M/1 QUEUE

Consider a single-server system in which customers arrive according to a Poisson process
of rate so the interarrival times are iid exponential random variables with mean 
Assume that the service times are iid exponential random variables with mean and
that the interarrival and service times are independent. In addition, assume that the sys-
tem can accommodate an unlimited number of customers. The resulting system is an
M/M/1 queueing system. In this section we find the steady state pmf of N(t), the number
of customers in the system, and the pdf of T, the total customer delay in the system.

1>m,
1>l.l

r

r =
lE3t4
c

.

r = lE3t4.

1 - p0

p0 = 1 - lE3t4,

1 - p0 = E3Ns4 = lE3t4

p0 = P3N1t2 = 04
E3Ns4Ns1t2

E3Ns4
E3Ns4 = lE3t4.

tNs1t2

E3Nq4 = lE3W4.
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12.3.1 Distribution of Number in the System

The number of customers N(t) in an M/M/1 system is a continuous-time Markov
chain. To see why, suppose we are given that and consider the next possi-
ble change in the number in the system. The time until the next arrival is an expo-
nential random variable that is independent of the service times of customers
already in the system. The memoryless property of the exponential random variable
implies that this interarrival time is independent of the present and past history of
N(t). If the system is nonempty (i.e., ) the time until the next departure is
also an exponential random variable. The memoryless property implies that the
time until the next departure is independent of the time already spent in service.
Thus if we know that then the past history of the system is irrelevant as
far as the probabilities of future states are concerned. This is the property required
of a Markov chain.

To find the transition rates for N(t), consider the probabilities of the various ways
in which N(t) can change.

(i) Since A(t), the number of arrivals in an interval of length t, is a Poisson process,
the probability of one arrival in an interval of length is

(12.18)

(ii) Similarly, the probability of more than one arrival is

(12.19)

(iii) Since the service time is an exponential random variable the time a customer
has spent in service is independent of how much longer he will remain in ser-
vice because of the memoryless property of In particular, the probability of a
customer in service completing his service in the next seconds is

(12.20)

(iv) Since service times and the arrival process are independent, the probability of
one arrival and one departure in an interval of length is

(12.21)

from Eqs. (12.18) and (12.20). Similarly, the probability of any change that in-
volves more than a single arrival or a single departure is 

Properties (i) through (iv) imply that N(t) has the transition rate diagram shown in
Fig. 12.4.The global balance equations for the steady state probabilities are

(12.22)1l + m2pj = lpj-1 + mpj+1 j = 1, 2, Á .

lp0 = mp1

o1d2.
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d
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t.

t,

P3A1d2 Ú 24 = o1d2.
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+
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FIGURE 12.4
Transition rate diagram for M/M/1 system.

In Example 11.39, we saw that a steady state solution exists when 

(12.23)

The condition must be met if the system is to be stable in the sense
that N(t) does not grow without bound. Since is the maximum rate at which the serv-
er can process customers, the condition is equivalent to

(12.24)

If the inequality is violated, we have customers arriving at the system faster than they
can be processed and sent out. This is an unstable situation in which the number in the
queue will grow steadily without bound.

The mean number of customers in the system is given by

(12.25)

where we have used the fact that N has a geometric distribution (see Table 3.1).
The mean total customer delay in the system is found from Eq. (12.25) and Lit-

tle’s formula:

(12.26)

The mean waiting time in queue is given by the mean of the total time in the sys-
tem minus the service time:

(12.27)

Little’s formula then gives the mean number in queue:

(12.28)=
r2
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FIGURE 12.5
Mean number of customers in the system versus utilization for M/M/1
queue.
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FIGURE 12.6
Mean total customer delay versus utilization for M/M/1 system. The delay
is expressed in multiples of mean service times.

The server utilization (defined in Example 12.2) is given by

(12.29)

Figures 12.5 and 12.6 show E[N] and E[T] versus It can be seen that as approaches
one, the mean number in the system and the system delay become arbitrarily large.

Example 12.3

A router receives packets from a group of users and transmits them over a single transmission line.
Suppose that packets arrive according to a Poisson process at a rate of one packet every 4 ms, and
suppose that packet transmission times are exponentially distributed with mean 3 ms.

rr.

1 - p0 = 1 - 11 - r2 = r =
l

m
.
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Find the mean number of packets in the system and the mean total delay in the system. What
percentage increase in arrival rate results in a doubling of the above mean total delay?

The arrival rate is 1/4 packets/ms and the mean service time is 3 ms. The utilization is
therefore

The mean number of packets in the system is then

The mean time in the system is

The mean time in the system will be doubled to 24 ms when

The resulting utilization is and the corresponding arrival rate is 
The original arrival rate was 6/24. Thus an increase in arrival rate of leads to a
100% increase in mean system delay.

The point of this example is that the onset of congestion is swift. The mean delay increases
rapidly once the utilization increases beyond a certain point.

Example 12.4 Concentration and Effect of Scale

A large processor handles transactions at a rate of transactions per second. Suppose transac-
tions arrive according to a Poisson process of rate transactions/second, and that transactions
require an exponentially distributed amount of processing time. Suppose that a proposal is made
to eliminate the large processor and to replace it with K processors, each with a processing rate of

transactions per second and an arrival rate of Compare the mean delay performance of the
existing and the proposed systems.

The large processor system is an M/M/1 queue with arrival rate service rate and
utilization The mean delay is given by Eq. (12.26):

Each of the small processors is an M/M/1 system with arrival rate service rate and
utilization The mean delay is

Thus, the system with the single large processor with processing rate has a smaller mean
delay than the system with K small processors each of rate In other words, the concentration of
customer demand into a single system results in significant delay performance improvement.

m.
Km

E3T¿4 =
E3t¿4
1 - r

=
1>m

1 - r
= KE3T4.

r = l>m.
m,l,

E3T4 =
E3t4
1 - r

=
1>Km
1 - r

.

r = Kl>Km = l>m.
Km,Kl,

l.m

Kl
Km

1/6 = 17%
l¿ = r¿m = 7/24.r¿ = 7/8

24 =
E3t4

1 - r¿
=

3
1 - r¿

.

E3T4 =
E3N4
l

=
3

1/4
= 12 ms.

E3N4 =
r

1 - r
= 3.

r =
1
4
132 =

3
4

.
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12.3.2 Delay Distribution in M/M/1 System and Arriving Customer’s Distribution

Let denote the number of customers found in the system by a customer arrival. We
call the arriving customer’s distribution. We now show that if arrivals are
Poisson and independent of the system state and customer service times, then the
arriving customer’s distribution is equal to the steady state distribution for the number in
the system. A customer that arrives at time finds k in the system if thus

where we have used the definition of conditional probability. The probability of an ar-
rival in the interval is independent of N(t), thus

Thus the probability that is simply the proportion of time during which the sys-
tem has k customers in the system. For the M/M/1 queueing system under considera-
tion we have

(12.30)

We are now ready to compute the distribution for the total time T that a cus-
tomer spends in an M/M/1 system. Suppose that an arriving customer finds k in the sys-
tem, that is, If the service discipline is “first come, first served,” then T is the
residual service time of the customer found in service, the service times of the 
customers found in queue, and the service time of the arriving customer. The memory-
less property of the exponential service time implies that the residual service time of
the customer found in service has the same distribution as a full service time. Thus T is
the sum of iid exponential random variables. In Example 7.5 we saw that this
sum has the gamma pdf

(12.31)

The pdf of T is found by averaging over the probability of an arriving customer
finding k messages in the system, Thus the pdf of T is

= a
q

k=0

1mx2k
k!
me-mx11 - r2rk

fT1x2 = a
q

k=0

1mx2k
k!
me-mxP3N1t2 = k4

P3Na = k4.

fT1x ƒ Na = k2 =
1mx2k
k!
me-mx x 7 0.

k + 1

k - 1
Na = k.

P3Na = k4 = P3N1t2 = k4 = 11 - r2rk.

Na = k

= P3N1t2 = k4.
P3Na1t2 = k4 = lim

d:0

P3A1t + d2 - A1t2 = 14P3N1t2 = k4
P3A1t + d2 - A1t2 = 14

1t, t + d]

= lim
d:0

P3A1t + d2 - A1t2 = 1 ƒ N1t2 = k4P3N1t2 = k4
P3A1t + d2 - A1t2 = 14 ,

= lim
d:0

P3N1t2 = k, A1t + d2 - A1t2 = 14
P3A1t + d2 - A1t2 = 14

P3Na1t2 = k4 = lim
d:0
P3N1t2 = k ƒ A1t + d2 - A1t2 = 14

N1t2 = k,t + d

P3Na = k4
Na
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(12.32)

Thus T is an exponential random variable with mean Note that this is in
agreement with Eq. (12.26) for the mean of T obtained through Little’s formula.

We can similarly show that the pdf for the waiting time is

(12.33)

Example 12.5
Find the 95% percentile of the total delay.

The pth percentile of T is that value of x for which

which yields

(12.34)

The 95% percentile is obtained by substituting above. The result is E[T].

12.3.3 The M/M/1 System with Finite Capacity

Real systems can only accommodate a finite number of customers, but the assumption
of infinite capacity is convenient when the probability of having a full system is negligi-
ble. Consider the M/M/1/K queueing system that is identical to the M/M/1 system with
the exception that it can only hold a maximum of K customers in the system. Customers
that arrive when the system is full are turned away.

The process N(t) for this system is a continuous-time Markov chain that
takes on values from the set with transition rate diagram as shown in
Fig. 12.7. It can be seen that the arrival rate into the system is now zero when

The transition rates from the other states are the same as for the M/M/1
system.
N1t2 = K.

50, 1, Á ,K6

x = 3.0p = .95

x =
1

m - l
ln

1
1 - p

= -E3T4 ln11 - p2.

= L
x

0
1m - l2e-1m-l2y dy = 1 - e-1m-l2x,

p = P3T … x4

fW1x2 = 11 - r2d1x2 + l11 - r2e-m11-r2x x 7 0.

1>1m - l2.
= 1m - l2e-1m-l2x x 7 0.

= 11 - r2me-mxemrx
= 11 - r2me-mxa

q

k=0

1mrx2k
k!

l

m m m

KK � 1j 
 1j10

l l

FIGURE 12.7
Transition rate diagram for M/M/1/K system.
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P[N � k]

P[N � k]
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k
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k

FIGURE 12.8
Typical pmf’s for N(t) of M/M/1/K system.

The global balance equations are now

(12.35)

Let It can be readily shown (see Problem 12.14) that the steady state probabili-
ties are

(12.36)

for or When all the states are equiprobable. Figure 12.8 shows the
steady state probabilities for various values of 

The mean number of customers in the system is given by

(12.37)

The mean total time spent by customers in the system is found from Eq. (12.37) by
using Little’s formula with the rate of arrivals that actually enter the system. The
proportion of time when the system turns away customers is Thus
the system turns away customers at the rate

(12.38)lb = lpK ,

P3N1t2 = K4 = pK .
la ,

= d r

1 - r
-
1K + 12rK+1

1 - rK+1 for r Z 1

K

2
for r = 1.

E3N4 = a
K

j=0
jP3N1t2 = j4

r.
r = 1r 7 1.r 6 1

P3N = j4 =
11 - r2rj
1 - rK+1 j = 0, 1, 2, Á ,K

r = l>m.

mpK = lpK-1 .

1l + m2pj = lpj-1 + mpj+1 j = 1, 2, Á ,K - 1

lp0 = mp1
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FIGURE 12.9
(a) Carried load versus offered load for M/M/1/K system with and (b) Mean customer delay versus offered load
in M/M/1/K system with and K = 10.K = 2

K = 10.K = 2

and the actual arrival rate into the system is

(12.39)

Applying Little’s formula to Eq. (12.37) we obtain

(12.40)

In finite-capacity systems, it is necessary to distinguish between the traffic load
offered to a system and the actual load carried by the system. The offered load, or
traffic intensity, is a measure of the demand made on the system and is defined as

(12.41)

The carried load is the actual demand met by the system:

(12.42)

Example 12.6 Mean Delay and Carried Load Versus K

Figure 12.9(a) gives a comparison of the carried load versus the offered load for two values of
K. It can be seen that increasing the capacity K results in an increase in carried load since more
customers are allowed into the system. Figure 12.9(b) gives the corresponding values for the
mean delay. We see that increasing K results in increased delays, again because more customers
are allowed into the system.

Example 12.7

Suppose that an M/M/1 model is used for a system that has capacity K, and that the probability
of rejecting customers is approximated by Compare this approximation to the exact
probability given by the M/M/1/K model.

P3N = K4.

r

la
customers

second
* E3t4 seconds of service

customer
.

l
customers

second
* E3t4 seconds of service

customer
.

E3T4 =
E3N4
la

=
E3N4

l11 - pK2 .

la = l11 - pK2.
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For the M/M/1 system the above probability is given by

For the probability of rejecting a customer in the M/M/1/K system is

For and K large, For the M/M/1 approximation breaks
down and gives a negative probability.

12.4 MULTI SERVER SYSTEMS: M/M/C,M/M/C/C,AND 

We now modify the M/M/1 system to consider queueing systems with multiple servers.
In particular, we consider systems with iid exponential interarrival times and iid expo-
nential service times. As in the case of the M/M/1 system, the resulting systems can be
modeled by continuous-time Markov chains.

12.4.1 Distribution of Number in the M/M/c System

The transition rate diagram for an M/M/c system is shown in Fig. 12.10. As before, ar-
rivals occur at a rate The difference now is that the departure rate is when k
servers are busy. To see why, suppose that k of the servers are busy, then the time until
the next departure is given by

where are iid exponential random variables with parameter The complementary
cdf of this random variable is

(12.43)= e-kmt.

= e-mte-mtÁ e-mt
= P3t1 7 t4P3t2 7 t4Á P3tk 7 t4
= P3t1 7 t, t2 7 t, Á , tk 7 t4

P3X 7 t4 = P3min1t1 , t2 , Á , tk2 7 t4

m.ti

X = min1t1 , t2 , Á , tk2,

kml.

M/M/ˆ

r 7 1,P3N = k4 M P3N¿ = K4.r 6 1

P3N¿ = K4 =
11 - r2rK
1 - rK+1

= 11 - r2rK51 + rK+1 + 1rK+122 + Á6.
r 6 1,

P3N = K4 = 11 - r2rK.

l

m 2m cm cm cm

c jc � 1

(c � 1) m

c 
 1 j 
 1c � 2210

l l l ll

FIGURE 12.10
Transition rate diagram for M/M/c system.
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Thus the time until the next departure is an exponential random variable with mean
So when k servers are busy, customers depart at rate When the number of cus-

tomers in the system is greater than c, all c servers are busy and the departure rate is 
We obtain the steady state probabilities for the M/M/c system from the general

solution for birth-and-death processes found in Example 11.40.The probabilities of the
first c states are obtained from the following recursion (see Eq. 11.45):

which leads to

(12.44)

where

(12.45)

The probabilities for states equal to or greater than c are obtained from the following
recursion:

which leads to

(12.46a)

(12.46b)

where we have used Eq. (12.44) with and where

(12.47)

Finally is obtained from the normalization condition:

The system is stable and has a steady state if the term inside the brackets is finite. This is
the case if the second series converges, which in turn requires that or equivalently,

(12.48)

In other words, the system is stable if the customer arrival rate is less than the total rate
at which the c servers can process customers. The final form for is

(12.49)p0 = bac-1

j=0

aj

j!
+
ac

c!
1

1 - r
r-1

.

p0

l 6 cm.

r 6 1,

1 = a
q

j=0
pj = p0bac-1

j=0

aj

j!
+
ac

c!a
q

j=c
rj-c r .

p0

r =
l

cm
.

j = c

=
rj-cac

c!
p0 ,

pj = rj-cpc j = c, c + 1, c + 2, Á

pj =
l

cm
pj-1 j = c, c + 1, c + 2, Á ,

a =
l

m
.

pj =
aj

j!
p0 j = 0, 1, Á , c,

pj =
l

jm
pj-1 j = 1, Á , c,

cm.
km.1>km.
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The probability that an arriving customer finds all servers busy and has to wait in
queue is an important parameter of the M/M/c system:

(12.50)

This probability is called the Erlang C formula and is denoted by C(c, a):

(12.51)

The mean number of customers in queue is given by

(12.52)

The mean waiting time is found from Little’s formula:

(12.53)

The mean total time in the system is

(12.54)

Finally, the mean number in the system is found from Little’s formula:

(12.55)

where we have used Equation (12.54).

Example 12.8

A company has two 1 Megabit/second lines connecting two of its sites. Suppose that packets for
these lines arrive according to a Poisson process at a rate of 150 packets per second, and that
packets are exponentially distributed with mean 10 kbits. When both lines are busy, the system
queues the packets and transmits them on the first available line. Find the probability that a
packet has to wait in queue.

First we need to compute The system parameters are packets/sec,
and Therefore:

p0 = b1 + 1.5 +
11.522

2!
1

1 - 3/4
r-1

=
1
7

.

r = l/cm = 3/4.1/m = 10 kbit/1 Mbit/s = 10 ms, a = l/m = 1.5
c = 2, l = 150p0 .

E3N4 = lE3T4 = E3Nq4 + a,

E3T4 = E3W4 + E3t4 = E3W4 +
1
m

.

=
1>m

c11 - r2C1c, a2.

E3W4 =
E3Nq4
l

=
r

1 - r
C1c, a2.

=
r

11 - r22pc

E3Nq4 = a
q

j=c
1j - c2rj-cpc = pca

q

j¿ =0
j¿rj¿

C1c, a2 =
pc

1 - r
= P3W 7 04.

P3W 7 04 = P3N Ú c4 = a
q

j=c
rj-cpc =

pc
1 - r

.
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System 1: M/M/1

System 2: M/M/2
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FIGURE 12.11
M/M/1 and M/M/2 systems with the same arrival rate 
and the same maximum processing rate.

The probability of having to wait is then

Example 12.9 M/M/1 Versus M/M/c

Compare the mean delay and mean waiting time performance of the two systems shown in Fig. 12.11.
Note that both systems have the same processing rate.

For the M/M/1 system, so the mean waiting time is

and the mean total delay is

For the M/M/2 system, and The probability of an empty
system is

The Erlang C formula is

C12, 12 =
a2>2

1 - r
p0 =

1
3

.

p0 = b1 + a +
a2>2

1 - 1>2 r-1

=
1
3

.

r = l/2m¿ = 1/2.a = l>m¿ = 1,

E3T4 =
1>m

1 - r
= 2 s.

E3W4 =
r>m

1 - r
= 1 s,

r = l>m = 11/22>1 = 1/2,

C12, 1.52 =
11.522

2!
p0

1
1 - r

=
9

14
.
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The mean waiting time is then

and the mean delay is

Thus the M/M/1 system has a smaller total delay but a larger waiting time than the M/M/2. In gen-
eral, increasing the number of servers decreases the waiting time but increases the total delay.

12.4.2 Waiting Time Distribution for M/M/c

Before we compute the pdf of the waiting time, consider the conditional probability that
there are customers in queue given that all servers are busy (i.e., ):

(12.56)

This geometric pmf suggests that when all the servers are busy, the M/M/c system
behaves like an M/M/1 system. We use this fact to compute the cdf of W.

Suppose that a customer arrives when there are k customers in queue.There must
be service completions before our customer enters service. From Eq. (12.43),
each service completion is exponentially distributed with rate Thus the waiting time
for our customer is the sum of iid exponential random variables with parameter

which we know is a gamma random variable with parameter 

(12.57)

The cdf for W given that or equivalently is obtained by combin-
ing Eqs. (12.56) and (12.57):
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The cdf of W is then

(12.58)

Since where W and are independent random variables, it is easy to show
that if the cdf of T is

(12.59)

Example 12.10

What is the probability that a packet has to wait more than one minute in the system discussed
in Example 12.8?

In Example 12.8 we found that and that the probability of having to wait is

The probability of having to wait more than one minute is

12.4.3 The M/M/c/c Queueing System

The M/M/c/c queueing system has c servers but no waiting room. Customers that arrive
when all servers are busy are turned away. The transition rate diagram for this system
is shown in Fig. 12.12, where it can be seen that the arrival rate is zero when 

The steady state probabilities for this system have the same form as those for
states c in the M/M/c system:

(12.60)

where

(12.61)a =
l

m

pj =
aj

j!
p0 j = 0, Á , c,

0, Á ,

N1t2 = c.

=
9

14
e-2 = 0.3045.

= C1c, a2e-cm11-r21 =
9

14
e-20011/4210.0402

P3W 7 14 = 1 - P3W … 14

C12, 1.52 =
9

14
.

p0 = 1/7
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a - c + P3W = 04

c - 1 - a
e-mx +

C1c, a2
c - 1 - a

e-cm11-r2x.

a Z c - 1,
tT = W + t,

= 1 - C1c, a2e-cm11-r2x.
= 11 - C1c, a22 + 11 - e-cm11-r2x2C1c, a2
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l
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FIGURE 12.12
Transition rate diagram for M/M/c/c system.
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is the offered load and

(12.62)

The Erlang B formula is defined as the probability that all servers are busy:

(12.63)

The actual arrival rate into the system is then

(12.64)

The average number in the system is obtained from Little’s formula:

(12.65)

Note that E[N] is also equal to the carried load as defined by Eq. (12.42).
The Erlang B formula depends only on the arrival rate the mean service time

and the number of servers c. It turns out that Eq. (12.63) also gives the
probability of blocking for M/G/c/c systems (see Ross, 1983).

Example 12.11

A company has five 1 Megabit per second lines to carry videoconferences between two compa-
ny sites. Suppose that each videoconference requires 1 Mbps and lasts for an average of 1 hour.
Assume that requests for videoconferences arrive according to a Poisson process with rate 3 calls
per hour. Find the probability that a call request is blocked due to lack of lines.

The offered load is The blocking probability is then:

The Queueing System

Consider a system with Poisson arrivals and exponential service times, and suppose
that the number of servers is so large that arriving customers always find a server
available. In effect we have a system with an infinite number of servers. If we allow c
to approach infinity for the M/M/c/c system, we obtain the system with the
transition rate diagram shown in Fig. 12.13.

M/M/q

M/M/ˆ

B15, 32 =
35/5!

1 + 3 + 9/2 + 27/6 + 81/24 + 243/120
= 0.11.

a = l/m = 3 calls/hr * 1 hr/call = 3.

E3t4 = 1>m,
l,

E3N4 = laE3t4 =
l

m
11 - B1c, a22.

la = l11 - B1c, a22.

B1c, a2 = P3N = c4 = pc =
ac>c!

1 + a + a2>2! + Á + ac>c! .

p0 = bac
j=0

aj

j!
r-1

.

l

m 2m ( j 
 1) m

j 
 1j210
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FIGURE 12.13
Transition rate diagram for system.M>M>q
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The steady state probabilities are also found by letting c approach infinity in the
equations for the M/M/c/c system:

(12.66)

where Thus the number of customers in the system is a Poisson random
variable. The mean number of customers in the system is

Example 12.12

Subscribers connect to a university’s online catalog at a rate of 4 subscribers per minute. Sessions
have an average duration of 5 minutes. Find the probability that there are more than 25 users online.

The offered load is The
pmf for the number of users connected is a Poisson random variable with mean 20. The proba-
bility that there are more than 25 in the system is:

where we used the Octave function poisson_cdf(25,20).

12.5 FINITE-SOURCE QUEUEING SYSTEMS

Consider a single-server queueing system that serves K sources as shown in Fig. 12.14(a).
Each source can be in one of two states: In the first state, the source is preparing a
request for service from the server; in the second state, the source has generated a re-
quest that is either waiting in queue or being served. For example, the sources could
represent K machines and the server could represent a repairman who repairs machines
when they break down. In another example, the K sources could represent clients that
generate queries for a Web server as shown in Fig. 12.14(b).

P[N 7 25] = 1 - a
25

j=0

25j

j!
e-25 = 0.888

a = l/m = 4 subscribers>minute * 5 minutes>subscriber = 20.

E3N4 = a.

a = l>m.

pj =
aj

j!
e-a j = 0, 1, 2, Á ,

Web server

Client 1

Client 2

Client K

0

1

(a) (b)

K

m

FIGURE 12.14
(a) A finite-source single-server system. (b) A multi-user computer system.
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FIGURE 12.15
Transition rate diagram for a finite-source single-server system.

Let N(t) be the number of requests in the system. We assume that each source
spends an exponentially distributed amount of time with mean preparing each ser-
vice request. Thus when idle, a source generates a request for service in the interval

with probability If the state of the system is then the
number of idle sources is so the rate at which service requests are generated is

We also assume that the time required to service each request is an expo-
nentially distributed amount of time with mean N(t) is then the continuous-time
Markov chain with the transition rate diagram shown in Fig. 12.15.

The steady state probabilities are found using the results obtained in Example
11.40:

(12.67)

where

(12.68)

We first compute the mean arrival rate and the mean delay E[T] indirectly. In
the last part of the section we show how they can be calculated directly. The server uti-
lization is the proportion of time when the system is busy, thus

(12.69)

where is given by Eq. (12.68). The mean arrival rate to the queue can then be found
from Little’s formula with “system” defined as the server:

which implies

(12.70)

A source takes an average time of to generate a request and then spends time
E[T] having it serviced in the queueing system.Thus each source generates a request at
the rate requests per second. Since the actual arrival rate must equal
the rate at which the K sources generate requests, we have

(12.71)l =
K

1>a + E3T4 .

11>a + E3T42-1

1>a
l =

r

E3t4 = mr = m11 - p02.

lE3t4 = r = 1 - p0 ,

p0

r = 1 - p0 ,

r

l

p0 = baK
k=0

K!
1K - k2! a

a

m
bk r-1

.

pk =
K!

1K - k2! a
a

m
bkp0 k = 0, 1, Á ,K,

1>m.
1K - k2a.

K - k,
N1t2 = k,ad + o1d2.1t, t + d2

1>a
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The mean delay in the system for each request is found by solving for E[T]:

(12.72)

Finally, we can apply Little’s formula to Eq. (12.72) to obtain the mean number in
the system:

(12.73)

Note that this implies that is the mean number of idle sources. The mean waiting
time is obtained by subtracting the mean service time from E[T]:

(12.74)

The proportion of time that a source spends waiting for the completion of a service re-
quest is the ratio of the time spent in the system to the mean cycle time:

(12.75)

Example 12.13 Web Server System

Some Web server designs place a limit K on the number of clients that can interact with it at any
given time.The set of K clients generate queries to the Web server as follows. Each client spends an
exponentially distributed “think” time preparing a transaction request, and the server takes an ex-
ponentially distributed time processing each request. The “throughput” of the server is defined as
the rate at which it completes transactions. The response time is the total time a transaction spends
in the server. Find expressions for the throughput and response time for two extreme cases: K small
and K large.

When K is sufficiently small, there is no waiting in queue, so

(12.76)

and by Eq. (12.71),

(12.77)

Thus grows linearly with K. As K increases, the server eventually becomes fully utilized, and
then answers queries at its maximum rate, namely transactions per second. Thus

(12.78)

and Eq. (12.72) becomes

(12.79)E3T4 =
K

m
-

1
a

forK large.

l M m forK large,

m

l

l =
K

1>a + 1>m forK small.

E3T4 M
1
m

forK small,

P3source busy4 =
E3T4

E3T4 + 1>a .

E3W4 = E3T4 -
1
m

.

l>a
E3N4 = lE3T4 = K -

l

a
.

E3T4 =
K

l
-

1
a

.
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FIGURE 12.16
Delay and throughput for finite-source system as a function of number of sources. Dashed lines show small-K and large-K
asymptotes.

These asymptotic expressions for the throughput and response time are shown in Fig. 12.16(a) and
(b).The value of K where the two asymptotes for E[T] intersect is called the system saturation point,

(12.80)

When K becomes larger than the queries from different clients are certain to interfere with
one another and the response time increases accordingly.

12.5.1 Arriving Customer’s Distribution

In the above discussion, we found and E[T] in a roundabout way (see Eqs.
12.70, 12.71, and 12.72). To calculate E[T] directly, we argue as follows. If we assume a
first-come, first-served service discipline, then a customer who arrives when there are

requests in the queueing system spends a total time in the system equal to the
sum of 1 residual service time, service times, and the customer’s own service
time. Since all of these times are iid exponential random variables with mean the
mean time in the system for our request is

The mean time in the system is then found by averaging over 

(12.81)

The difficulty with the above equation is that arrivals are not Poisson—remember
that the arrival rate is and thus depends on the state of the system. Con-
sequently, the distribution of states seen by an arriving customer is not the same as

1K - N1t22a,

E3T4 =
1
ma
K-1

k=0
1k + 12P3Na = k4.

Na:

E3T ƒ Na = k4 =
k + 1
m

.

1>m,
k - 1

Na = k

l, E3N4,
*

K*,

K* =
1>m + 1>a

1>m .
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the proportion of time that there are k requests in the queueing system. For
example, a service request cannot be generated when all sources have requests in the
system, that is, so However, is nonzero since it
is possible for all sources to have requests in the queueing system simultaneously.

To find we need to find the long-term proportion of time that arriving
customers find k customers in the system. Since is the long-term
proportion of time the system is in state k, then in a very long time interval of duration

approximately seconds are spent in state k. The arrival rate when is
requests per second, so the number of arrivals that find k requests is ap-

proximately

(12.82)

The total number of arrivals in time is obtained by summing over all states:

(12.83)

Thus the proportion of arrivals that find k requests in the system is

(12.84)

If we compare Eq. (12.84) with Eq. (12.67), we see that Eq. (12.84) is the steady state
probability of having k customers in a system with sources. In other words, a
source when placing a request “sees” a queueing system that behaves as if the source
were not present at all!

We leave it up to you in Problem 12.37 to show that Eqs. (12.84) and (12.81) give
E[T] as given in Eq. (12.72). Indeed, this same approach can be used to find the pdf of T.

12.6 M/G/1 QUEUEING SYSTEMS

We now consider single-server queueing systems in which the arrivals follow a Poisson
process but in which the service times need not be exponentially distributed. We as-
sume that the service times are independent, identically distributed random variables
with general pdf The resulting queueing system is denoted by M/G/1.

The number of customers N(t) in an M/G/1 system is a continuous-time random
process. Recall that the “state” of the system is the information about the past history

ft1x2.

K - 1

=
31K - 12!>1K - k - 12!41a>m2k

a
K-1

j=0
31K - 12!>1K - j - 12!41a>m2j

0 … k … K - 1.

=
1K - k23K!>1K - k2!41a>m2kp0

a
K

j=0
1K - j23K!>1K - j2!41a>m2jp0

P3Na = k4 =
1K - k2apkT¿
a
K

j=0
1K - j2apjT¿

=
1K - k2pk
a
K

j=0
1K - j2pj

a
K

j=0
1K - j2apjT¿.
T¿

1K - k2a customers>second * pkT¿ seconds in state k.

1K - k2a N1t2 = kpkT¿T¿

pk = P3N1t2 = k4
P3Na = k4

P3N = K4P3Na = K4 = 0.N1t2 = K,

P3N = k4,



Section 12.6 M/G/1 Queueing Systems 739

R(t)
t

t1 t2 t3 tj

FIGURE 12.17
Sequence of service times and a residual service time.

of the system that is relevant to the probabilities of future events. In the preceding sec-
tions, customer interarrival times and service times were exponential distributions, so
N(t) was always the state of the system. This is no longer the case for M/G/1 systems.
For example, if service times are constant, then knowledge about when a customer
began service specifies the customer’s future departure time. Thus the state of an
M/G/1 system at time t is specified by N(t) together with the remaining (“residual”)
service time of the customer being served at time t.

In this section we present a simple approach based on Little’s formula that gives
the mean waiting time and mean delay in an M/G/1 system. We also use this simple ap-
proach to find the mean waiting times in M/G/1 systems that have priority classes.

12.6.1 The Residual Service Time

Suppose that an arriving customer finds the server busy, and consider the residual time
of the customer found in service. Let be the iid sequence of service times of
customers in this M/G/1 system, and suppose we divide the positive time axis into seg-
ments of length as shown in Fig. 12.17. We can then view customers who ar-
rive when the server is busy as picking a point at random on this time axis.The residual
service time is then the remainder of time in the segment that is intercepted as shown
in Fig. 12.17.

In Example 7.21 we showed that the long-term proportion of time that the resid-
ual service time exceeds x is given by

(12.85)

Since the arrival times of Poisson customers are independent of the system state,
Eq. (12.85) is also the probability that the residual service time R of a customer found
in service exceeds x, that is,

(12.86)

The pdf of R is then

(12.87)

The mean residual time is

E3R4 = L
q

0
x

1 - Ft1x2
P3t4 dx.

fR1x2 = -
d

dx
P3R 7 x4 =

1 - Ft1x2
E3t4 .

P3R 7 x4 =
1
E3t4L

q

x
11 - Ft1y22 dy.

1
E3t4L

q

x
11 - Ft1y22 dy.

t1 , t2 , Á

t1 , t2 , Á
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Integrating by parts with and we obtain

(12.88)

Example 12.14

Compare the residual service times of two systems with exponential service times of mean m and
constant service times of mean m, respectively.

For an exponential service time of mean m, the second moment is thus the mean
residual service time is, from Eq. (12.88),

Thus the mean residual time is the same as the full service time of a customer. This is consistent
with the memoryless property of the exponential random variable.

The second moment of a constant random variable of value m is Thus the mean resid-
ual service time is

which is what one would expect; on the average we expect to wait half a service time.

12.6.2 Mean Delay in M/G/1 Systems

Consider the time W spent by a customer waiting for service in an M/G/1 system. If the
service discipline is first come, first served, then W is the sum of the residual service
time of the customer (if any) found in service and the service times
of the customers (if any) found in queue. Thus the mean waiting time is then

(12.89)

since the service times are iid with mean (see Eq. 7.13). From Little’s formula we
have that so

(12.90)

The residual service time encountered by an arriving customer is zero when
the system is found empty, and R, as defined in the previous section, when a customer
is found in service. Thus

(12.91)=
lE3t24

2
,

=
E3t24
2E3t4 lE3t4
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dv = x dx,u = 11 - Ft1x22>E3t4



Section 12.6 M/G/1 Queueing Systems 741

1On the other hand, it is rather surprising that only the first two moments of the distribution of the service
time affect E[W] and E[T].

where we have used Eq. (12.88) for E[R] and Eq. (12.14) for the fact that

The mean waiting time E[W] of a customer in an M/G/1 system is found by sub-
stituting Eq. (12.91) into Eq. (12.90) and solving for E[W]:

(12.92)

We can obtain another expression for E[W] by noting that 

(12.93)

where is the coefficient of variation of the service time. Equation
(12.93) is called the Pollaczek–Khinchin mean value formula.

The mean delay E[T] is found by adding the mean service time to E[W]:

(12.94)

From Eqs. (12.93) and (12.94) we can see that the mean waiting time and mean delay
time are affected not only by the mean service time and the server utilization but also
by the coefficient of variation of the service time.Thus the degree of randomness of the
service times as measured by affects these delays.1

Example 12.15

Compare E[W] for the M/M/1 and M/D/1 systems. The second moments of the exponential and
constant random variables were found in Example 12.14. The exponential service time has a co-
efficient of variation equal to one. Thus Eq. (12.93) implies

(12.95)

The constant service time has zero variance, so its coefficient of variation is zero. Thus

(12.96)

Thus we see that the waiting time in an M/D/1 is half that in an M/M/1 system.

E3WM/D/14 =
r

211 - r2E3t4.

E3WM/M/14 =
r

11 - r2E3t4.

Ct
2

E3T4 = E3t4 + E3t4 r11 + Ct22
211 - r2 .

Ct
2 = st2>E3t42

=
r11 + Ct22
211 - r2 E3t4,

E3W4 =
l1st2 + E3t422

211 - r2 = lE3t42 11 + Ct22
211 - r2

E3t24 = st2 + E3t42:

E3W4 =
lE3t24

211 - r2 .

1 - P3N1t2 = 04 = r = lE3t4.
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12.6.3 Mean Delay in M/G/1 Systems with Priority Service Discipline

Consider a queueing system that handles K priority classes of customers. Type k cus-
tomers arrive according to a Poisson process of rate and have service times with
pdf and mean A separate queue is kept for each priority class, and each
time the server becomes available it selects the next customer from the highest-pri-
ority nonempty queue. This service discipline is often referred to as “head-of-line
priority service.” We assume that customers cannot be preempted once their service
has begun.

The server utilization from type k customers is

We assume that the total server utilization is less than 1:

(12.97)

If this is not the case, one or more of the lower-priority queues become unstable, that is,
grow without bound.

Consider the mean waiting time of the highest-priority (type 1) customer. If
an arriving type 1 customer finds type 1 customers in queue and if the ser-
vice discipline is first come, first served within each class, then is the sum of the
residual service time of the customer (if any) found in service and the 
service times of the type 1 customers (if any) found in queue. Thus

Following the same development that followed Eq. (12.89) in the previous section, we
arrive at the following expression for the mean waiting time for type 1 customers:

(12.98)

If an arriving type 2 customer finds type 1 and type 2
customers waiting in queue, then is the sum of the residual service time of the
customer (if any) found in service, the service times of the type 1 customers (if any)
found in queue, the service times of the type 2 customers found in queue, and the
service times of the higher-priority type 1 customers who arrive while our customer is
waiting in queue. Thus

(12.99)

where denotes the number of type 1 arrivals during our customer’s waiting time. By
Little’s formula we have and In addition, the
mean number of type 1 arrivals during seconds is Substitut-
ing these expressions in Eq. (12.99) gives

E3W24 = E3R–4 + r1E3W14 + r2E3W24 + r1E3W24.

E3M14 = l1E3W24.E3W24
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k1
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Nq2
1t2 = k2Nq1
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.

E3W14 = E3R–4 + E3Nq1
4E3t14.
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Solving for 

(12.100)

where we have used Eq. (12.98) for 
If there are more than two classes of customers, the above method can be used to

show that the mean waiting time for a type k customer is

(12.101)

The customer found in service by an arriving customer can be of any type, so 
is the residual service time of customers of all types:

(12.102)

where is the total arrival rate,

(12.103)

and is the second moment of the service time of customers of all types. The frac-
tion of customers who are type k is thus

(12.104)

We finally arrive at the following expression for the mean waiting time for type k
customers:

(12.105)

The mean delay for type k customers is then

(12.106)

Equation (12.105) reveals the effect of the priority classes on one another. Class
k customers are affected by lower-priority customers only through the residual-ser-
vice-time term in the numerator. On the other hand, if the server utilization of the first

classes exceeds one, then the queue for class k customers is unstable.k - 1

E3Tk4 = E3Wk4 + E3tk4.

E3Wk4 =
a
K

j=1
ljE3tj24
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l
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Example 12.16

A computer handles two types of jobs. Type 1 jobs require a constant service time of 1 ms, and
type 2 jobs require an exponentially distributed amount of time with mean 10 ms. Find the mean
waiting time if the system operates as follows: (1) an ordinary M/G/1 system and (2) a two-prior-
ity M/G/1 system with priority given to type 1 jobs.Assume that the arrival rates of the two class-
es are Poisson with the same rate.

The first two moments of the service time are

The traffic intensity for each class and the total traffic intensity are

where is the total arrival rate. The mean residual service time is then

From Eq. (12.92), the mean waiting time for an M/G/1 system is

(12.107)

For the priority system we have

(12.108)

and

(12.109)

Comparison of Eqs. (12.108) and (12.109) with Eq. (12.107) shows that the waiting time of type
1 customers is improved by a factor of and that of type 2 is worsened by the
factor

The overall mean waiting for the priority system is

=
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where E[W] is the mean waiting time of the M/G/1 system without priorities. Figure 12.18 shows
and It can be seen that the discipline “short-job type first” used 

here improves the average waiting time. The graphs for and also show that at
the lower-priority queue becomes unstable but the higher-priority remains stable up to

12.7 M/G/1 ANALYSIS USING EMBEDDED MARKOV CHAINS

In the previous section we noted that the state of an M/G/1 queueing system is given by
the number of customers in the system N(t) and the residual service time of the cus-
tomer in service. Suppose we observe N(t) at the instants when the residual service
time becomes zero (i.e., at the instants when the jth service completion occurs); then
all of the information relevant to the probability of future events is embodied in

the number of customers left behind by the jth departing customer. We will
show that the sequence is a discrete-time Markov chain and that the steady state
pmf at customer departure instants is equal to the steady state pmf of the system at ar-
bitrary time instants. Thus we can find the steady state pmf of N(t) if we can find the
steady state pmf for the chain 

12.7.1 The Embedded Markov Chain

First we show that the sequence is a Markov chain. Consider the relation
between and If then a customer enters service immediately at time

as shown in Fig. 12.19(a), and equals minus the customer that is served inNj-1 ,NjDj ,
Nj-1 Ú 1,Nj-1 .Nj

Nj = N1Dj2

Nj .

Nj

Nj = N1Dj2,
Dj

l = 2.
l = 2/11

E3W24E3W14
E3W24.E3W4, E3Wp4, E3W14,
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FIGURE 12.18
Relative mean waiting times in priority and nonpriority M/G/1 systems: E[W], mean waiting time in
M/G/1 system; mean waiting time for type 1 and type 2 customers in priority
system; overall mean waiting time in priority system.E3Wp4,

E3W14, E3W24,
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between, plus the number of customers that arrive during the service time of the jth
customer:

(12.110a)

If then as shown in Fig. 12.19(b), there are no departures until the jth cus-
tomer arrives and completes his service; then is the number of customers who arrive
during this service time:

(12.110b)

Thus we see that depends on the past only through and The form an iid
sequence because the service times are iid and because of the memoryless property of
Poisson arrivals. Thus depends on the past of the system only through We
therefore conclude that the sequence is a Markov chain.

Next we need to show that the steady state pmf of N(t) is the same as the steady
state pmf of We do so in two steps: first, we show that in M/G/1 systems, the distrib-
ution of customers found by arriving customers is the same as that left behind by de-
parting customers; second, we show that in M/G/1 systems, the distribution of
customers found by arriving customers is the same as the steady state distribution of
N(t). It then follows that the steady state pmf’s of N(t) and are the same.

First we need to show that for systems in which customers arrive one at a time and
depart one at a time (i.e., M/G/1 systems) the distribution found by arriving customers is
the same as that left behind by departing customers. Let be the number of times
the system goes from n to in the interval (0, t); then is the number of times
an arriving customer finds n customers in the system. Similarly, let be the number
of times that the system goes from to n; then is the number of times a de-
parting customer leaves n. Note that the transition n to cannot reoccur until
after the number in the system drops to n once more (i.e., until after the transition

to n reoccurs). Thus and can differ by at most 1. As t becomes large,
both of these transitions occur a large number of times, so the rate of transitions from
n to equals the rate from to n. Thus the rate at which customer arrivals
find n in the system equals the rate at which departures leave n in the system. It then
follows that the probability that an arrival finds n in the system is equal to the proba-
bility that a departure leaves n behind.
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FIGURE 12.19
(a) Customer leaves the system nonempty at time (b) Customer leaves the system empty at
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Since the arrivals in an M/G/1 system are Poisson and independent of the cus-
tomer service times, the customer arrival times are independent of the state of the sys-
tem. Thus the probability that an arrival finds n customers in the system is equal to the
proportion of time the system has n customers, that is, the steady state probability

Thus the distribution of states seen by arriving customers is the same as the
steady state distribution.

By combining the results from the two previous paragraphs, we have that for an
M/G/1 system, the pmf of the state at customer departure points, is the same as the
steady state pmf of N(t). In the next section, we find the generating function of and
thus of N(t).

12.7.2 The Number of Customers in an M/G/1 System

We now find the generating function for the steady state pmf of The transition
probabilities for can be deduced from Eqs. (12.110a) and (12.110b):

(12.111a)

(12.111b)

Note that for The probability that there are customers
in the system at time j is

(12.112a)

(12.112b)

where we have used the fact that for 
If the process reaches a steady state as then 

and the above equation becomes

(12.113)

where denotes the number of customers left behind by a departing customer.
Since the steady state pmf of is equal to that of N(t), Eq. (12.113) also holds for

the steady state pmf of N(t). Equation (12.113) is readily solved for the generating
function of N(t) by using the probability generating function. The generating functions
for N and for M are given by
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We multiply both sides of Eq. (12.113) (with replaced by N) by and sum from 0 to
infinity:

(12.114)

The generating functions for N and M are immediately recognizable in the first two
summations:

The first summation is the generating function for N with the term missing. Let
in the second summation and note that for then

(12.115)

The generating function for N is found by solving for 

(12.116)

We can find by noting that as we must have

(12.117)

When we take the limit in Eq. (12.116) we obtain zero for the numerator and the
denominator. By applying L’Hopital’s rule, we obtain

(12.118)

Thus
(12.119)

and
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Note from Eq. (12.119) that we must have since This stabil-
ity condition makes sense since it implies that on the average less than one customer
should arrive during the time it takes to service a customer.

We now determine the generating function for the number of arrivals
during a service time:

(12.121a)

Noting that the number of arrivals in t seconds is a Poisson random variable,

(12.121b)

where is the Laplace transform of the pdf of 

(12.122)

We can obtain the moments of M by taking derivatives of 

(12.123)

where we used the chain rule in the second equality. Similarly,
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If we substitute Eqs. (12.123) and (12.121b) into Eq. (12.120), we obtain the
Pollaczek–Khinchin transform equation,

(12.125)

Note that depends on the utilization the arrival rate and the Laplace trans-
form of the service time pdf.

Example 12.17 M/M/1 System

Use the Pollaczek–Khinchin transform formula to find the pmf for N(t) for an M/M/1 system.
The Laplace transform for the pdf of an exponential service of mean is

Thus the Pollaczek–Khinchin transform formula is

where we canceled the term from the numerator and denominator and noted that
By expanding in a power series, we have

which implies that the steady state pmf is

which is in agreement with our previous results for the M/M/1 system.

Example 12.18 System

Find the pmf for the number of customers in an M/G/1 system that has arrivals of rate and where
the service times are hyperexponential random variables of degree two, as shown in Fig. 12.20.
In other words, with probability 1/9 the service time is exponentially distributed with mean 
and with probability 8/9 the service time is exponentially distributed with mean 

In order to find we note that the pdf of is

Thus the mean service time is
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and the server utilization is The Laplace transform of is

Substitution of into Eq. (12.125) gives

where we have canceled from the numerator and denominator. If we factor the denominator
we obtain

where we have carried out a partial fraction expansion. Finally we note that since con-
verges for we can expand as follows:

Since the coefficient of is we finally have that

where we used the fact that r = 5/9.
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FIGURE 12.20
A hyperexponential service time results if
we select an exponential service time of
rate with probability 1/9 and an
exponential service time of rate with
probability 8/9.
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12.7.3 Delay and Waiting Time Distribution in an M/G/1 System

We now find the delay and waiting time distributions for an M/G/1 system with first-
come, first-served service discipline. If a customer spends seconds in the queueing
system, then the number of customers it leaves behind in the system is the number
of customers that arrive during these T seconds, since customers are served in order of
arrival. An expression for the generating function for is found by proceeding as in
Eq. (12.121a):

(12.126)

where is the Laplace transform of the pdf of T, the total delay in the system. Since
the steady state distributions of and N(t) are equal, we have that 
and thus combining Eqs. (12.125) and (12.126):

(12.127)

If we let Eq. (12.127) yields an expression for 

(12.128)

The pdf of T is found from the inverse transform of either analytically or numeri-
cally.

Since where W and are independent random variables, we have
that

(12.129)

Equations (12.128) and (12.129) can then be solved for the Laplace transform of the
waiting time pdf:

(12.130)

Equations (12.128) and (12.130) are also referred to as the Pollaczek–Khinchin trans-
form equations.

Example 12.19 M/M/1

Find the pdf’s of W and T for an M/M/1 system. Substituting into Eq. (12.128)
gives
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which is readily inverted to obtain

(12.132)

Similarly, Eq. (9.130) gives

In order to invert this expression, the numerator polynomial must have order lower than that of
the denominator polynomial. We achieve this by dividing the denominator into the numerator:

(12.133)

We then obtain

(12.134)

The delta function at zero corresponds to the fact that a customer has zero wait with probability
Equations (12.132) and (12.134) were previously obtained as Eqs. (12.32) and (12.33) in

Section 12.3 by a different method.

Example 12.20

Find the pdf of the waiting time in the system discussed in Example 12.18.
Substitution of from Example 12.18 into Eq. (12.130) gives

where we have followed the same sequence of steps as in Example 12.18 and then done a partial
fraction expansion.

The inverse Laplace transform then yields
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Examples 12.18 and 12.19 demonstrate that the Pollaczek–Khinchin transform
equations can be used to obtain closed-form expressions for the pmf of N(t) and the
pdf’s of W and T when the Laplace transform of the service time pdf is a rational func-
tion of s, that is, a ratio of polynomials in s.This result is particularly important because
it can be shown that the Laplace transform of any service time pdf can be approximat-
ed arbitrarily closely by a rational function of s. Thus in principle we can obtain exact
expressions for the pmf of N(t) and pdf’s of W and T.

In addition it should be noted that the Pollaczek–Khinchin transform expressions
can always be inverted numerically using fast Fourier transform methods such as those
discussed in Section 7.6. This numerical approach does not require that the Laplace
transform of the pdf be a rational function of s.

12.8 BURKE’S THEOREM: DEPARTURES FROM M/M/C SYSTEMS

In many problems, a customer requires service from several service stations before a
task is completed. These problems require that we consider a network of queueing sys-
tems. In such networks, the departures from some queues become the arrivals to other
queues. This is the reason why we are interested in the statistical properties of the de-
parture process from a queue.

Consider two queues in tandem as shown in Fig. 12.21, where the departures from
the first queue become the arrivals at the second queue.Assume that the arrivals to the
first queue are Poisson with rate and that the service time at queue 1 is exponential-
ly distributed with rate Assume that the service time in queue 2 is also expo-
nentially distributed with rate 

The state of this system is specified by the number of customers in the two
queues, This state vector forms a Markov process with the transition
rate diagram shown in Fig. 12.22, and global balance equations:

(12.135a)

(12.135b)

(12.135c)

(12.135d)n 7 0,m 7 0.

+ lP3N1 = n - 1,N2 = m4
+ m1P3N1 = n + 1,N2 = m - 14

1l + m1 + m22P3N1 = n,N2 = m4 = m2P3N1 = n,N2 = m + 14
+ m1P3N1 = 1,N2 = m - 14 m 7 0

1l + m22P3N1 = 0,N2 = m4 = m2P3N1 = 0,N2 = m + 14
+ lP3N1 = n - 1,N2 = 04 n 7 0

1l + m12P3N1 = n,N2 = 04 = m2P3N1 = n,N2 = 14
lP3N1 = 0,N2 = 04 = m2P3N1 = 0,N2 = 14
1N11t2,N21t22.

m2 7 l.
m1 7 l.

l

m1

l

m2

FIGURE 12.21
Two tandem exponential queues with Poisson input.
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It is easy to verify that the following joint state pmf satisfies Eqs. (12.135a)
through (12.135d):

(12.136)

where We know that the first queue is an M/M/1 system, so

(12.137)

By summing Eq. (12.136) over all n, we obtain the marginal state pmf of the second queue:

(12.138)

Equations (12.136) through (12.138) imply that

(12.139)

In words, the number of customers at queue 1 and the number at queue 2 at the same time in-
stant are independent random variables. Furthermore, the steady state pmf at the second
queue is that of an M/M/1 system with Poisson arrival rate and exponential service time

We say that a network of queues has a product-form solution when the joint pmf
of the vector of numbers of customers at the various queues is equal to the product of
the marginal pmf’s of the number in the individual queues. We now discuss Burke’s
theorem, which states the fundamental result underlying the product-form solution in
Eq. (12.139).
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FIGURE 12.22
Transition rate diagram for two tandem exponential queues with
Poisson input.
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Burke’s Theorem

Consider an M/M/1, M/M/c, or queueing system at steady state with arrival rate then

1. The departure process is Poisson with rate 
2. At each time t, the number of customers in the system N(t) is independent of the se-

quence of departure times prior to t.

The product-form solution for the two tandem queues follows from Burke’s the-
orem. Queue 1 is an M/M/1 queue, so from part 1 of the theorem the departures from
queue 1 form a Poisson process. Thus the arrivals to queue 2 are a Poisson process, so
the second queue is also an M/M/1 system with steady state pmf given by Eq. (12.138).
It remains to show that the numbers of customers in the two queues at the same time
instant are independent random variables.

The arrivals to queue 2 prior to time t are the departures from queue 1 prior to
time t. By part 2 of Burke’s theorem the departures from queue 1, and hence the ar-
rivals to queue 2, prior to time t are independent of Since is determined by
the sequence of arrivals from queue 1 prior to time t and the independent sequence of
service times, it then follows that and are independent. Equation (12.139)
then follows. Note that Burke’s theorem does not state that and are inde-
pendent random processes. This would require that and be independent
random variables for all and This is clearly not the case.

Burke’s theorem implies that the generalization of Eq. (12.139) holds for the tan-
dem combination of any number of M/M/1, M/M/c, or queues. Indeed, the re-
sult holds for any “feedforward” network of queues in which a customer cannot visit
any queue more than once.

Example 12.21

Find the joint state pmf for the network of queues shown in Fig. 12.23, where queue 1 is driven
by a Poisson process of rate where the departures from queue 1 are randomly routed to
queues 2 and 3, and where queue 3 also has an additional independent Poisson arrival stream of
rate l2 .

l1 ,

M>M>q
t2 .t1

N21t22N11t12
N21t2N11t2

N21t2N11t2
N21t2N11t2.

l.

l,M/M/q

m1

l1

l2

m2

m3

1
2

1
2

FIGURE 12.23
A feedforward network of queues.



Section 12.8 Burke’s Theorem: Departures from M/M/c Systems 757

From Burke’s theorem and are independent, as are and Since the
random split of a Poisson process yields independent Poisson processes, we have that the inputs
to queues 2 and 3 are independent. The input to queue 2 is Poisson with rate The input to
queue 3 is Poisson of rate since the merge of two independent Poisson processes is
also Poisson. Thus

where and and where we have assumed that all
of the queues are stable.

12.8.1 Proof of Burke’s Theorem Using Time Reversibility

Consider the sample path of an M/M/1, M/M/c, or system as shown in 
Fig. 12.24(a). Note that the arrivals in the forward process correspond to the departures
in the time-reversed process. In Section 11.5, we showed that birth-and-death Markov
chains in steady state are time-reversible processes; that is, the sample functions of
the process played backward in time have the same statistics as the forward process.
Since M/M/1, M/M/c, and systems are birth-and-death Markov chains, weM/M/q

M/M/q

*

r3 = 1l1>2 + l22>m3 ,r1 = l1>m1 , r2 = l1>2m2 ,

= 11 - r12r1
k11 - r22r2

m11 - r32r3
n k,m, n Ú 0,

P3N11t2 = k,N21t2 = m,N31t2 = n4

l1>2 + l2

l1>2.

N31t2.N11t2N21t2N11t2

a

(a)

(b)

N(t)

b

t

Forward time
Reverse time

Departure times prior to t
in forward process

Arrival times after t
in reverse process

FIGURE 12.24
(a) Time instant a is an arrival time in the forward process and a departure time in the
reverse process. Time instant b is a departure in the forward process and an arrival in the
reverse process. (b) The departure times prior to time t in the forward process correspond
exactly to the arrival times after time t in the reverse process.
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have that their states are reversible processes. Thus the sample functions of these sys-
tems played backward in time correspond to the sample functions of queueing systems
of the same type. It then follows that the arrival process of the time-reversed system is
a Poisson process.

To prove part 1 of Burke’s theorem, we note that the interdeparture times of the
forward-time system are the interarrival times of the time-reversed system. Since the
arrival process of the time-reversed system is Poisson, it then follows that the depar-
ture process of the forward system is also Poisson. Thus we have shown that the depar-
ture process of an M/M/1, M/M/c, or system is Poisson.

To prove part 2 of Burke’s theorem, fix a time t as shown in Fig. 12.24(b). The de-
partures before time t from the forward system are the arrivals after time t in the re-
verse system. In the reverse system, the arrivals are Poisson and thus the arrival times
after time t do not depend on N(t). These arrival instants of the reverse process are ex-
actly the departure instants before t in the forward process. It then follows that N(t)
and the departure instants prior to t are independent, so part 2 is proved.

12.9 NETWORKS OF QUEUES: JACKSON’S THEOREM

In many queueing networks, a customer is allowed to visit a particular queue more
than once. Burke’s theorem does not hold for such systems. In this section we discuss
Jackson’s theorem, which extends the product-form solution for the steady state pmf to
a broader class of queueing networks.

If a customer is allowed to visit a queue more than once, then the arrival process
at that queue will not be Poisson. For example, consider the simple M/M/1 queue with
feedback shown in Fig. 12.25, where external customers arrive according to a Poisson
process of rate and where departures are instantaneously fed back into the system
with probability .9. If the arrival rate is much less than the departure rate, then we have
that the net arrival process (i.e., external and feedback arrivals) typically consists of
isolated external arrivals followed by a burst of feedback arrivals. Thus the arrival
process does not have independent increments and so it is not Poisson.

12.9.1 Open Networks of Queues

Consider a network of K queues in which customers arrive from outside the network
to queue k according to independent Poisson processes of rate We assume that the
service time of a customer in queue k is exponentially distributed with rate and in-
dependent of all other service times and arrival processes. We also suppose that queue

mk

ak .

l

M/M/q

l

m

a

.9

.1

FIGURE 12.25
A queue with feedback.



Section 12.9 Networks of Queues: Jackson’s Theorem 759

k has servers. After completion of service in queue k, a customer proceeds to queue
i with probability and exits the network with probability

The total arrival rate into queue k is the sum of the external arrival rate and
the internal arrival rates:

(12.140)

It can be shown that Eq. (12.140) has a unique solution if no customer remains in the
network indefinitely. We call such networks open queueing networks.

The vector of the number of customers in all the queues,

is a Markov process. Jackson’s theorem gives the steady state pmf for N(t).

Jackson’s Theorem

If then for any possible state 

(12.141)

where is the steady state pmf of an system with arrival rate and service
rate

Jackson’s theorem states that the numbers of customers in the queues at time t
are independent random variables. In addition, it states that the steady state probabili-
ties of the individual queues are those of an system. This is an amazing result
because in general the input process to a queue is not Poisson, as was demonstrated in
the simple queue with feedback discussed in the beginning of this section.

Example 12.22

Messages arrive at a concentrator according to a Poisson process of rate The time required to
transmit a message and receive an acknowledgment is exponentially distributed with mean 
Suppose that a message needs to be retransmitted with probability p. Find the steady state pmf
for the number of messages in the concentrator.

The overall system can be represented by the simple queue with feedback shown in
Fig. 12.25. The net arrival rate into the queue is that is,

Thus, the pmf for the number of messages in the concentrator is

where r = l>m = a>11 - p2m.

P3N = n4 = 11 - r2rn n = 0, 1, Á ,

l =
a

1 - p
.

l = a + lp,

1>m.
a.

M/M/ck

mk .
lkM>M>ckP3Nk = nk4

P3N1t2 = n4 = P3N1 = n14P3N2 = n24Á P3NK = nK4,
n = 1n1 , n2 , Á , nK2,lk 6 ckmk ,

N1t2 = 1N11t2,N21t2, Á ,NK1t22,

lk = ak + a
K

j=1
ljPjk k = 1, Á ,K.

lk

1 - a
K

i=1
Pki .

Pki

ck
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Example 12.23

New programs arrive at a CPU according to a Poisson process of rate as shown in Fig. 12.26. A
program spends an exponentially distributed execution time of mean in the CPU. At the
end of this service time, the program execution is complete with probability p or it requires re-
trieving additional information from secondary storage with probability Suppose that the
retrieval of information from secondary storage requires an exponentially distributed amount of
time with mean Find the mean time that each program spends in the system.

The net arrival rates into the two queues are

Thus

Each queue behaves like an M/M/1 system, so

where and Little’s formula then gives the mean for the total time spent
in the system:

12.9.2 Proof of Jackson’s Theorem

Jackson’s theorem can be proved by writing the global balance equations for the queue-
ing network and verifying that the solution is given by Eq. (12.141). We present an al-
ternative proof of the theorem using a result from time-reversed Markov chains. For
notational simplicity we consider only the case of a network of single-server queues.

Let n and be two possible states of the network, and let denote the transi-
tion rate from n to In Section 11.5, we found that if we can guess a state pmf P[n]
and a set of transition rates for the reverse process such that (Eq. 11.65)

(12.142a)P3n4vn,n¿ = P3n¿4vNn¿, n

vNn¿,n

n¿.
vn,n¿n¿

*

E3T4 =
E3N1 + N24

a
=

1
a
B r1

1 - r1
+

r2

1 - r2
R .

r2 = l2>m2 .r1 = l1>m1

E3N14 =
r1

1 - r1
and E3N24 =

r2

1 - r2
,

l1 =
a

p
and l2 =

11 - p2a
p

.

l1 = a + l2 and l2 = 11 - p2l1 .

1>m2 .

1 - p.

1>m1

a

CPU 1 � p

p

I/O
a

m1 m2

FIGURE 12.26
An open queueing network model for a computer system.
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and such that the total rate out of state n is the same in the forward and reverse
processes (Eq. 11.64 summed over j)

(12.142b)

then P[n] is the steady state pmf of the process.
For the case under consideration our guess for the pmf is

(12.143)

so the proof reduces to finding a consistent set of transition rates for the reverse
process that satisfy Eqs. (12.142a) and (12.142b). Noting that is known and that
P[n] and are specified by Eq. (12.143), Eq. (12.142a) can be solved for the transi-
tion rates of the reverse process:

(12.144)

Let denote a state for the network, and let
where the 1 is located in the kth component. Only three

types of transitions in the state of the queueing network have nonzero probabilities. In
the first type of transition, an external arrival to queue k takes the state from n to

In the second type of transition, a departure from queue k exits the network
and takes the state from n to where In the third type of transition, a
customer leaves queue k and proceeds to queue j, thus taking the state from n to

where Table 12.1 shows three types of transitions and their cor-
responding rates for the forward process.

A consistent set of transition rates for the reverse process is obtained by solving
Eq. (12.144) for the three types of transitions possible. For example, if we let

then the transition in the forward process corresponds to the
transition in the reverse process. Equation (12.144) gives

The other reverse process transition rates are found in similar manner. Table 12.1
shows the results for the transition rates of the reverse process that are implied by
Eq. (12.144).

The proof that the pmf in Eq. (12.143) gives the steady state pmf of the network
of queues is completed by showing that the total transition rate out of any state n is
the same in the forward and in the reverse process, that is, Eq. (12.142b) holds. In the

=
ak

rk
=
ak

lk>mk =
akmk

lk
.

vNn¿,n =
akq

K

j=1
11 - rj2rjnj

rkq
K

j=1
11 - rj2rjnj

n + ek: n
n: n + ekn¿ = n + ek ,

nk 7 0.n - ek + ej ,

nk 7 0.n - ek ,
n + ek .

ek = 10, Á , 0, 1, 0, Á , 02,n = 1n1 , Á , nk2
vNn¿,n =

P3n4vn,n¿

P3n¿4 .

P3n¿4 vn,n¿

P3n4 = q
K

j=1
11 - rj2rjnj,

a
m
vn,m = a

m
vNn, m ,
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forward process, the total transition rate out of state n is obtained by adding the en-
tries for the forward process in Table 12.1:

(12.145a)

For the reverse process, we have from Table 12.1 that

(12.145b)

We need to show that the right-hand sides of Eqs. (12.145a) and (12.145b) are equal.
First, note that Eq. (12.140) implies that

The right-hand side of Eq. (12.145b) then becomes

Thus the right-hand sides of Eqs. (12.145a) and (12.145b) are equal and thus Eq. (12.143)
is the steady state pmf of the network of queues. This completes the proof of Jackson’s
theorem for a network of single-server queues.
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TABLE 12.1 Allowable transitions in Jackson network and their
corresponding rates in the forward and reverse processes

Forward Process

Transition Rate

n: n + ek ak all k

n: n - ek mk¢1 - a
K

j=1
Pkj≤ all k: nk 7 0

n: n - ek + ej mkPkj all k: all jnk 7 0,

Reverse Process

Transition Rate

n: n + ek lk¢1 - a
j
Pkj≤ all k

n: n - ek
akmk

lk
all k: nk 7 0

n: n - ek + ej
ljPjkmk

lk
all k: all jnk 7 0,
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12.9.3 Closed Networks of Queues

In some problems, a fixed number of customers, say I, circulate endlessly in a closed
network of queues. For example, some computer system models assume that at any
time a fixed number of processes use the CPU and input/output (I/O) resources of a
computer as shown in Fig. 12.27.We now consider queueing networks that are identical
to the previously discussed open networks except that the external arrival rates are
zero and the networks always contain a fixed number of customers I. We show that the
steady state pmf for such systems is product form but that the states of the queues are
no longer independent.

The net arrival rate into queue k is now given by

(12.146)

Note that these equations have the same form as the set of equations that define the
stationary pmf for a discrete-time Markov chain with transition probabilities The
only difference is that the sum of the need not be one. Thus the solution vector to
Eq. (12.146) must be proportional to the stationary pmf corresponding to 

(12.147)

where

(12.148)

and where is a constant that depends on I, the number of customers in the queue-
ing network. If we sum both sides of Eq. (12.147) over k, we see that is the sum of
the arrival rates in all the queues in the network, and is the fraction of
total arrivals to queue k.

Theorem 

Let be a solution to Eq. (12.146), and let be any state of the
network for which and

(12.149)n1 + n2 + Á + nK = I,

n1 , Á , nK Ú 0
n = 1n1 , n2 , Á , nK2lk = l1I2pk

pk = lk>l1I2
l1I2l1I2

pk = a
K

j=1
pj Pjk

lk = l1I2pk ,

5Pjk6:5pj6
lk’s

Pjk .

lk = a
K

j=1
ljPjk k = 1, Á ,K.

CPU

1 � p

p

I/O

m1 m2

FIGURE 12.27
A closed queueing network model for a computer system.
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then

(12.150)

where is the steady state pmf of an system with arrival rate and service
rate and where S(I) is the normalization constant given by

(12.151)

Equation (12.150) states that has a product form. However,
is no longer equal to the product of the marginal pmf’s because of the nor-

malization constant S(I).This constant arises because the fact that there are always I cus-
tomers in the network implies that the allowable states n must satisfy Eq. (12.149). The
theorem can be proved by taking the approach used to prove Jackson’s theorem above.

Example 12.24

Suppose that the computer system in Example 12.23 is operated so that there are always I pro-
grams in the system. The resulting network of queues is shown in Fig. 12.27. Note that the feed-
back loop around the CPU signifies the completion of one job and its instantaneous replacement
by another one. Find the steady state pmf of the system. Find the rate at which programs are
completed.

The stationary probabilities associated with Eq. (9.146) are found by solving

The stationary probabilities are then

(12.152)

and the arrival rates are

(12.153)

The stationary pmf for the network is then

(12.154)

where and and where we have used the fact that if then
The normalization constant is then

(12.155)= 11 - r1211 - r22r2
I

1 - 1r1>r22I+1

1 - 1r1>r22 .

S1I2 = 11 - r1211 - r22a
I

i=0
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ir2
I- i

N2 = I - i.
N1 = ir2 = l2>m2 ,r1 = l1>m1
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i 11 - r22r2
I- i

S1I2 0 … i … I,

l1 = l1I2p1 =
l1I2

2 - p
and l2 =

11 - p2l1I2
2 - p

.

p1 =
1

2 - p
and p2 =

1 - p
2 - p

p1 = pp1 + p2 , p2 = 11 - p2p1 , and p1 + p2 = 1.

P3N1t2 = n4 P3N1t2 = n4

S1I2 = a
n:n1+Á+nK=I

P3N1 = n14P3N2 = n24Á P3NK = nK4.
mk ,

lkM>M>ckP3Nk = nk4
P3N1t2 = n4 =

P3N1 = n14P3N2 = n24Á P3NK = nK4
S1I2 ,
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Substitution of Eq. (12.155) into Eq. (12.154) gives

(12.156)

where

(12.157)

Note that the form of Eq. (12.156) suggests that queue 1 behaves like an M/M/1/K queue. The
apparent load to this queue is which is proportional to the ratio of I/O to CPU service rates
and inversely proportional to the probability of having to go to I/O.

The rate at which programs are completed is We find from the relation between
server utilization and probability of an empty system:

which implies that

Example 12.25

A transmitter (queue 1 in Fig. 12.28) has two permits for message transmission. As long as the
transmitter has a permit it generates messages with exponential interarrival times of
rate The messages enter the transmission system and require an exponential service time at
station 2. As soon as a message arrives at the other side of the transmission system, the corre-
sponding permit is sent back via station 3. Thus the transmitter can have at most two messages
outstanding in the network at any given time. Find the steady state pmf for the network of
queues. Find the rate at which messages enter the transmission system.

l.
1N1 7 02,

pl1 = pm1

b11 - bI2
1 - bI+1

.

1 - l1>m1 = P3N1 = 04 =
1 - b

1 - bI+1
,

l1pl1 .

b,

b =
r1

r2
=
p1m2

p2m1
=

m2

11 - p2m1
.

P3N1 = i,N2 = I - i4 =
1 - b

1 - bI+1
bi 0 … i … I,

m2

m3

l

Transmission systemTransmitter Receiver

FIGURE 12.28
A closed queueing network model for a message transmission system.
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We can view the two permits as two customers circulating the queueing network. Since
we have that and thus

The steady state pmf for the network is

for

where and The normalization constant S(2) is obtained by
summing the above joint pmf over all possible states and equating the result to one.There are six
possible network states: (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1). Thus the normaliza-
tion constant is given by

where we have used the fact that 
The rate at which messages enter the system is

where

12.9.4 Mean Value Analysis

Example 12.25 shows that the evaluation of the normalization constant is the funda-
mental difficulty with closed queueing networks. Fortunately, a method has been de-
veloped for obtaining certain average quantities of interest without having to
evaluate this constant. This mean value analysis method is based on the following
theorem.

Arrival Theorem

In a closed queueing network with I customers, the system as seen by a customer arrival to queue
j is the steady state pmf of the same network with one fewer customer.

We have already encountered this result in the discussion of finite-source queue-
ing systems in Section 12.5. We prove the result in the last part of this section. We now
use the result to develop the mean value analysis method.

=
3r2
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2 + 2r1r2 + 3r2
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3>m2

1>l2 + 2>lm + 3>m2 .
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26,
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0 … i … 2, 0 … j … 2 - i,

=
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i 11 - r22r2
j11 - r32r3

I- i- j

S122P3N1 = i,N2 = j,N3 = 2 - i - j4

l1 = l2 = l3 =
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3
.

p1 = p2 = p3 = 1/3P1,2 = P2,3 = P3,1 = 1,
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Let be the mean number of customers in the jth queue for a network
that has I customers, let denote the mean time spent by a customer in queue j,
and let denote the average customer arrival rate at queue j. The mean time spent
by a customer in queue j is his service time plus the service times of the customers he
finds in the queue upon arrival:

(12.158)

where is the mean number found upon arrival by the arrival theorem. By
Little’s formula, the mean number of customers in queue j when there are I in the net-
work is

(12.159)

Since the sum of the customers in all queues is I in the previous equation, we have that

(12.160)

Thus

(12.161)

The mean value analysis method combines Eqs. (12.158) through (12.161) in the
following way. First compute by solving Eq. (12.148), then for 

For

(12.158)

(12.161)

(12.159)

Thus the mean value algorithm begins with an empty system and by use of the above
three equations builds up to a network with the desired number of customers. This
method has considerably simplified the numerical solution of closed queueing net-
works and extended the range of network sizes that can be analyzed.
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Example 12.26

In Example 12.24, let and Find the rate at which programs are com-
pleted if 

It was already indicated in Example 12.24 that the rate of program completion is
From Eq. (12.152), we have that Thus we only need

to find the total arrival rate of the network with 
Starting the mean value method with we have

Continuing with we have

Thus the program completion rate is

You should verify that this is consistent with the results of Example 12.24.

Example 12.27

In Example 12.25, let and Find the rate at which messages enter the system
when

We previously found that and

Starting the mean value method with we have
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Continuing with we have

Finally, messages enter the transmission network at a rate so

You should verify that this is consistent with the results obtained in Example 12.25.

12.9.5 Proof of the Arrival Theorem

Consider the instant when a customer leaves queue j and is proceeding to queue k. We
are interested in the pmf of the system state at these arrival instants. Suppose that at
this instant, with the customer removed from the system, the customer sees the net-
work in state This occurs only when the network state goes from the
state to the state 
Thus:

(12.162)

To simplify the notation, let us assume that we are dealing with a network of M/M/1
queues, then
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(12.163)

where absorbs all the constants associated with the 

(12.164)

Next, consider the probability that queue j is not empty:

(12.165)

where we have noted that the above summation is the normalization constant for a
network with customers 

Finally, we substitute Eqs. (12.165) and (12.163) into Eq. (12.162):

which is the steady state probability for n in a network with customers.This com-
pletes the proof of the arrival theorem.
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12.10 SIMULATION AND DATA ANALYSIS OF QUEUEING SYSTEMS

In this section we present a basic introduction to the simulation of queueing systems.
Analytical methods are valuable due to the ease with which they allow us to explore
the issues and tradeoffs in a given model. Numerical techniques can supplement ana-
lytical methods and provide additional detailed information, especially when transient
and dynamic behavior is of interest. However, in many situations analytical and nu-
merical methods are not sufficient and simulation provides us with a flexible means to
investigate the behavior of complex systems. In this section we introduce the basic ap-
proaches available for simulating queueing systems.Throughout our discussion we em-
phasize the need for careful design of the simulation experiment as well as the need for
careful application of statistical methods on the observations to draw valid conclusions.

12.10.1 Approaches to Simulation

The dynamics of a queueing system are represented by one or more random processes,
so the usual considerations in simulating random processes apply. A very basic option
is whether a single realization or multiple realizations of the random process are used.

Multiple realizations that are statistically independent allow us to use the stan-
dard statistical methods introduced in Chapter 8 to analyze iid random variables, for
example, to obtain confidence intervals and fit distributions. A single realization of a
random process allows us a more restricted set of statistical tools and frequently leads
to methods that attempt to provide a set of observations that are iid so that we can use
standard tools. In some real experimental situations we may only have one realization
of the process to work with and so we may have no choice. However in computer sim-
ulation with proper design, we can usually conduct multiple replications of an experi-
ment to produce independent observations.4 In general, we recommend a pragmatic
approach that uses some replication when possible.

A simulation study based on a single realization usually involves assumptions
about stationarity and ergodicity so that the behavior of the process over time reveals
its ensemble averages and probabilities. Examples of such processes are processes with
stationary independent increments and processes that involve ergodic Markov chains.
Both of these classes of processes involve initial transient behavior and so we must de-
cide whether to keep or discard the observations obtained during the initial portion of
the simulation. If we decide to discard, then we need to somehow identify when the
transient phase is over and the process has reached steady state.This is not an easy task,
as discussed extensively in [Pawlikowski], and there are a variety of criteria that can be
applied for declaring that a system has reached steady state. We note that the use of
replicated simulations can help characterize the transient phase of a process. (See
Problem 12.67.)

4Care should be taken to ensure that the seed in the random number generator is different in each replication.
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The design of a simulation must take into account the behavior and parameters
that we are interested in measuring and observing. Seemingly easy questions such as
determining state probabilities are not so straightforward. We could be interested in
the long-term proportion of time the system spends in state, or the states seen by arriv-
ing customers, or even the state left behind by a departing customer.We have seen that
these quantities need not be the same. The design of the simulation can ease or make
difficult the measurement of a particular parameter.

In the remainder of the section we are interested in the parameters of the system
when it is in steady state, usually either the mean number of customers in the system or
the long-term proportion of time the system has a certain number of customers. We
cover the following approaches to simulating a queueing system.

• Simulation through independent replication;
• Time-sampled process:
• Embedded Markov chain and state occupancies:
• Replication through regenerative cycles.

12.10.2 Simulation through Independent Replications

Simulation through independent replications involves simulating a process R times to
obtain a set of R independent observations We use a
function of the observations to estimate a parameter of the random process:

.

For example, to estimate the mean of the process at time t we use:

(12.166)

To estimate the variance of the process at time t we use:

(12.167)

By design the observations are independent random variables. In order to proceed, we
also need to assume that the observations are Gaussian random variables. The usual
approach of taking the sum of a sufficiently large number of variables and using the
central limit theorem applies.We can also use a statistical test to check that the samples
are close to Gaussian distributed. Once we have Gaussian observations, we can pro-
vide the confidence intervals from Eq. (8.58):

(12.168)

Equation (12.168) is used widely to provide approximate confidence intervals.
We note that the sample mean and variance estimators in Eqs. (12.166) and

(12.167) and the associated confidence intervals allow us to identify time dependencies
in the behavior of the random process. In particular, in the next example, we use them
to identify the transient phase of a random process that has a steady state.

1XR - ta>2,n-1sN R>1n ,XR + ta>2,n-1sN R>1n2.

sN R
21t2 =

1
R - 1 a

R

r=1
1X1t, zr2 - XR1t222.

XR1t2 =
1
R a
R

r=1
X1t, zr2.

®N 1XR2 = g1X1t, z12,X1t, z22, Á ,X1t, zR22
u

5X1t, z12,X1t, z22, Á ,X1t, zR26.

5N1tk2, Tk6;
5N1kd26;
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When the random process is a continuous function of time, the estimator can take
the form of an integral. For example, for a Markov chain process we can estimate either
the time average of the process or the proportion of time in state j in the rth replication
by an integral over an interval of time T:

(12.169)

and provide the independent random variables that can be used to obtain
a confidence interval for the time average of N(t) and the proportion of time that

12.10.3 Time-Sampled Process Simulation

A simple approach to simulating continuous-time queueing systems is to use time-sampled
process simulation. The time axis is divided into small intervals of length and a discrete-
time process is simulated.The following example demonstrates the approach.

Example 12.28 Transient of M/M/1 Queue Using Sampled-Time Approximation

Investigate the transient behavior of N(t), the number of customers in an M/M/1 queueing sys-
tem, using a sampled-time approach. Assume the system is initially empty. Generate 2000 steps
of seconds with job/second and run two cases: and jobs/second.
Replicate the simulation 20 times and plot the sample mean of the process across the 20 replica-
tions (Eq. 12.166). Find the covariance function for each realization and plot the average of the
covariance functions across the 20 replications.

The sampled-time approximation involves simulating a system in small steps of seconds.
For a birth-death process (such as the M/M/1 queue) in state three outcomes can occur in

seconds: (1.) no arrival and no departure occur with probability (2.) one ar-
rival occurs with probability one departure occurs with probability We can adjust
for the state by letting and the state by letting Note that the
state-transition diagram of this sampled-time queueing system has the structure of the discrete-
time Markov chain in Example 11.49. We use the code for that example to generate 20 realiza-
tions of 2000 steps of which corresponds to 200 seconds of time.

Figure 12.29(a) shows the sample mean of 20 realizations of N(t). Note that this sample
mean averages over 20 processes that can each exhibit a lot of variation, see Figs. 11.20 and 11.21.
Consequently the averaged realizations still exhibit quite a bit of variation. The lower curve cor-
responds to which can be seen to reach and vary about the true mean of after
about 100 steps (10 seconds). The higher curve corresponds to which is a much higher
utilization. The true mean in this case is and it can be seen that the average of the re-
alizations does not reach the area of the mean until about 1400 steps. Thus we see that the tran-
sient period increases dramatically as the utilization approaches 1.

Figure 12.29(b) shows the sample mean of the normalized covariance functions of the 20
realizations of N(t). For the autocovariance does not reach 0 until about 200 steps.
Furthermore, for the autocovariance is approximately 0.6 after 200 steps. This much
longer sustained correlation is another indicator of the increase in transient time as utilization
is increased.
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E3N4 = 9
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In order to approximate the queueing process accurately, the time-sampled ap-
proach requires that we use a small step size. In addition to possibly increasing the
amount of computation required to perform the simulation size, a small step size has
the effect of making more adjacent samples highly correlated. This is clearly evident in
the observed autocovariance function in the above example.

The correlation of samples poses a problem in estimating parameters of a queue-
ing process from a single realization. Suppose we are interested in estimating the mean
of from a single realization of the process:

. (12.170)

The terms in the series are correlated, so from Eq. (9.108), assuming that
the process is wide sense stationary, the variance of the sample mean is then larger than
it would be for iid samples:

(12.171)

where is the covariance function of N(t). Only which corresponds to
the variance of N, would be present if the observations were uncorrelated.
Example 12.28 demonstrated how N(t) in queueing systems can maintain signifi-
cant correlation for significant periods of time. The example also illustrated how
the process N(t) becomes more correlated as the utilization increases. As discussed
in Examples 9.49 and 9.50, the net effect is that the convergence of the sample
mean to E[N] is slower than if the samples were independent. This larger variance
can be taken into account by gathering estimates for the covariance terms 
and using Eq. (12.168) in the calculation of confidence intervals. (See [Law, p. 556]
for a discussion on such confidence intervals).
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The relative frequencies of the states provide estimates for the long-range pro-
portion of time spent in each state:

(12.172)

where is the indicator function for the event Relative frequencies
are a special case of sample means so the same cautions regarding the variance of the
estimates and convergence rates apply.

The method of batch means, introduced in Section 8.4, provides an approach to
dealing with the correlation among samples. A long simulation run is divided into mul-
tiple segments that are sufficiently long that the samples from different segments have
low correlation.The parameter estimates from different segments, e.g., sample mean or
relative frequencies, are treated as independent random variables and the standard
statistical tools are applied to the batch means and batch relative frequencies.

Example 12.29 Confidence Intervals Using Batch Means

Use the method of batch means to estimate the mean of the M/M/1 queue when and
job per second. Each realization should consist of 8 batches of 600 steps. Replicate each

simulation five times.
Five replications of 5000-step realizations were carried out. The first 200 samples from

each realization were discarded to remove bias from the initial transient. The remaining 4800
samples in each realization were divided into 8 batches. Table 12.2(a) shows the means for each
of the resulting 40 batches. For each realization the sample mean and sample standard deviation
for the 8 batch means were calculated and are shown in Table 12.2(b). Confidence intervals were
then calculated for each realization. For a 90% confidence level and

The upper and lower limits of the confidence interval for the mean of the process
are given in the two rightmost columns of Table 12.2(b). Every confidence interval contains the
value 1, which is the expected value of the M/M/1 queue when r = 1/2.

d = ta/2s>28.
1a = 10%2, ta/2 = 1.8946

m = 1
l = 0.5

5N1kd26 = j6.Ij

pN j =
1
n a
n

k=1
Ij1kd2

TABLE 12.2a Sequence of batch means for five replications

r/b 1 2 3 4 5 6 7 8

1 0.84500 0.70667 0.51500 4.57167 0.30500 3.56000 1.75167 0.91167
2 0.83000 0.66000 0.97667 1.21833 1.14667 1.16333 2.39833 0.61000
3 0.96000 0.55333 0.89833 0.62500 0.31000 3.39167 0.86167 0.43333
4 2.73333 1.06167 0.62167 0.45667 2.17333 1.30000 0.57667 0.88167
5 1.14000 0.85667 0.82500 1.07167 0.67833 1.02167 1.08833 1.44667

TABLE 12.2b Confidence interval for mean for each of five replications
r/b Mean s d Lower Upper

1 1.6458 1.57547 1.05532 0.59052 2.7011
2 1.1254 0.56347 0.37744 0.74798 1.5029
3 1.0042 0.99199 0.66448 0.33969 1.6686
4 1.2256 0.81934 0.54883 0.67679 1.7745
5 1.0160 0.23455 0.15711 0.85893 1.1732
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Table 12.2(c) gives the 90% confidence interval that is calculated for the batch means
across different replications.These batches are truly independent and will not be affected by cor-
relation effects. It is important to determine whether any evidence of bias exists in the earlier
batches due to the initial transient phase. It can be seen that the second and third columns do not
include the value 1 by a small margin.

We also calculated a 90% confidence interval for the combined 40 batches and obtained
Finally, we calculated a 90% confi-

dence interval based on the sample means of the 5 realizations, and obtained
Note that the latter 5 realizations

are truly independent and constitute a pure application (no batching) of the replication method.

12.10.4 Simulation Using Embedded Markov Chains

Many queueing systems have natural embedding points that lead to discrete-time
Markov chains. We saw in Chapter 11 that queueing systems that are modeled by
continuous-time Markov chains can be defined in terms of an embedded Markov
chain and exponentially distributed state occupancy times. In this chapter we saw
that the distribution of the steady state number of customers in an M/G/1 system can
also be observed through an embedded Markov chain. In this section we discuss
simulation based on embedded Markov chains.

First, let N(t) be the number of customers in a queueing system that is modeled
by a continuous-time Markov chain. The transition rate matrix for the process pro-
vides us with the transition probabilities of the embedded chain as well as the state oc-
cupancy times (see Eq. 11.35). In Example 11.50 we used this approach to generate
realizations of an M/M/1 queue. The output of this simulation is a sequence of states

and the corresponding state occupancy times The relative frequencies ob-
tained from the sequence of states provide us with an estimate for the state probabili-
ties of the embedded Markov chain. The occupancy times according to their
corresponding state, e.g., for state j, can also provide us with an
estimate for the state occupancy times. We can obtain an estimate for the mean of N(t)
directly:

(12.173)NN =
1
T3

 T

0 

N1t2 dt =
1
T a
n

k=1
NkTk .

5Tk1j2, k = 1, Á , nj6
5pj6

5Ti6.5Ni6

≠

11.2034 - 0.25096, 1.2034 + 0.250962 = 10.95244, 1.45442.
11.2034 - 0.24575, 1.2034 + 0.245752 = 10.95765, 1.4492.

TABLE 12.2c Sequence of batch confidence intervals across five replications

r/b 1 2 3 4 5 6 7 8

Mean 1.3017 0.7677 0.7673 1.5887 0.9227 2.0873 1.3353 0.8567

s 0.8099 0.1972 0.1931 1.6965 0.7796 1.2727 0.7356 0.3846

d 0.7721 0.1880 0.1841 1.6174 0.7432 1.2134 0.7013 0.3667

Upper 2.0738 0.9557 0.9515 3.2061 1.6659 3.3007 2.0366 1.2234

Lower 0.5296 0.5796 0.5832 -0.0287 0.1795 0.8739 0.6340 0.4900
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An estimate for long-term proportion of time in state j is obtained similarly:

(12.174)

If the Markov chains that model the system are ergodic, then the above estimates will
converge to the correct steady state values.

Example 12.30 M/M/1 Steady State Probabilities Using Embedded Markov Chain

Use the embedded Markov chain approach to estimate the state probabilities in an M/M/1 sys-
tem with and Calculate the proportion of time spent in each state and obtain
confidence intervals for these values by using replication.

The code in Example 11.50 can be modified to calculate Eq. (12.174) by accumulating the
total time spent in each state as the simulator generates each new state and occupancy time.
Each realization was 1800 seconds in duration, but no data was gathered during the first 300
seconds of the simulation. Eight pmf estimates were obtained and the sample mean and stan-
dard deviation as well as a 90% confidence interval for each state probability were computed
using the eight independent estimates from the replication. The results are shown in Fig. 12.30.
It can be seen that there is generally good agreement between the theoretical pmf and the con-
fidence intervals.
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FIGURE 12.30
Confidence intervals for steady state M/M/1 pmf.
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The following example shows that we can simulate an M/G/1 system using anoth-
er type of embedded Markov chain.

Example 12.31 Simulating M/G/1 Using Embedded Markov Chains

Section 12.7 showed that the steady state distribution for the number of customers in an M/G/1
system is the same as the distribution for the number left behind by a customer departure. Fur-
thermore, the number of customers left behind by the jth customer departure, forms a dis-
crete-time Markov chain as follows:

(12.175)

where is the number of arrivals during the service time of the jth customer and where

Therefore we can obtain the steady state pmf for N(t) in an M/G/1 system by finding the transi-
tion probability matrix associated with Eq. (12.175) and applying the methods developed in
Section 11.6. We explore this approach further in the problems.

Next we introduce Lindley’s recursion for the waiting time in a G/G/1 system as a
final application of embedded Markov chain methods. Assume that the customer in-
terarrival times and service times are independent random variables with arbitrary dis-
tributions. We focus on the waiting time experienced by an arriving customer and we
show that the sequence of waiting times forms a Markov chain.

Let denote the customer interarrival times and let be their
corresponding service times. Let be the waiting time of the nth customer. Suppose
the customer arrives to a nonempty system, as shown in Fig. 12.31(a). Note
that we must have:

in order for the arriving customer to find a nonempty system. It then follows that the
waiting time for the customer must be given by:

(12.176a)Wn+1 = Wn + tn - an+1 if Wn + tn - an+1 Ú 0.
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Customer arrivals and departures in G/G/1 queue.
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On the other hand, the arriving customer finds an empty system (Fig. 12.31b) under the
following conditions:

(12.176b)

Therefore we conclude that the sequence of waiting times is given by Lindley’s recursion:

(12.177)

depends on the past only through and and Since and are from
iid sequences and are independent of each other, we conclude that is a Markov
process with stationary transition probabilities. Note that assumes a continuum of
values. We can generate the sequence of total delays experienced by the sequence of
customers as follows:

Equation (12.177) can be used to derive an integral equation for the steady state
waiting time of customers in a G/G/1 system [Kleinrock, p. 282]. The equation is similar
to the Wiener–Hopf equation we encountered in Section 10.4 and usually requires trans-
form methods to solve. However, Eq. (12.177) is remarkably simple to use in simulations.

Example 12.32 Estimating Waiting Time Distribution Using Lindley’s Recursion

Estimate the distribution of the customer waiting times in an M/M/1 queue when and
job per second. Compare the empirical cdf of the observed total time in the system with

the theoretical distribution.
Lindley’s recursion can be readily implemented in Octave.Arrays of exponential interarrival

times with and service times with job per second are generated initially. Lindley’s re-
cursion is then used to compute the sequence of waiting times and total delays for the sequence of
customers.The Octave function empirical_cdf is used to obtain the cdf of the observations. In the
simulation a sequence of 2000 waiting and total times were collected and no data was deleted to
allow for an initial transient period. Figure 12.32 compares the empirical cdf with the distribution for
waiting time in an M/M/1 system with A test such as the Kolmogorov–Smirnov test can be
applied to assess goodness of fit of the empirical distribution to the hypothetical distribution.

r = 0.9.
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FIGURE 12.32
Empircial cdf of M/M/1 queue using Lindley’s recursion, .r = 0.9
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12.10.5 Replication through Regenerative Cycles
In Section 7.5 we considered renewal processes where time is divided into intervals ac-
cording to an iid sequence of positive random variables We associated with each
interval a cost We then proved the following result Eq. (7.47):

(12.178)

where E[C] is the average cost per cycle and E[X] is the mean cycle length.
The regenerative method for simulation involves finding renewal points in a

queueing system where the process “restarts” itself so that its future is independent of
the past. For example, in many queueing systems this renewal or regeneration occurs
when a customer arrives to an empty system. Measurements taken during different cy-
cles are then independent random variables. Thus in effect the regenerative method
partitions a single simulation into a number of independent replications.

The long-term time average of C(t) in Eq. (12.178) is given by the ratio of the
sample mean for the measurements for C and the sample mean for X. For example, if
we are interested in the probability that the system is in state j, then we let be the
time the system is in state j during the jth cycle:

(12.179)

where is the number of times state j occurred during the ith cycle and is the
occupancy time of the jth occurrence of state j during the ith cycle. The corresponding
estimate for the proportion of time in state j is:

(12.180)

On the other hand if we are interested in the mean of N(t), we let

(12.181)

where is the number of states visited during the ith cycle. The corresponding esti-
mate for the mean is:
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The numerators and denominators in Eqs. (12.180) and (12.182) individually are
strongly consistent estimators for their corresponding parameters. Therefore the esti-
mators formed by taking their ratios in Eqs. (12.180) and (12.182) are also strongly
consistent. Note, however, that the ratios provide biased estimates. We discuss confi-
dence intervals after the following example.

Example 12.33 Regenerative Method for M/M/1 Simulation

Estimate the mean waiting time of customers in the system in Example 12.28 using the regener-
ative method to analyze the sequence of waiting times produced by Lindley’s recursion.

Let a cycle consist of the time from when a customer arrives to an empty system until
the next time a customer arrives to an empty system. We are interested in the average waiting
time experienced by customers over a long period of time. Suppose we measure the number of
customers serviced in a sequence of cycles and the total of the waiting times of all
customers in the cycle Each of these sequences is iid and so each one will converge
to its respective mean. The ratio of the two expressions provides an estimate for the mean
waiting time (see Problem 12.78):

. (12.183)

It is easy to prepare a simulation to gather and the sequence of cycle
durations using Lindley’s recursion because each regeneration point is marked by arriving
customers that have zero waiting time. The resulting sequences can be parsed according to their
respective cycles and the above cycle statistics can then be gathered.

A simulation with 4000 customer arrivals to an M/M/1 systems with and 
was conducted and the results in Table 12.3 were obtained. The 4000 arrivals produced 366 cy-
cles. The ratio of the mean number of customers serviced in a cycle to the mean cycle duration
gives the following estimate for the arrival rate:

which is close to The estimate for the mean waiting time obtained from the ratio in
Eq. (12.183) was 8.80. From Eq. (9.27) the mean waiting time for this M/M/1 queue is

which again is quite close.E3W4 = 9,

l = 0.9.

Arrival Rate Estimate = 10.842/11.913 = 0.91,

m = 1l = 0.9
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TABLE 12.3 Per regenerative cycle statistics for M/M/1 queue

M/M/1 Mean Waiting Time

L = 4000 TotCycle = 366

MeanCycle = 11.913 STDCycle = 41.374
MeanCount = 10.842 STDCount = 39.236
MeanCycleWait = 95.424 STDCycleWait = 612.20

MeanWait = 8.8017
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Of course the whole point of striving to get independent observations is to pro-
duce confidence intervals. In [Law, p. 559] an approximate confidence interval is devel-
oped for an estimator of the form in Eq. (12.183). The pair form an iid 
sequence but in general and are correlated. It can be shown that for large n
the estimator in Eq. (12.183) is asymptotically Gaussian with mean E[W] and variance:

(12.184)

where is the estimator for the covariance of and This result leads
to the following confidence interval:

(12.185)

The required estimates for the variances and covariances of can be made
from the per-cycle statistics.

In practice the regenerative method is difficult to apply because the occurrence
of regenerative instances is not controllable. For example, the busy periods of queueing
systems under heavy traffic vary dramatically and so the occurrence of regeneration
points can be quite unpredictable.

In conclusion, simulation straddles the space between theoretical models and the
real world.The basic introduction to simulation methods for queueing systems provides
an excellent opportunity to illustrate the role of statistical techniques in the application
of probability models to real world problems. The presence of transient effects and cor-
relations in the observed data provide an excellent opportunity to emphasize the need
to apply probability models and statistical tools with care. But we should end this book
on a positive note: the availability of plentiful and inexpensive computing allows us to
extend the reach of our theoretical and simulation models into new frontiers!

SUMMARY

• A queueing system is specified by the arrival process, the service time distribu-
tion, the number of servers, the waiting room, and the queue discipline.

• Little’s formula states that under very general conditions: The mean number in a
system is equal to the product of the mean arrival rate and the mean time spent
in the system.

• In M/M/1, M/M/1/K, M/M/c, M/M/c/c, and queueing systems, the num-
ber of customers in the system is a continuous-time Markov chain. The steady
state distribution for the number in the system is found by solving the global bal-
ance equations for the Markov chain. The waiting time and delay distribution
when the service discipline is first come, first served is found by using the arriving
customer’s distribution.

• If the arrival process in a queueing system is a Poisson process and if the cus-
tomer interarrival times are independent of the service times, then the arriving
customer’s distribution is the same as the steady state distribution of the queue-
ing system.

M>M>q
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• In M/G/1 queueing systems the arriving customer’s distribution and the depart-
ing customer’s distribution are both equal to the steady state distribution of the
queueing system. The steady state distribution for the number of customers in an
M/G/1 system can be found by embedding a discrete-time Markov chain at the
customer departure instants.

• Burke’s theorem states that the output process of M/M/1, M/M/c, and
systems at steady state are Poisson processes, and that the departure instants
prior to time t are independent of the state of the system at time t. As a result,
feedforward combinations of queueing systems with exponential service times
have a product-form solution.

• Jackson’s theorem states that for networks of queueing systems with exponential
service times and external Poisson input processes, the joint state pmf is of prod-
uct form. If the network of queues is open, the marginal state pmf of each queue
is the same as that of a queue in isolation that has Poisson arrivals of the same
rate. If the network of queues is closed, finding the joint state pmf requires find-
ing a normalization constant. The mean value analysis method allows us to find
the mean number in each queue, the mean time spent in each queue, and the ar-
rival rate in each queue in a closed network of queues.

• Approaches to simulating queueing systems include replication, time sampling,
and embedded Markov chains. The analysis of observations must deal with the
effect of transient behavior as well as the correlation of observations.

CHECKLIST OF IMPORTANT TERMS

M>M>q

a/b/m/K
Arrival rate
Arriving customer’s distribution
Burke’s theorem
Carried load
Closed networks of queues
Departing customer’s distribution
Erlang B formula
Erlang C formula
Finite-source queueing system
Head-of-line priority service
Interarrival times
Jackson’s theorem
Lindley’s recursion
Little’s formula
Mean value analysis
Method of batch means
M/G/1 queueing system
M/M/c queueing system
M/M/c/c queueing system
M/M/1 queueing system

M/M/1/K queueing system
Offered load
Open networks of queues
Pollaczek–Khinchin mean value formula
Pollaczek–Khinchin transform equation
Product-form solution
Queue discipline
Regenerative method for simulation
Residual service time
Server utilization
Service discipline
Service time
Simulation based on embedded Markov
chains
Simulation through independent replica-
tion
Time-sampled process simulation
Total delay
Traffic intensity
Waiting time
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PROBLEMS

Sections 12.1 and 12.2: The Elements of a Queueing Network and Little’s Formula

12.1. Describe the following queueing systems: M/M/1, M/D/1/K, M/G/3, D/M/2, G/D/1, D/D/2.
12.2. Suppose that a queueing system is empty at time let the arrival times of the first six

customers be 1, 3, 4, 7, 8, 15, and let their respective service times be 3.5, 4, 2, 1, 1.5, 4. Find
and for sketch N(t) versus t; and check Little’s formula by

computing and for each of the following three service disciplines:
(a) First come, first served.
(b) Last come, first served.
(c) Shortest job first (assume that the precise service time of each job is known before it

enters service).
12.3. A data communication line delivers a block of information every 10 µs.A decoder checks

each block for errors and corrects the errors if necessary. It takes to determine
whether a block has any errors. If the block has one error, it takes to correct it, and if
it has more than one error it takes to correct the error. Blocks wait in a queue when
the decoder falls behind. Suppose that the decoder is initially empty and that the num-
bers of errors in the first ten blocks are 0, 1, 3, 1, 0, 4, 0, 1, 0, 0.

20 ms
5 ms

1 ms

8T9t8N9t , 8l9t ,
i = 1, Á , 5;TiSi , ti , Di ,Wi ,

t = 0,

M>G>q .
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(a) Plot the number of blocks in the decoder as a function of time.
(b) Find the mean number of blocks in the decoder.
(c) What percentage of the time is the decoder empty?

12.4. Three queues are arranged in a loop as shown in Fig. P12.1.Assume that the mean service
time in queue i is mi = 1>mi .

m1 m2 m3

FIGURE P12.1

(a) Suppose the queue has a single customer circulating in the loop. Find the mean time
E[T] it takes the customer to cycle around the loop. Deduce from E[T] the mean ar-
rival rate at each of the queues. Verify that Little’s formula holds for these two
quantities.

(b) If there are N customers circulating in the loop, how are the mean arrival rate and
the mean cycle time related?

12.5. A very popular barbershop is always full. The shop has two barbers and three chairs for
waiting, and as soon as a customer completes his service and leaves the shop, another en-
ters the shop. Assume the mean service time is m.
(a) Use Little’s formula to relate the arrival rate and the mean time spent in the shop.
(b) Use Little’s formula to relate the arrival rate and the mean time spent in service.
(c) Use the above formulas to find an expression for the mean time spent in the system

in terms of the mean service time.
12.6. In Problem 12.3, suppose that the probabilities of zero, one, and more than one errors are

and respectively. Use Little’s formula to find the mean number of blocks in the
decoder.

12.7. A communication network receives messages from R sources with mean arrival rates
On the average there are messages from source i in the network.

(a) Use Little’s formula to find the average time spent by type i customers in the
network.

(b) Let denote the total arrival rate into the network. Use Little’s formula to find an
expression for the mean time E[T] spent by customers (of all types) in the network
in terms of the 

(c) Combine the results of part a and part b to obtain an expression for E[T] in terms of
Derive the same expression using A(t) the arrival processes for each type.

Section 12.3: The M/M/1 Queue

12.8. (a) Find for an M/M/1 system.
(b) What is the maximum allowable arrival rate in a system with service rate if we re-

quire that P3N Ú 104 = 10-3?
m,

P3N Ú n4

E3Ti4.
E3Ni4.

l

E3Ti4
E3Ni4l1 , Á , lR .

p2 ,p0 , p1 ,

l
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12.9. A decision to purchase one of two machines is to be made. Machine 1 has a processing
rate of transactions/hour and it costs B dollars/hour to operate whether idle or not; ma-
chine 2 is twice as fast but costs twice as much to operate. Suppose that transactions ar-
rive at the system according to a Poisson process of rate and that the transaction
processing times are exponentially distributed. The total cost of the system is the opera-
tion cost plus a cost of A dollars for each hour a customer has to wait.
(a) Find expressions for the total cost per hour for each of the systems. Plot this cost ver-

sus the arrival rate.
(b) If for what range of arrival rates is machine 1 cheaper? Repeat for

12.10. Consider an M/M/1 queueing system in which each customer arrival brings in a profit of
$5 but in which each unit time of delay costs the system $1. Find the range of arrival rates
for which the system makes a net profit.

12.11. Consider an M/M/1 queueing system with arrival rate customers/second.
(a) Find the service rate required so that the average queue is five customers (i.e.,

).
(b) Find the service rate required so that the queue that forms from time to time has

mean 5 (i.e., ).
(c) Which of the two criteria, or do you consider the more ap-

propriate?
12.12. Show that the pth percentile of the waiting time for an M/M/1 system is given by

12.13. Consider an M/M/1 queueing system with service rate two customers per second.
(a) Find the maximum allowable arrival rate if 90% of customers should not have a

delay of more than 3 seconds.
(b) Find the maximum allowable arrival rate if 90% of customers should not have to

wait for service for more than 2 seconds. Hint: Use the result from Problem 12.12,
and then find by trial and error.

12.14. Verify Eq. (12.36) for the steady state pmf of an M/M/1/K system.
12.15. Consider an M/M/1/2 queueing system in which each customer accepted into the system

brings in a profit of $5 and each customer rejected results in a loss of $1. Find the arrival
rate at which the system breaks even.

12.16. For an M/M/1/K system show that

Why does this probability represent the proportion of arriving customers who actually
enter the system and find exactly k customers in the system?

12.17. (a) Use the matrix exponential method of Eq. (11.72) to find the transient solution for
the state pmfs for an M/M/1/5 queue under the following conditions:
(i) and

(ii) and

(b) Plot E[N(t)] vs. t for the cases considered in part a.

N102 = 0,N102 = 2,N102 = 5.r = 1
N102 = 0,N102 = 2,N102 = 5;r = 0.5

P3N = k ƒ N 6 K4 =
P3N = k4

1 - P3N = K4 0 … k 6 K.

l

x =
1>m

1 - r
 lna r

1 - p
b .

E3Nq ƒ Nq 7 04,E3Nq4
E3Nq ƒ Nq 7 04 = 5

E3Nq4 = 5

l

A = 10B.
A = B>10,

l

m



Problems 787

12.18. Suppose that two types of customers arrive at a queueing system according to independent
Poisson process of rate Both types of customers require exponentially distributed ser-
vice times of rate Type 1 customers are always accepted into the system, but type 2 cus-
tomers are turned away when the total number of customers in the system exceeds K.
(a) Sketch the transition rate diagram for N(t), the total number of customers in the system.
(b) Find the steady state pmf of N(t).

12.19. Consider the queueing system in Problem 12.18 with and with a maximum sys-
tem occupancy of 10 customers. In this problem we use the matrix exponential method
of Eq. (11.72) to explore how the system adjusts to sudden increases in load.
(a) Find the transient state pmf for the system with and assuming that

initially there are 5 customers in the system.
(b) Suppose that at time 20, the increases to 1. Find the transient state pmf after this

surge in traffic.

Section 12.4: Multiserver Systems: M/M/c, M/M/c/c, and

12.20. Find for an M/M/c system.
12.21. Customers arrive at a shop according to a Poisson process of rate 12 customers per hour.

The shop has two clerks to attend to the customers. Suppose that it takes a clerk an expo-
nentially distributed amount of time with mean 5 minutes to service one customer.
(a) What is the probability that an arriving customer must wait to be served?
(b) Find the mean number of customers in the system and the mean time spent in the

system.
(c) Find the probability that there are more than 4 customers in the system.

12.22. Little’s formula applied to the servers implies that the mean number of busy servers is 
Verify this by explicit calculation of the mean number of busy servers in an M/M/c system.

12.23. Inquiries arrive at an information center according to a Poisson process of rate 10 in-
quiries per second. It takes a server 1/2 second to answer each query.
(a) How many servers are needed if we require that the mean total delay for each inquiry

should not exceed 4 seconds, and 90% of all queries should wait less than 8 seconds?
(b) What is the resulting probability that all servers are busy? Idle?

12.24. Consider a queueing system in which the maximum processing rate is customers per
second. Let k be the number of customers in the system. When c customers are
served at a rate each. When these k customers are served at a rate 
each. Assume Poisson arrivals of rate and exponentially distributed times.
(a) Find the transition rate diagram for this system.
(b) Find the steady state pmf for the number in the system.
(c) Find E[W] and E[T].
(d) For compare E[W] and E[T] for this system to those of M/M/1 and M/M/2

systems of the same maximum processing rate.
12.25. (a) Suppose that the queueing system in Problem 12.24 models a Web server where c is

the maximum number of clients allowed to place queries at the same time. Discuss
the impact of the choice of the parameter c on queueing and total delay performance.

(b) Consider the fact that while connected to the Web server, clients spend their time
in three states: sending the query, waiting for the response, and thinking after each
response. How does this affect the choice of c? Should the system impose a time-
out limit on the customer’s connection time?

c = 2,

l

cm>k0 6 k … c,m
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12.26. Show that the Erlang B formula satisfies the following recursive equation:

where
12.27. Consider an M/M/5/5 system in which the arrival rate is 10 customers per minute and the

mean service time is 1/2 minute.
(a) Find the probability of blocking a customer.Hint: Use the result from the Problem 12.26.
(b) How many more servers are required to reduce the blocking probability to 10%?

12.28. A tool rental shop has four floor sanders. Customers for floor sanders arrive according to
a Poisson process at a rate of one customer every two days. The average rental time is ex-
ponentially distributed with mean two days. If the shop has no floor sanders available, the
customers go to the shop across the street.
(a) Find the proportion of customers that go to the shop across the street.
(b) What is the mean number of floor sanders rented out?
(c) What is the increase in lost customers if one of the sanders breaks down and is not

replaced?
12.29. (a) Show that the Erlang C formula is related to the Erlang B formula by

(b) Show that this implies that 
12.30. Suppose that department A in a certain company has three private videoconference lines

connecting two sites. Calls arrive according to a Poisson process of rate 1 call/hour, and
have an exponentially distributed holding time of 2 hours. Calls that arrive when the
three lines are busy are automatically redirected to public video lines. Suppose that de-
partment B also has three private videoconference lines connecting the same sites, and
that it has the same arrival and service statistics.
(a) Find the proportion of calls that are redirected to public lines.
(b) Suppose we consolidate the videoconference traffic from the two departments and

allow all calls to share the six lines. What proportion of calls are redirected to public
lines?

12.31. A server blocking system handles two streams of customers that each arrive at
rate Type 1 customers have a mean service time of 1 time unit, and Type 2 customers
have a service time of 3 time units. Compare the blocking performance of a system that
allows customers to access any available server against one that allocates half the servers
to each class. Does scale matter? Does the answer change if 

12.32. Suppose we use from an system to approximate B(c, a) in selecting the
number of servers in an M/M/c/c system. Is the resulting design optimistic or pessimistic?

12.33. During the evening rush hour, users log onto a peer-to-peer network at a rate of 10 users
per second. Each user stays connected to the network an average of 1 hour.
(a) What is the steady state pmf for the number of customers logged onto the peer-to-

peer network?
(b) Is steady state ever achieved?
(c) Is it reasonable to assume a Gaussian distribution for the number of customers in

the system?

M>M>qP3N = c4
c = 100?
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Section 12.5: Finite-Source Queueing Systems

12.34. A computer is shared by 15 users as shown in Fig. 12.14(b). Suppose that the mean service
time is 2 seconds and the mean think time is 30 seconds, and that both of these times are
exponentially distributed.
(a) Find the mean delay and mean throughput of the system.
(b) What is the system saturation point for this system?
(c) Repeat part a if 5 users are added to the system.

12.35. A Web server that has the maximum number of clients connected is modeled by the sys-
tem in Figure 12.14(b). Suppose that the system can handle a query in 10 milliseconds and
the users click new queries at a rate of 1 every 5 seconds.
(a) Find the value of for this system.
(b) Find the pmf for the number of requests found in queue by arriving queries.

12.36. Find the transition rate diagram and steady state pmf for a two-server finite-source
queueing system.

12.37. Verify that Eqs. (12.84) and (12.81) give E[T] as given in Eq. (12.72).
12.38. Consider a c-server, finite-source queueing system that allows no queueing for service.

Requests that arrive when all servers are busy are turned away, and the corresponding
source immediately returns to the “think” state, and spends another exponentially dis-
tributed think time before submitting another request for service.
(a) Find the transition rate diagram and show that the steady state pmf for the state of

the system is

where c is the number of servers, K is the number of sources, and

(b) Find the probability that all servers are busy.
(c) Use the fact that arriving customers “see” the steady state pmf of a system with one

less source to show that the fraction of arrivals that are turned away is given by
The resulting expression is called the Engset formula.

12.39. A video-on-demand system is modeled as a server system that handles video
chunk requests from K clients. Suppose that the system is modeled by the Engset system
from Problem 12.38. Suppose that users generate requests at a rate of one per second and
the each server can meet the request within 100 ms. Find the number of clients that can be
connected if the probability of turning away a request is 10%? 1%?

Section 12.6: M/G/1 Queueing Systems

12.40. Find the mean waiting time and mean delay in an M/G/1 system in which the service time
is a k-Erlang random variable (see Table 4.1) with mean Compare the results to
M/M/1 and M/D/1 systems.
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12.41. A hyperexponential random variable is obtained by selecting a service time at ran-
dom from one of two exponential random variables as shown in Fig. P12.2. Find the mean
delay in an M/G/1 system with this hyperexponential service time distribution.

k = 2

p

1 � p

m1

m2

FIGURE P12.2

12.42. Customers arrive at a queueing system according to a Poisson process of rate A frac-
tion of the customers require a fixed service time d, and a fraction require an ex-
ponential service time of mean Find the mean waiting time and mean delay in the
resulting M/G/1 system.

12.43. Find the mean waiting time and mean delay in an M/G/1 system in which the service time
consists of a fixed time d plus an exponentially distributed time of mean 

12.44. Fixed-length messages arrive at a transmitter according to a Poisson process of rate 
The time required to transmit a message and to receive an acknowledgment is d seconds.
If a message is acknowledged as having been received correctly, then the transmitter pro-
ceeds with the next message. If the message is acknowledged as having been received in
error, the transmitter retransmits the message. Assume that a message undergoes errors
in transmission with probability p, and that transmission errors are independent.
(a) Find the mean and variance of the effective message service time.
(b) Find the mean message delay.

12.45. Packets at a router with a 1 Gigabit/second transmission line arrive at a rate of pack-
ets per second. Suppose that half the packets are 40 bytes long and half the packets are
1500 bytes long. Find the mean packet delay as a function of 

12.46. A file server receives requests at a rate of requests per second. The server can transmit
files at a rate of 12.5 Megabytes per second. Suppose that file lengths have a Pareto dis-
tribution with mean 1 Megabyte.
(a) Find the average delay in meeting a file request.
(b) Discuss the effect of the Pareto distribution parameter on system performance.

12.47. Jobs arrive at a machine according to a Poisson process of rate The service times for
the jobs are exponentially distributed with mean The machine has a tendency to
break down while it is serving customers; if a particular service time is t, then the proba-
bility that it will break down k times during this service time is a Poisson random variable
with mean It takes an exponentially distributed time with mean to repair the ma-
chine. Assume a machine is always working when it begins a job.
(a) Find the mean and variance of the total time required to complete a job. Hint: Use

conditional expectation.
(b) Find the mean job delay for this system.

1>bat.

1>m.
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12.48. Consider a two-class nonpreemptive priority queueing system, and suppose that the
lower-priority class is saturated (i.e., ).
(a) Show that the rate of low-priority customers served by the system is

Hint: What proportion of time is the server busy with
class two customers?

(b) Show that the mean waiting time for class 1 customers is

12.49. Consider an M/G/1 system in which the server goes on vacations (becomes unavailable)
whenever it empties the queue. If upon returning from vacation the system is still empty,
the server takes another vacation, and so on until it finds customers in the system. Sup-
pose that vacation times are independent of each other and of the other variables in the
system. Show that the mean waiting time for customers in this system is

where V is the vacation time. Hint: Show that this system is equivalent to a nonpreemp-
tive priority system and use the result of Problem 12.48.

12.50. Fixed-length packets arrive at a concentrator that feeds a synchronous transmission sys-
tem.The packets arrive according to a Poisson process of rate but the transmission sys-
tem will only begin packet transmissions at times id, where d is the
transmission time for a single packet. Find the mean packet waiting time. Hint: Show that
this is an M/D/1 queue with vacations as in Problem 12.49.

12.51. A queueing system handles two types of traffic. Type i traffic arrives according to a Pois-
son process and has exponentially distributed service times with mean for 
Suppose that type 1 customers are given nonpreemptive priority. Plot the overall and per-
class mean waiting time versus if 

12.52. Consider a two-class priority M/G/1 system in which high-priority customer arrivals pre-
empt low-priority customers who are found in service. Preempted low-priority customers
are placed at the head of their queue, and they resume service when the server again be-
comes available to low-priority customers.
(a) What is the mean waiting time and the mean delay for the high-priority customers?
(b) Show that the time required to service all customers found by a type 2 arrival to the

system is

where and

(c) Show that the time required to service all type 1 customers who arrive during the
time a type 2 customer spends in the system is r1E3T24.

R2 =
1
2 a

2

j=1
ljE3tj24.

rj = ljE3tj4,

R2

1 - r1 - r2
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(d) Use parts b and c to show that

12.53. Evaluate and plot the formulas developed in Problem 12.52 using the two traffic classes
described in Problem 12.51.

Section 12.7: M/G/1 Analysis Using Embedded Markov Chain

12.54. The service time in an M/G/1 system has a Erlang distribution with mean and

(a) Find and 

(b) Find and and the corresponding pdf’s.
12.55. (a) In Problem 12.47, show that the Laplace transform of the pdf for the total time re-

quired to complete the service of a customer is

Hint: Use conditional expectation in evaluating and note that the number of
breakdowns depends on the service time of the customer.

(b) Find and and the corresponding pdf’s.
12.56. (a) Show that Eqs. (12.110a) and (12.110b) can be written as

(12.186)

where

(b) Take the expected value of both sides of Eq. (12.186) to obtain an expression for

(c) Square both sides of Eq. (12.186) and take the expected value to obtain the
Pollaczek–Khinchin formula for E[N].

12.57. (a) Show that for an M/D/1 system,

(b) Expand the denominator in a geometric series, and then identify the coefficient of 
to obtain

12.58. (a) Show that Eq. (12.130) can be rewritten as

(12.87)WN 1s2 =
1 - r

1 - rRN 1s2 ,

P3N = k4 = 11 - r2a
k

j=0

1-jr2k- j-11-jr - k + 12ejr
1k - j2! .

zk

GN1z2 =
11 - r211 - z2

1 - zer11-z2 .

P3N 7 04.

U1x2 = b1 x 7 0
0 x … 0.

Nj = Nj-1 - U1Nj-12 + Mj ,

TN 1s2WN 1s2
E3e-st4,

tN1s2 =
m1s + b2

1s + b21s + m2 + as
.

t

TN 1s2WN 1s2
P3N = j4.GN1z2

l = m>2.
1>mk = 2

E3T24 =
11 - r1 - r22>m2 + R2

11 - r1211 - r1 - r22 .



Problems 793

where

is the Laplace transform of the pdf of the residual service time.
(b) Expand the denominator of Eq. (12.187) in a geometric series and invert the result-

ing transform expression to show that

(12.188)

where is the kth-order convolution of the residual service time.
12.59. Approximate for an M/D/1 system using the terms of Eq. (12.188).

Sketch the resulting pdf for 

Section 12.8: Burke’s Theorem: Departures from M/M/c Systems

12.60. Consider the interdeparture times from a stable M/M/1 system in steady state.
(a) Show that if a departure leaves the system nonempty, then the time to the next de-

parture is an exponential random variable with mean 
(b) Show that if a departure leaves the system empty, then the time to the next depar-

ture is the sum of two independent exponential random variables of means and
respectively.

(c) Combine the results of parts a and b to show that the interdeparture times are expo-
nential random variables with mean 

12.61. Find the joint pmf for the number of customers in the queues in the network shown in
Fig. P12.3.

1>l.
1>m,

1>l
1>m.

r = 1/2.
k = 0, 1, 2fW1x2

f1k21x2
fW1x2 = a

q

k=0
11 - r2rkf1k21x2,

RN 1s2 =
1 - tN1s2
sE3t4

m1 m3

l1

l2

m2

1

1
2

1
2

FIGURE P12.3

12.62. Write the balance equations for the feedforward network shown in Fig. P12.4 and verify
that the joint state pmf is of product form.

m2

m1 m4

m3

1
2

1
2

l

FIGURE P12.4
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m2

m1

m3

1
2

1
2

1
2

1
2

l

FIGURE P12.5

m1

m

m2

#1

#2

1
2

1
2

CPU

New program

p

I/O

I/O

FIGURE P12.6

12.66. Use the mean value analysis algorithm to answer Problem 12.65, part b.

Section 12.10: Simulation and Data Analysis of Queueing Systems

12.67. (a) Repeat the experiment in Example 12.28 for an M/M/1 system with and
0.9. Use sample means for N(t) based on 25 replications to characterize the transient
behavior. Try out smoothing the sample means using a moving average filter over
time. Give an estimate of the time to reach steady state in each of these systems.

(b) Now investigate the effect of initial condition on the duration of the transient phase.
For each of the utilizations above compare the transient duration when the initial
condition is:N102 = 0;N102 = 5;N102 = 10.

r = 0.5, 0.7,

12.63. Verify that Eqs. (12.137) through (12.139) satisfy Eq. (12.135).

Section 12.9: Networks of Queues: Jackson’s Theorem

12.64. Find the joint state pmf for the open network of queues shown in Fig. P12.5.

12.65. A computer system model has three programs circulating in the network of queues
shown in Fig. P12.6.
(a) Find the joint state pmf of the system.
(b) Find the average program completion rate.
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12.68. For the experiment in Problem 12.67, calculate the sample covariance for each realization
and then average over the 25 replications. Find the number of lags required for each
value of r until the correlation drops to zero. Comment on the implications for the size of
the batches if a method of batch means approach is to be used.

12.69. The correlation of N(t) for an M/M/1 system has the following geometric upper bound
[Fishman]:

.

Evaluate the ratio of the variance of the sample mean estimator for this process to that of
an iid process when 

12.70. Run the simulation for the experiment in Example 12.29 50 times. For each simulation
produce a confidence interval using the method of batch means. Determine the fraction
of the confidence intervals that covered the actual mean E[N]. Comment on the accuracy
of the confidence intervals given by Eq. (12.168).

12.71. Develop a simulation model for an M/M/3 system with customers per second and
customer per second. Use the method of batch means as in Example 12.29 to esti-

mate the probability that an arriving customer has to queue for service. Provide appro-
priate confidence intervals.

12.72. (a) Consider the simulation in Example 12.30 where the embedded Markov chain ap-
proach is used to estimate the steady state pmf. For and use different
warm-up periods to investigate the effect of the initial transient on the pmf estimates.

(b) Double the number of replications and observe the impact on the confidence
intervals.

12.73. Develop a simulation for an M/D/1 system with using the embedded Markov
chain in Eq. (12.172). Design the simulation to estimate the pmf for the number of cus-
tomers in the system as well as the mean number in the system.
(a) Discuss what transient effects can be expected in this approach.
(b) Use the method of batch means to develop estimates for the mean number of cus-

tomers in the system. Discuss the choice of batch size and warm-up period. Evaluate
the confidence intervals produced by several realizations.

12.74. Use Lindley’s recursion to estimate the waiting-time distribution for customers in an
M/D/1 system with and Is there anything peculiar about the distribution?

12.75. Use Lindley’s recursion to estimate the waiting-time distribution for customers in a
D/M/1 system with and 

12.76. Use Lindley’s recursion to estimate the waiting-time distribution for customers in an
M/G/1 system with and where the service-time distribution is Pareto
with parameter Try a simulation with Does anything peculiar happen?

12.77. Repeat the experiment in Example 12.33, but use the method of batch means to provide
confidence intervals for the mean waiting time.

12.78. Explain why the estimator in Eq. (12.183) will converge to the expected value of the wait-
ing time.

12.79. Use the regenerative method to estimate the mean number in the system and the proba-
bility that the system is empty in an M/D/1 system. Evaluate the confidence interval pro-
vided by Eq. (12.185).

a = 1.5.a = 2.5.
r = 0.7r = 0.5

r = 0.7.r = 0.5

r = 0.7.r = 0.5

r = 0.7

r = 0.9,r = 0.5

m = 1
l = 2

r = 0.5, 0.75, 0.9, 0.99.

rj … B 4r

11 + r22R j for j = 0, 1, 2, Á
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Problems Requiring Cumulative Knowledge

12.80. Consider an M/M/2/2 system in which one server is twice as fast as the other server.
(a) What definition of “state” of the system results in a continuous-time Markov chain?
(b) Find the steady state pmf for the system if customers arriving at an empty system are

always routed to the faster server.
(c) Find the steady state pmf for the system if customers arriving at an empty system are

equally likely to be routed to either server.
12.81. (a) Find the transient pmf, for an M/M/1/2 system which is in the empty

state at time 0.
(b) Repeat part a if the system is full at time 0.

12.82. (a) In an M/G/1 system, why are the set of times when customers arrive to an empty sys-
tem renewal instants?

(b) How would you apply the results from renewal theory in Section 7.5 to estimate the
pmf for the number of customers in the system?

(c) How would you obtain a confidence interval for 
12.83. Let N(t) be a Poisson random process with parameter Suppose that each time an event

occurs, a coin is flipped and the outcome is recorded. Assume that the probability of
heads depends on the time of the arrival and is denoted by p(t). Let and de-
note the number of heads and tails recorded up to time t, respectively.
(a) Show that and are independent Poisson random variables with rates 

and where

(b) Are and independent Poisson random processes? If so, how would you
show this?

12.84. Consider an system in which customers arrive at rate and in which the cus-
tomer service times have distribution Suppose that the system is empty at time 0.
Let be the number of customers who have completed their service by time t, and let

be the number of customers still in the system at time t.
(a) Use the result of Problem 12.83 to find the joint pmf of and 
(b) What is the steady state pmf for the number of customers in an system?
(c) Apply Little’s formula to compute the average number of customers in the system.

Is the result consistent with your result in part b?

M>G>q
N21t2.N11t2

N21t2
N11t2

FX1x2.
lM>G>q

N21t2N11t2

p =
1
tL

t

0
p1t¿2 dt¿.

11 - p2l,
plN21t2N11t2

N21t2N11t2
l.
P3N1t2 = j4?

P3N1t2 = j4,



A. TRIGONOMETRIC IDENTITIES

sin a = cos1a - p>22
sin a = 1eja - e-ja2>2j
cos a = 1eja + e-ja2>2
eja = cos a + j sin a

cos2 a =
1
2
11 + cos 2a2

sin2 a =
1
2
11 - cos 2a2

cos a sin b =
1
2

sin1a + b2 -
1
2

sin1a - b2

sin a cos b =
1
2

sin1a + b2 +
1
2

sin1a - b2

cos a cos b =
1
2

cos1a - b2 +
1
2

cos1a + b2

sin a sin b =
1
2

cos1a - b2 -
1
2

cos1a + b2
cos 2a = cos2 a - sin2 a = 2 cos2 a - 1 = 1 - 2 sin2 a

sin 2a = 2 sin a cos a

cos1a - b2 = cos a cos b + sin a sin b

cos1a + b2 = cos a cos b - sin a sin b

sin1a - b2 = sin a cos b - cos a sin b

sin1a + b2 = sin a cos b + cos a sin b

sin2 a + cos2 a = 1
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B. INDEFINITE INTEGRALS

where u and v are functions of x

except for 

Lx
2 cos ax dx = 11>a3252ax cos ax - 2 sin ax + a2x2 sin ax6

Lx cos ax dx = 11>a221cos ax + ax sin ax2
Lcos2 ax dx = x>2 + sin12ax2>4a
Lx

2 sin ax dx = 52ax sin ax + 2 cos ax - a2x2 sin ax6>a3

Lx sin ax dx = 11>a221sin ax - ax cos ax2
L  sin2 ax dx = x>2 - sin12ax2>4a
L  cos ax dx = 11>a2 sin ax

L  sin ax dx = -11>a2 cos ax

Lx
2eax dx = eax1a2x2 - 2ax + 22>a3

Lxe
ax dx = eax1ax - 12>a2

Lx
n ln ax dx = 1xn+1>1n + 122 ln ax - xn+1>1n + 122

L1ln x2
n>x dx = 11>1n + 1221ln x2n+1

L1a
2 + x22-1 dx = 11>a2 tan-1 1x>a2

L  ln x dx = x ln x - x

Le
ax dx = eax>a

Lx
-1 dx = ln x

n = -1Lx
n dx = xn+1>1n + 12

Lu dv = uv - Lv du
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C. DEFINITE INTEGRALS

if n is an integer,

if

if

L
1

0
xa-111 - x2b-1 dx = B1a, b2 =

≠1a2≠1b2
≠1a + b2

a 7 0L
q

0

sin2 ax

x2 dx = ƒa ƒp>2

a 7 0L
q

0
a>1a2 + x22 dx = p>2

L
q

0
xne-a

2x2
dx = ≠11n + 12>22>12an+12

L
q

0
x2e-a

2x2
dx = 1p>4a3

L
q

0
xe-a

2x2
dx = 1>2a2

L
q

0
e-a

2x2
dx = 1p>2a

≠an +
1
2
b =

1 .3 .5 Á 12n - 12
2n

1p n = 1, 2, 3, Á

≠a1
2
b = 1p

n 7 0≠1n2 = 1n - 12!
L

q

0
tn-1e-1a+12t dt =

≠1n2
1a + 12n n 7 0, a 7 -1



A. FOURIER TRANSFORM DEFINITION

B. PROPERTIES

Linearity:

Time scaling:

Duality: If then 

Time shifting:

Frequency shifting:

Differentiation:

Integration:

Multiplication in time:

Convolution in time: f5g11t2 * g21t26 = G11f2G21f2
f5g11t2g21t26 = G11f2 * G21f2
fb L t-q

g1s2ds≤ = G1f2>1j2pf2 + 1G102>22d1f2
f5g¿1t26 = j2pfG1f2
f5g1t2ej2pf0t6 = G1f - f02
f5g1t - t026 = G1f2e-j2pft0

f5G1t26 = g1-f2f5g1t26 = G1f2,
f5g1at26 = G1f>a2> ƒa ƒ
f5ag11t2 + bg21t26 = aG11f2 + bG21f2

g1t2 = f -15G1f26 = L
q

-q
G1f2ej2pft df

G1f2 = f5g1t26 = L
q

-q
g1t2e-j2pft dt
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C. Transform Pairs 801

t

1

0 T
2T sin 2pf T/(2pf T )

�T

2W sin(2pWt)/2pWt f

1

0 W�W

T (sin(pf T ) /pf T )2t

1

0 T�T

C. TRANSFORM PAIRS

g(t) G(f)

1

1

u(t)
1
2
d1f2 + 1>1j2pf2
11>2j25d1f - f02 - d1f + f026sin12pf0t2
1
2
d1f - f02 +

1
2
d1f + f02cos12pf0t2

d1f - f02ej2pf0t

e-j2pft0d1t - t02
d1f2

d1t2
e-pf

2
e-pt

2

2a>1a2 + 12pf222e-a ƒt ƒ, a 7 0

1>1a + j2pf2e-atu1t2, a 7 0



A. BASIC DEFINITIONS

Let be an m row by n column matrix with element in the ith row and jth
column. A matrix is square if

The transpose of A is the n row by m column matrix which has ele-
ment in the jth row and ith column, and which is obtained by interchanging the rows
and columns of A. The transpose of the product of matrices is equal to the product of
the transposes in reverse order:

The identity matrix I is a square matrix whose diagonal elements equal 1 and off-diag-
onal elements equal zero. For any square matrix A:

The inverse of a square matrix A is a square matrix for which

We say that A is invertible if exists, and singular otherwise.

B. DIAGONALIZATION

A nonzero vector is an eigenvector of an matrix if it satisfies:

for some scalar is called an eigenvalue of A and e an eigenvector of A correspond-
ing to 

The eigenvalues of A are found by finding the roots of the polynomial equation:

An matrix A is said to be diagonalizable if there exists an invertible matrix P
such that a diagonal matrix, or equivalently AP = P D.P-1AP = D,
n * n

det1l I - A2 = 0.

l.
ll.

Ae = le

n * ne = 1e1 , e2 , Á , en2T

A-1

AA-1 = A-1A = I.

A-1

AI = IA = A.

1AB2T = BTAT and 1ABC2T = CTBTAT.

aij

AT = 3aij4T
m = n.

aijA = 3aij4

802
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C. Quadratic Forms 803

Theorem:

A is diagonalizable if and only if A has n linearly independent eigenvectors.
A square matrix P is orthogonal if or equivalently,
A set of vectors is said to be orthonormal if distinct vectors are orthogo-

nal, that is, for and for 

Theorem:

If the set of vectors are nonzero and orthogonal then they are also linearly inde-
pendent.

An matrix A is said to be orthogonally diagonalizable if there exists an orthogonal
matrix P such that a diagonal matrix, or equivalently 

An matrix A is symmetric if

Theorem:

A symmetric matrix A has only real eigenvalues.

Theorem:

The following conditions are equivalent:
a. A is orthogonally diagonalizable,
b. A has an orthonormal set of n eigenvectors,
c. A is a symmetric matrix.

C. QUADRATIC FORMS

The real symmetric matrix A and the column vector 
have the quadratic form given by:

A is nonnegative definite if for all x, and positive definite if for all
nonzero x.

Let be an matrix, then the kth principal submatrix of A is the 
matrix with element in the ith row and jth column.

Theorem:

A symmetric matrix A is positive definite (nonnegative definite) if and only if 

a. All eigenvalues are positive (nonnegative) and 
b. The determinant of all principal submatrices are positive (nonnegative).

If A is a positive definite matrix then is the equation of an ellipsoid with center 

at the origin. The kth semiaxis of the ellipsoid is given by that is, the eigenvectors deter-
mine the direction of the semiaxes and the eigenvalues determine the corresponding length.

ek/2lk ,
xTA-1x = 1

aijAk = 3aij4k * k
n * nA = 3aij4

xTAx 7 0xTAx Ú 0

xTAx = a
n

i=1
a
n

j=1
aijxixj .

x = 1x1 , x2 , Á , xn2Tn * 1n * n

A = AT.n * n
AP = P D.PTAP = D,

n * n

5e1 , e2 , Á , en6

i = 1, Á , n.ei
 Tei = 1i Z j,ei

 Tej = 0
5e1 , e2 , Á , en6

AAT = ATA = I.P-1 = PT,
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A

Almost-sure convergence, 381–382, 385
Amplitude modulation (AM):

bandpass signal, 602
quadrature amplitude modulation (QAM) 

method, 603–604
by random signals, 601–605

Aperiodic state, 667
ARMA random process, 595–596
Arrival rate, 714
Arrival theorem, 766–770

proof of, 769–770
Associative properties, 28
Autocorrelation function, 494–495
Autocovariance function, 494–495
Autoregressive moving average (ARMA) 

process, 595–596
Autoregressive processes, 595

random, 507
Average power, 522, 579
Axioms of probability, 21, 30–41, 79

continuous sample spaces, 37–41
discrete sample spaces, 35–37

B

Bandlimited random processes, 597–605
amplitude modulation by random 

signals, 601–605
sampling of, 597–601

Bandpass signal, 602
amplitude modulation (AM), 602

Bartlett’s smoothing procedure, 628
Batch means:

confidence intervals using, 775–776
method of, 775–776

Bayes estimation, 461–462
Bayes hypothesis testing, 455–460

binary communications, 457–458
MAP receiver for, 458–459

minimum cost hypothesis test, 457
server allocation, 459–460

Bayes’ rule, 52–53, 79

Bayesian decision methods, 455–462
Bayes hypothesis testing, 455–460
minimum cost theorem

proof of, 460–461
Bernoulli random variables, 102

coin toss, 117
estimation, 428

of p for, 421
Fisher information for, 424–425
mean of, 105
properties of, 115
variance of, 110

Bernoulli trials, 60
and binomial probabilities, 70
estimating p in, 461–462

Beta random variables, 165, 172–173
generating, 198

Bias, estimators, 416
Binary communication system, 50, 52
Binary random variable:

entropy of, 203–205
Binary transmission system, probabilities of 

input-output pairs in, 50
Binomial counting process, 493, 501–502

independent and stationary increments of, 504
joint pmf of, 505
Markov chains, 663
transient state, 666

Binomial probability law, 60–62
Binomial random variables, 103

Chernoff bound for, 375–377
coin toss, 118
defined, 117–118
mean of, 118–119
negative

properties of, 116
properties of, 115
redundant systems, 119
sampling distribution of, 414–415
three coin tosses and, 105
variance of, 119

Binomial theorem, 61–62
Birth-and-death process, 682–683
Borel fields, 30, 38, 75–77

Index

805
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Brownian motion, 517
Burke’s theorem, 754–758

proof of, using time reversibility, 757–758

C

Cauchy random variables, 165, 173
Causal filters, 615

estimation using, 614–617
Causal system, 588
Central limit theorem, 167fn, 369–378

Chernoff bound for binomial random 
variable, 375–377

Gaussian approximation for binomial 
probabilities, 373–375

proof of, 377–378
Certain event, 24
Chapman–Kolmogorov equations, 654, 677
Characteristic function, 184–187

for an exponentially distributed random variable, 185
for a geometric random variable, 185

Chebyshev inequality, 181–183
Chernoff bound, 183

for binomial random variable, 375–377
for Gaussian random variable, 187

Chi-square goodness-of-fit test, 465
Chi-square random variable, 170
Chi-square test, 463–468

for exponential random variable:
equal-length intervals (table), 467
equiprobable intervals (table), 468

for Poisson random variable (table), 468
Circuit theory, 4
Circuit theory models, 4
Classes of states, 660–662
Closed networks of queues, 763–766
Combinatorial formulas, 41, 44, 79
Communication over unreliable channels, 12–13
Communication system design, 9
Commutative properties, 28
Complement, of a set, 27
Complement operation, 27
Composite hypotheses, testing, 449–455
Compression of signals, 13
Computer simulation models, 3–4, 79
Conditional cdf’s, 152–155
Conditional expectation, 268–271, 336
Conditional pdf’s, 153–155, 307
Conditional pmf’s, 306
Conditional probability, 21, 47–53, 79, 261–268
Conditional probability mass function, 111–114

conditional expected value, 113–114
device lifetimes, 114

device lifetimes, 113
random clock, 112
residual waiting times, 112–113

Conditional variance of X given B:
defined, 114

Confidence intervals, 430–441
batch means method (example), 435
cases, 431–435
confidence level, 431
and hypothesis testing, 455
for the variance of a Gaussian random 

variable, 436–437
Consistent estimators, 418
Continuity of probability, 76–77
Continuous random variables, 146–149, 163–174

beta, 165, 172–173
calculating distributions using the discrete Fourier

transform, 398–400
Cauchy, 165, 173
exponential, 163–167
gamma, 164, 170–172
Gaussian, 164, 167–170
Laplacian, 165
Pareto, 165, 173–174

mean and variance of, 174
Rayleigh, 165
two, joint pdf of, 248–254
uniform, 163

Continuous sample spaces, 24, 37–41, 79
Continuous-time Gaussian random processes, 516
Continuous-time Markov chains, 673–686, 690–691

global balance equations, 680–683
birth-and-death process, 682–683

homogeneous transition probabilities, 673–674
limiting probabilities for, 683–686
mean state occupancy time, 675
Poisson process, 674, 678–679
queueing system, 678

M/M/1 single-server queueing system, 681–683
random telegraph signal, 674
simulation of, 698–700
state occupancy times, 675
steady state probabilities and, 680–683
transition rates and time-dependent state

probabilities, 676–679
Continuous-time random processes:

power spectral density, 578–583
random telegraph signal, 580
sinusoid with random phase, 580–581
sum of two processes, 582–583
white noise, 581–582

Continuous-time stochastic process, defined, 488
Continuous-time systems:

filtered white noise, 590
response to random signals, 587–593
transfer function, 588

Convergence:
almost-sure, 381–382, 385
Cauchy criterion, 384
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in distribution, 387
mean square convergence, 384
in probability, 384–385
sure, 381

Correlated Gaussian random variables, generation of,
631–632

Correlated vector random variables, generation of,
342–345

Correlation, 258
Correlation coefficient, 259, 494
Correlation matrix, 319
Cost accumulation rate, 390–392
Covariance, 258
Covariance matrix, 319

diagonalization of, 324–325
generating random vectors with, 342–344

Cramer-Rao inequality, 423–428
Fisher information, 423–424

for Bernoulli random variable, 424–425
for an exponential random variable, 425

lower bound for Bernoulli random variable, 426
proof of, 426–428
score function, 423–424
statement of, 425

Critical region, 442
Cross-correlation, 496
Cross-covariance, 497

matrix, 321
Cross-power spectral density, 579
Cumulative distribution function (cdf), 141–146

conditional, 152–155
defined, 141–142
limiting properties of, 147
proof of properties of, 146
three coin tosses, 142
uniform random variable in the unit interval, 143

Cyclostationary random processes, 525–529
pulse amplitude modulation, 526–527

with random phase shift, 528

D

Decision rule, 442
Decreasing sequence of events, 76
Delta function, 151–152
Demodulation of noisy signal, 604–605
DeMorgan’s Rules, 28
Deterministic models, 4
Diagonalization, of covariance matrix, 324–325
Difference, of sets, 27
Differential entropy, 206

of a Gaussian random variable, 207
of a uniform random variable, 206

Discrete Fourier transform (DFT):
calculating distributions using, 392–400
defined, 394

Discrete random variables, 99–104, 146
calculating distributions using the discrete Fourier

transform, 393–398
expected value and moments of, 104–111
generation of, 127–129

generation of Poisson random variable, 128
generation of tosses of a die, 128

pairs of, 236–241
pdf for, 151
probability mass function (pmf), 99–100
properties of, 115
uniform, mean of, 105–106

Discrete sample spaces, 24, 35–37, 79
Discrete-time birth-and-death process, 689–690
Discrete-time Markov chains, 650–660

binomial counting process, 653
Google PageRank, 657–658
homogeneous transition probabilities, 651
n-step transition probabilities, 653–654
simulation of, 696–698
state probabilities, 654–658
steady state probabilities, 658–660

Discrete-time random process, 495, 582–583
binomial counting and random walk processes,

501–507
cross-power spectral density, 583
iid random process, 498–500
independent increments and Markov properties of

random processes, 500–501
moving average process, 584
power spectral density, 583–585
signal plus noise, 584–585
white noise, 584

Discrete-time systems:
filtered white noise, 594
response to random signals, 593–597
transfer function, 593

discrete_rnd function, 128
Disjoint sets, 27
Distribution, convergence in, 387
Distribution to data, testing the fit of, 462–468
Distributive properties, 28

E

Eigenfunctions, 547
Eigenvalues, 547
80/20 rule, and the Lorenz curve, 126–127
Einstein, Albert, 578fn
Einstein-Wiener-Khinchin theorem, 578
Elementary events, 25

probability of, 35
Elements, 25
Embedded Markov chains, 675

simulation using, 776–779
Empty set, 26
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Engset formula, 789
Entropy, 202–212

of a binary random variable, 203–204
defined, 202
differential, 206
of a geometric random variable, 205
maximum

method of, 211–212
as a measure of information, 207–210
of a quantized continuous random variable, 206
of a random variable, 202–207
reduction of, through partial information, 204
relative, 204

Equally likely outcomes, 35
Ergodic Markov chain, 668–670
Ergodic theorem, 540
Ergodicity:

and exponential correlation, 543
of self-similar process and long-range 

dependence, 543–544
Error control by retransmission, 64
Error control system, 12
Error correction coding, 62–63
Error detection and correction methods, 13
Estimation:

Bernoulli random variable, 421
Cramer-Rao inequality, 423–428
maximum likelihood, 419–430
of mean and variance for Gaussian random 

variable, 422–423
parameter, 415–419
Poisson random variable, 421–422
and sample mean, 416–417
using causal filters, 614–617
using the entire realization of the observed 

process, 613–614
Estimation error, 334
Estimation of random variables, 332–342

MAP and ML estimators, 332–334
minimum MSE estimator, 336–338
minimum MSE linear estimator, 334–335
using a vector of observations, 338–342

Estimators:
bias, 416
consistent, 418
for the exponential random variable, 417–418
finding, 419
properties of, 416–419
sample mean, consistency of, 418
sample variance, consistency of, 418–419
strongly consistent, 418
unbiased, 417

Event classes, 29–30, 70–75
Lisa and Homer’s urn experiment, 72–73

Events:

certain, 24
elementary, 25
impossible, 24
null, 24
product form, 304

Expected value(s), 11
betting game, 106
discrete random variables, 104–111
of the indicator function, 159
of a random variable, 155–163
of a sinusoid with random phase, 158
of Y = g(X), 157–159

Exponential failure law, 190–191
Exponential random variables, 163–167

estimators for, 417–418
example, 150
Fisher information for, 425

F

Failure rate function, 189–192
Fast Fourier transform (FFT):

algorithms, 396–397
and random processes, 628–630

Filtered noisy signal, 493
Filtered Poisson impulse train, 512–513
Filtered white noise:

continuous-time systems, 590
discrete-time systems, 594

Filtering problem, 606
Filtering techniques, random processes, 628–630
Finite sample space, 30
Finite-source queueing systems, 734–738

arriving customer’s distribution, 737–738
Web server system, 736–737

Finite-state continuous-time Markov chains, 694
stationary pmf for, 693

Finite-state discrete-time Markov chain, 693–694
Finite-state Markov chains, 667
First-order autoregressive (AR) process, 594–595
Fisher information, 423–424

for Bernoulli random variable, 424–425
Fourier series, 544–546

and Karhunen-Loeve expansion, 544–550
Fourier transform, 184–185

G

Gamma random variables, 164, 170–172
generating, 199–200, 201
implementing rejection method for, 200
Laplace transform of, 189
pdf of, 170

Gaussian random processes, 515–518
continuous-time, 516
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iid discrete-time, 515–516
moving average process, 524–525

Gaussian random variables, 164, 167–170
cdf for, 167
Chernoff bound for, 187
and communications systems, 168
conditional pdf of, 327–328
confidence intervals:

summary of, 437
for the variance of, 436–437

differential entropy of, 207
estimation of mean and variance for, 422–423
joint characteristic function of, 331–332
jointly, 278–284
linear transformation of, 328–330
one-sided test for mean of, 449–450

as UMP, 451
pdf for, 167
sampling distribution for the sample mean 

of, 413–414
sampling distributions for, 437–441
testing the variance of, 454–455
two, testing the means of, 446–447
two-sided test for mean of:

known variance, 452–453
unknown variance, 453–454

variance of, 160
Geometric probability law, 63–64
Geometric random variables, 103, 119–120

defined, 119
entropy of, 205
mean of, 106
properties of, 115
variance of, 110–111

Global balance equations, 680–683
Google PageRank, 657–658, 692–693

algorithm, 671

H

Homogeneous transition probabilities, 651, 673–674
Hurst parameter, 544
Hyperexponential random variable, 202
Hypothesis testing, 441–455

alternative hypothesis, 444
Bayes hypothesis testing, 455–460
composite hypotheses, testing, 449–455
composite hypothesis, 444
confidence intervals and, 455
critical region, 442
decision rule, 442
fair coin, testing, 442–443
improved battery, testing, 443
likelihood ratio function, 446
maximum likelihood test, 448

Neyman-Pearson, 446–448
null hypothesis, 441–442
p-value of the test statistic, 443
rejection region, 435, 442, 445–446
significance level, 442
significance testing, 441–443

objective of, 441–442
simple hypotheses:

defined, 444
testing, 444–449

summary of, 455
testing the means of two Gaussian random 

variables, 446–447

I

Ideal filters, 591–592
iid Bernoulli random variables, 383, 492–493
iid discrete-time Gaussian random processes, 515–516
iid Gaussian random variables, 493
iid Gaussian sequence, joint pdf of, 505
iid interarrivals, arrival rate for, 389
iid random process, 498–500

autocorrelation function of, 498
autocovariance of, 498
Bernoulli random process, 499
mean of, 498
random step process, 499–500

Impossible event, 24
Impulse response, 588
Increasing sequence of events, 76
Independence of events, 53–59
Independent events, 79

examples of, 55
Independent experiments, 57
Independent Gaussian random variables:

generating, 284–286
radius and angle of, 275–276
sum of, 362

Independent, identically distributed (iid) random
variables, 361

iid Bernoulli random variables, 383
pdf of, 365
relative frequency, 365–366
sum of, 362–363

Independent increments, 502–504
Independent Poisson arrivals, merging of, 310–311
Independent random processes, 496
Independent random variables, 254–257

covariance of, 259
product of functions of, 258

Independent replications, simulation through, 772–773
Indexed family of random variables, See Random

processes
Indicator function, 102
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Infinite smoothing, 613–614
Initial probability assignment, 34, 79

satisfying axioms of probability, 41
Innovations, 620
Interarrival (cycle) times, 387–392
Internet scale systems, 15–16
Intersection, 27
Irreducible class, 663, 667

J

Jackson’s theorem, 758–762
proof of, 760–762
statement of, 759

Joint characteristic function, 322–324
of Gaussian random variables, 331–332

Joint cumulative distribution function, 243, 305
Joint distribution functions, 305–309

vector random variables, 305–309
joint cumulative distribution function, 305
joint probability density function, 307
joint probability mass function, 305–306

Joint moments, 258
Joint probability density function, 307
Joint probability mass function, 236, 305–306
Jointly Gaussian random variables:

generating vectors of, 344–345
linear transformations of, 277–278
MAP and ML estimators, 333–334
minimum mean square error, 338
pairs of, 278–284

estimation of signal in noise, 282–283
rotation of, 283–284
sum of, 330

Jointly Gaussian random vectors, 325–328
Jointly stationary processes, 519
Jointly wide-sense stationary processes, 521

K

Kalman filter, 617–622
algorithm, 621

Karhunen-Loeve expansion, 325, 546–550, 607fn
defined, 546
and Fourier series, 544–550
of Weiner process, 548–549, 550

Khinchin, A. Ya., 578fn
Kirchhoff’s voltage and current laws, 4
Kronecker delta function, 545, 548

L

Langevin equation, 538
Laplace transform, 188–189
Laplacian random variables, 165

example, 150

Laws of large numbers:
and sample mean, 365–366
strong law, 368–369
weak law, 367

Likelihood function, 420
Likelihood ratio function, 446, 457
Lindley’s recursion, 778–779
Linear combinations of deterministic functions,

generating, 553–554
Linear prediction problem, 610–611
Linear systems:

optimum, 605–617
response to random signals, 587–593

continuous-time systems, 587–593
discrete-time systems, 593–597

Linear transformations:
of Gaussian random variables, 330
of jointly Gaussian random variables, 277–278
pdf of, 276–278
of random vectors, 320–322

Little’s formula, 715–718
mean number in queue, 718
server utilization, 718

Long-term arrival rates, 387–392
Long-term averages, 359–410

time, 390–392
Long-term proportion of “up”time, 390–391
Lorenz curve, 126–127

M

m-Erlang random variables, 170–172, 202
M/G/1 analysis, embedded Markov 

chains, 745–750
M/G/1 queueing systems, 738–745

delay and waiting time distribution in, 752–754
mean delay, 740–741

with priority service discipline, 742–745
for type k customers, 743

mean waiting time, 741
for type 1 customers, 742
for type 2 customers, 743

mean waiting time for type 1 customers, 742
mean waiting time for type 2 customers, 743
number of customers in, 747–750
Pollaczek–Khinchin mean value formula, 741
Pollaczek–Khinchin transform equation, 750, 754
residual service time, 739–740

M/H2/1 queueing system, 750–751, 753
M/M/ queueing system, 733–734

transition rate diagram for, 733
M/M/1 queue, 718–727

arriving customer’s distribution, 723–724
carried load, 726
delay distribution, 723–724
distribution of number in the system, 719–722

q
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interarrival times, 718
offered load, 726
system with finite capacity, 724–727
traffic intensity, 726

M/M/1 simulation, regenerative method for, 781
M/M/c queueing system, 727–732

distribution of number in, 727–731
waiting time distribution for, 731–732

M/M/c/c queueing system, 732–733
Erlang B formula, 733
transition rate diagram for, 732

MAP estimator, 332–334
compared to ML estimator, 333
for X given the observation Y, 333

Marginal cdf’s, 305
Marginal cumulative distribution functions, 243
Marginal pdf’s, 307
Marginal pmf’s, 306
Marginal probability mass functions, 241–242
Markov chains, 79, 647–712

age of a device, 670
binomial counting process, 661
cartridge inventory (example), 693–694
classes of states, 660–662
continuous-time, 674–686
defined, 66, 650
discrete-time, 650–660, 675

n-step transition probabilities, 653–654
state probabilities, 654–658
steady state probabilities, 658–660

embedded, 675
finite-state, 667
Google PageRank algorithm, 671
irreducible class, 661, 665
limiting probabilities, 667–673
with multiple irreducible classes, 672–673
numerical techniques for, 692–700
random walk, 660
recurrence properties, 660–665
simulation of, 695–700

continuous-time Markov chains, 698–700
discrete-time Markov chains, 696–698

states of, 661
stationary probabilities of, 692–693
structures for, 666
time-dependent probabilities of, 693–694
time-reversed, 686–692
trellis diagram for, 65
two-state, for speech activity, 651–653

Markov inequality, 181, 183
Markov processes, 647–648

defined, 647
moving average, 648–649
Poisson process as, 649
random telegraph signal, 649
state of, 648

sum processes, 648
Wiener process as, 650

Markov property, 648
Mathematical models:

defined, 2
predictions of, 3
and system design/modification decisions, 2
as tools in analysis/design, 2–4

Matlab®, 67, 70, 129, 200, 285, 393
Maximum a posteriori (MAP) 

estimator, 332–334
Maximum likelihood estimation, 419–430

defined, 419
likelihood function, 420
log likelihood function, 420
maximum likelihood method, 420
Poisson distributed typos (example), 419

Maximum likelihood (ML) estimators, 333–334
asymptotic properties of, 428–430

Mean:
of random variables, 155–163

discrete, 104–111
exponential, 156–157
Gaussian, 156
uniform, 156

of shot noise process, 514
Mean ergodic:

defined, 542
Mean function, 494
Mean recurrence time, 668
Mean square continuity, 529–532
Mean square convergence, 384
Mean square derivatives, 532–535
Mean square error (MSE), 338
Mean square estimation error, 417
Mean square integrals, 535–537
Mean square periodic, 523
Mean state occupancy time, 677
Mean time to failure (MTTF), 190
Mean value analysis, 766–769

arrival theorem, 767–770
proof of, 769–770

Mean vector, 318–319
Memoryless property, 166–167
Mersenne Twister, 67
Message transmissions, 102–103
Minimum mean square error (MMSE) linear 

estimator, 334
Minimum MSE estimator, 336–338
Minimum MSE linear estimator, 334–335

compared to linear MSE estimator, 336–337
Mixed type, random variables of, 147
ML estimator, 333–334

compared to MAP estimator, 333
for X given the observation Y, 333

Modeling process, 3
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Models:
defined, 2
usefulness of, 2–3

Modulator, 601
Moment theorem, 185–186
Moving average process, 507, 595
Multinomial probability law, 63
Multiple realizations, 771
Multiple server systems, 727

M/M/ queueing system, 733–734
M/M/c/c queueing system, 732–733
M/M/c queueing system, 727–732

Mutually exclusive sets, 27

N

n factorial, 44
Negative recurrent state, 668
Neyman-Pearson hypothesis testing, 446–448
Nonindependent events, 79

examples of, 55
Nonindependent Gaussian random variables, sum of, 272
Normal random variables, 411
Null event, 24
Numerical techniques:

for Markov chains, 692–700
for processing random signals, 628–633

fast Fourier transform (FFT) methods, 628–630
filtering techniques, 630–631

Nyquist sampling rate, 597–598, 600

O

Octave, 67, 70, 129, 200, 285, 393
Ohm’s law, 4
One-dimensional random walk, 502–504

autocovariance of, 505
independent and stationary increments of, 504

Optimum filter, defined, 606
Optimum linear systems, 605–617

estimation:
using causal filters, 614–617
using the entire realization of the observed

process, 613–614
orthogonality condition, 606–610
prediction, 610–612

Optimum minimum mean square estimator, 338
diversity receiver, 340–341
second-order prediction of speech, 341–342

Ornstein-Uhlenbeck process, 538–539, 591
Orthogonal random processes, 496
Orthogonal random variables, 258
Orthogonality condition, 335, 339, 606–610
Outcome, experiments, 4–5

defined, 22

q

P

Packet voice transmission system, 9–11, 391
Parameter estimation, 415–419
Pareto distribution, 173
Pareto random variables, 165, 173–174

mean and variance of, 174
Partition, 73
Periodic state, 665
Periodogram estimate, 585–587

defined, 578
smoothing of, 626–628
variance of, 623–626

Point estimator, 415
Points, 25
Poisson distributed types, 415–416
Poisson process, 531

defined, 508
as Markov processes, 651

Poisson random variables, 120–124
arrivals at a packet multiplexer, 122
defined, 120
errors in optical transmission, 123
estimation of p for, 421–422
mean/variance of, 122
pmf for, 120, 123
for a probability generating function, 188
properties of, 116
queries at a call center, 122

poisson_rnd function, 129
Pollaczek–Khinchin mean value formula, 741
Pollaczek–Khinchin transform 

equation, 750, 754
Population, defined, 412
Positive recurrent state, 668
Power set of S, 30
Power spectral density, 577–587

continuous-time random processes, 578–583
cross-power spectral density, 579
defined, 578
discrete-time random processes, 583–585
estimating, 622–628
periodogram estimate:

smoothing of, 626–628
variance of, 623–626

as time average, 585–587
Prediction problem, 606

for long-range and short-range dependent 
processes, 611–612

Probability:
a posteriori, 52
axiomatic approach to a theory of, 8, 411
axioms of, 21, 30–41, 79

continuous sample spaces, 37–41
discrete sample spaces, 35–37
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convergence in, 384–385
of an outcome, 5
of sequences of events, 75–78
using counting methods to compute, 41–47

Probability density function of X (pdf), 148–155
conditional, 152–155
defined, 148
of discrete random variables, 150–151
of exponential random variables, 150
of Laplacian random variables, 150
of uniform random variables, 149–150

Probability generating function, 187–189
for a Poisson random variable, 188

Probability law, 79
for a random experiment, 30–31

Probability mass function (pmf), discrete random
variables, 99–100

Probability models, 1–20, 4, 79
building, 8–9
defined, 1

Probability theory, 13–14, 411
basic concepts of, 21–79

Product form, 236
Product-form events, 304
Pseudo-random number generators, 67–69, 79
Pulse amplitude modulation, 526–527, 531–532

with random phase shift, 528

Q

Quadrature amplitude modulation (QAM) 
method, 603–604

Quality control, 52–53
Quantized continuous random variables, entropy of, 206
Queue discipline, 715
Queueing theory, 713–796

arrival theorem, 766–770
proof of, 769–770

Burke’s theorem, 754–758
closed networks of queues, 763–766

theorem, 763–764
finite-source queueing systems, 734–738

arriving customer’s distribution, 737–738
Web server system, 736–737

Jackson’s theorem, 758–762
proof of, 760–762
statement of, 759

Little’s formula, 715–718
mean number in queue, 718
server utilization, 718

M/G/1 analysis, embedded Markov chains, 745–750
M/G/1 queueing systems, 738–745

delay and waiting time distribution in, 752–754
mean delay for type k customers, 743
mean delay in, 740–741

mean delay with priority service discipline, 743–745
mean waiting time, 741
mean waiting time for type 1 customers, 742
mean waiting time for type 2 customers, 743
number of customers in, 747–750
Pollaczek–Khinchin mean value formula, 741
Pollaczek–Khinchin transform equation, 750, 754
residual service time, 739–740

M/H2/1 queueing system, 750–751, 753
M/M/1 queue, 718–727

arriving customer’s distribution, 723–724
delay distribution, 723–724
distribution of number in the system, 719–722
interarrival times, 718
system with finite capacity, 724–727

mean value analysis, 766–769
multiple server systems, 727

M/M/ queueing system, 733–734
M/M/c/c queueing system, 732–733
M/M/c queueing system, 727–732

open queueing networks, 758–760, 763
queueing system:

elements of, 714–715
models, 715
number of customers in, 716–717
simulation and data analysis of, 771–782

R

Random amplitude, sinusoid with, 495
Random experiments, 4

events, 24–25
probability law for, 30–31
sample space, 22–24
sequential, 21
simulation of, 70
specifying, 21–30

Random input, response of a linear system to, 537–539
Random number generators, 67–70, 101

generation of numbers from the unit interval, 68–69
pseudo-, 67–69
simulation of random experiments, 70

Random phase, sinusoid with, 495–496
Random processes, 487–576

continuity, 529–532
defined, 488–491
derivatives, 532–535
discrete-time processes, 498–507
filtered Poisson impulse train, 512–513
Gaussian, 515–518
generation of, 550–554, 631–633
independent increments and Markov properties 

of, 500–501
integrals, 535–537
mean of shot noise process, 514

q
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mean square continuity, 529–532
mean square derivatives, 532–535
mean square integrals, 535–537
multiple, 496–497
Poisson process, 507–511
random binary sequence, 489
random sinusoids, 489
random telegraph signal (process), 511–512
specifying, 491–497
stationary, 518–528
time averages of, 540–544
time samples, joint distributions of, 492–493

Random sample, 412, 415
Random signals:

amplitude modulation by, 601–605
analysis/processing of, 577–646
bandlimited random processes, 597–605

amplitude modulation by random signals, 601–605
sampling of, 597–601

discrete-time systems, 593–597
Kalman filter, 617–622

algorithm, 621
numerical techniques for processing, 628–633

fast Fourier transform (FFT) methods, 628–630
filtering techniques, 630–631

optimum linear systems, 605–617
estimation using causal filters, 614–617
estimation using the entire realization of the

observed process, 613–614
orthogonality condition, 606–610
prediction, 610–612

power spectral density, 577–587
continuous-time random processes, 578–583
defined, 578
discrete-time random processes, 583–585
estimating, 622–628
as time average, 585–587

response of linear systems to, 587–593
Random telegraph signal (process), 511–512
Random variables:

Bernoulli, 102
coin toss, 117
estimation, 421, 428
Fisher information for, 424–425
mean of, 105
properties of, 115
variance of, 110

beta, 165, 172–173
generating, 198

betting games, 101
binomial, 103

Chernoff bound for, 375–377
coin toss, 118
coin tosses and, 101
defined, 117–118

mean of, 118–119
negative, properties of, 116
properties of, 115
redundant systems, 119
sampling distribution of, 414–415
three coin tosses and, 105
variance of, 119

Cauchy, 165, 173
computer methods for generating, 194–202

rejection method, 196–201
transformation method, 195–196

continuous, 146–149, 163–174
beta, 165, 172–173
calculating distributions using the discrete Fourier

transform, 398–400
Cauchy, 165, 173
exponential, 163–167
gamma, 164, 170–172
Gaussian, 164, 167–170
Laplacian, 165
Pareto, 165, 173–174
Rayleigh, 165
two, joint pdf of, 248–254
uniform, 163

convergence of sequences of, 378–387
correlated vector random variables, generating,

342–345
cumulative distribution function (cdf), 141–146
defined, 96
with differences in type, 247–248

communication channel with discrete input and
continuous output, 247–248

discrete, 99–104, 146
calculating distributions using the discrete Fourier

transform, 393–398
expected value and moments of, 104–111
generation of, 127–129
pairs of, 236–241
pdf for, 151
probability mass function (pmf), 99–100
properties of, 115
uniform, mean of, 105–106

discrete random variables, pairs of, 236–241
estimation of, 332–342
expected value, 155–163

of functions of, 107–109
exponential, 163–167

estimators for, 417–418
example, 150
Fisher information for, 425

formal definition of, 99, 141
functions of, 174–181
gamma, 164, 170–172, 425

generating, 199–200, 201
implementing rejection method for, 200
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Laplace transform of, 189
pdf of, 170

Gaussian, 167–170
cdf for, 167
Chernoff bound for, 187
and communications systems, 168
conditional pdf of, 327–328
confidence intervals, 436–437
differential entropy of, 207
estimation of mean and variance for, 422–423
joint characteristic function of, 331–332
jointly, 278–284
linear transformation of, 328–330
one-sided test for mean of, 449–450, 451
pdf for, 167
sampling distribution for the sample mean 

of, 413–414
sampling distributions for, 437–441
testing the variance of, 454–455
two-sided test for mean of, 452–454
two, testing the means of, 446–447
variance of, 160

Gaussian random variables, 164
generation of functions of, 201–202
generation of mixtures of, 202

m-Erlang random variable, 202
geometric, 103, 119–120

defined, 119
entropy of, 205
mean of, 106
properties of, 115
variance of, 110–111

hyperexponential, 202
iid Bernoulli, 383, 492–493
iid discrete-time Gaussian, 515–516
iid Gaussian, 493
independent, 254–257

covariance of, 259
product of functions of, 258

independent, identically distributed (iid), 361
joint cdf of x and y, 242–247
jointly Gaussian:

generating vectors of, 344–345
linear transformations of, 277–278
MAP and ML estimators, 333–334
minimum mean square error, 338
pairs of, 278–284
rotation of, 283–284
sum of, 330

Laplacian, 165
example, 150

m-Erlang, 170–172, 202
marginal probability mass functions, 241–242
maximum/minimum of, 310
mean of, 155–163

of mixed type, 147
notion of, 96–99
nth moment of, 161
orthogonal, 258
pairs of, 233–302
Pareto, 165, 173–174

mean and variance of, 174
Poisson, 120–124

arrivals at a packet multiplexer, 122
defined, 120
errors in optical transmission, 123
estimation of p for, 421–422
mean/variance of, 122
pmf for, 120, 123
for a probability generating function, 188
properties of, 116
queries at a call center (example), 122

square-law device, 107–108
St. Petersburg paradox, 107
standard deviation of, 109
sums of, 257–258, 359–410

mean and variance of, 360–361
pdf of, 361–363
random number of variables, 364–365

transformations of, 274–275
two, 233–236

expected value of a function of, 257–258
functions of, 271–278
joint moments and expected values of a function

of, 257–261
sum of, 271–272

types of, 146–147
uncorrelated, 260–261
uniform, 101, 124–125, 163–164

differential entropy of, 206
example, 149–150
properties of, 116
in unit interval, 124–125, 143
variance of, 160

variance of, 109–111, 160–163
Gaussian, 160
three coin tosses, 110
uniform, 160

voice packet multiplexer, 108–109
Zipf, 125–127

80/20 rule and the Lorenz curve, 126–127
properties of, 116
rare events and long tails, 126

Random vectors:
linear transformations of, 320–322
transformations of, 311–312

Random walk:
autocovariance of, 506
independent and stationary increments of, 504
Markov chains, 664
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Rayleigh continuous random variables, 165
Realization, 488
Recurrence properties, 662–667
Recurrent state, 667–669

random walk, 668
Redundant systems, reliability of, 311
Regression curve, 336
Rejection method, 196–201

implementing for gamma random variables, 200
Rejection region, 442, 445–446
Relative complement, of sets, 27
Relative entropy, 204
Relative frequency, 5–6, 365–366, 412

properties of, 7
Reliability, 13

defined, 189
of redundant systems, 311

Reliability calculations, 189–194
exponential failure law, 190–191
failure rate function, 189–192
mean time to failure (MTTF), 190
system reliability, 192–194
Weibull failure law, 192

Renewal counting process, 387
Repair cycles, 389
Replication through regenerative cycles, 780–782
Residual lifetime, 391–392
Residual service time, 739–740
Resource-sharing systems, 14–15

S

Sample function, 488
Sample mean, 10, 365–366, 412

and estimation, 416–417
mean and variance of, 413

Sample mean estimators, consistency of, 418
Sample path, 488
Sample point, 22
Sample space, 4, 22, 79

continuous, 24, 37–41, 79
discrete, 24, 35–37, 79

Sample variance, 416–417, 437
Sample variance estimators, consistency of, 418–419
Sampling:

permutations of n distinct objects, 43–47
sampling with replacement/with ordering, 47
sampling without replacement/without 

ordering, 44–46
using counting methods to compute:

sampling with replacement/with ordering, 42
sampling without replacement/without 

ordering, 42–43
Sampling distribution:

of binomial random variable, 414–415

defined, 412
for Gaussian random variables, 437–441
for the sample mean:

large n, 414
of Gaussian random variables, 413–414

Scattergram, 259
Scattergram plot, 236
Second moment of X, 109
Sequence of random variables, 378–387
Sequences of events, probability of, 75–78
Sequential experiments, 59–66

binomial probability law, 60–62
geometric probability law, 63–64
independent experiments, sequences of, 59
multinomial probability law, 63
sequences of dependent experiments, 64–66

Sequential random experiments, 21
Service discipline, 717
Service time, 716
Set operations/set relations, 26
Set theory, 21

review of, 25–29
Shot noise process, 501
Signal plus noise, 497

autoregressive, filtering of, 609–610
filtering of, 609

Signal-to-noise ratio (SNR), defined, 283
Significance level, 442
Significance testing, 441–443

objective of, 441–442
Simple hypotheses:

defined, 444
radar detection problem, 444–445
testing, 444–449
Type I and Type II error probabilities, using sample

size to select, 445
Simulation:

of queueing systems, 771–782
approaches to, 771–772

regenerative method for, 780
replication through regenerative cycles, 780–782
through independent replications, 772–773
time-sampled process, 773–776
using embedded Markov chains, 776–779

Simulation based Markov chains, 776–779
Single realization, 771, 774
Smoothing, 606

infinite, 613–614
of periodogram estimate, 626–628

Spectral factorization, defined, 615fn
Square-law device, 107–108
St. Petersburg paradox, 107
Stable system, 594fn
Standard deviation, of a random variable, 109, 160
Standby redundancy, 272–273
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State, of Markov processes, 648
State occupancy times, 675
State probabilities, 654–658
State transition diagram, two-state process 

with, 659–660
Stationary probabilities, of Markov chains, 692–693
Stationary random processes, 518–528

cyclostationary, 525–529
iid random process, 519–520
jointly stationary processes, 519
random telegraph signal, 520–521
stationarity and transience, 518–519
wide-sense, 521–524

Gaussian random processes, 524–525
Stationary state pmf, of Markov chains, 659, 680
Statistical inferences, 412
Statistical regularity, 5–6
Statistics, 411–486

defined, 411
origin of, 411–412
samples, 411–415
sampling distributions, 411–415

Steady state probabilities, 658–660
Stirling’s formula, 44
Stochastic matrix, 694
Stochastic processes, See Random processes
Strong law of large numbers, 368–369
Strongly consistent estimators, 418
Subset, 25, 79
Sum processes, 501–507, 648

binomial counting process, 501–502
defined, 501
one-dimensional random walk, 502–504

Sum random processes, generating, 550–553
Sure convergence, 381
System reliability, 58–59
System saturation point, 737

T

Theorem on total probability, 50
Time averages, of random processes, 540–544
Time-dependent probabilities of Markov chains,

693–694
cartridge inventory, 695

Time-invariant systems, 588
Time-reversed Markov chains, 686–692

continuous-time Markov chains, 690–691
discrete-time birth-and-death process, 689–690

Time-reversed process, 687
Time-sampled process simulation, 773–776

method of batch means, 775
transient of M/M/1 queue using, 773

Time samples, joint distributions of, 492–493
Total delay, 715

Total probability, theorem on, 50
Transfer function:

continuous-time systems, 588
discrete-time systems, 593

Transform methods, 184–189
characteristic function, 184–187
Laplace transform, 188–189
probability generating function, 187–189

Transformation method, 195–196
Transformations:

pdf of, 312–317
of uncorrelated random vector, 321
to uncorrelated random vector, 321–322

Transient state, 663
binomial counting process, 664
random walk, 664

Transition pdf, 501
Transition pmf, 501
Translated unit step function, 151
Transmission errors, 103
Tree diagram, 49

U

Unbiased estimators, 366, 417
Uncorrelated jointly Gaussian random variables,

independence of, 327
Uncorrelated random processes, 497
Uncorrelated random variables, 260–261
Uncorrelated random vector:

transformation of, 321
transformation to, 321–322

Uniform random variables, 101, 124–125, 163–164
differential entropy of, 206
example, 149–150
properties of, 116
in unit interval, 124–125
in the unit interval, 143
variance of, 160

Uniformly most powerful (UMP) test, 451
Union, 27
Unit-sample response, 593
Unit step function, 151
Universal set, 25

V

Variance:
analog-to-digital conversion, 161–163
of random variables, 109–111, 160–163

Gaussian, 160
three coin tosses, 110
uniform, 160

Variance function, 494
Vector random variables, 303–358
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arrivals at a packet switch, 304, 306–307
audio signal samples, 304
covariance matrix, 319
defined, 303
events, 304–305
expected values of, 318–325
functions of, 309–317
independence, 309
joint distribution functions, 305–309

joint cumulative distribution function, 305
joint probability density function, 307
joint probability mass function, 305–306

joint Poisson counts, 304
jointly continuous random variables, 307
mean vector, 318–319
multiplicative sequences, 308–309
probabilities, 304–305

Voice packet multiplexer, 108–109

W

Waiting time, 715
Weak law of large numbers, 367
Web server systems, 14–15

configuration of, 15
simple model for, 14

Weibull failure law, 192
White Gaussian noise:

defined, 535
generation of, 632–633

integral of, 537
and Wiener random process, 534–535

White Gaussian noise process, 550
Wide-sense stationary Gaussian random 

processes, 524–525
Wide-sense stationary random processes, 521–524
Wiener filter, 616–617
Wiener-Hopf equations, 614
Wiener-Khinchin theorem, 578fn
Wiener, Norbert, 578fn
Wiener process, 516–517, 531

as Markov processes, 652
sample functions of, 517

Wiener random process, 517
and white Gaussian noise, 534–535

WSS random process:
sampled, digital filtering of, 600
sampling, 599

Y

Yule-Walker equations, 611

Z

Zipf, George, 125
Zipf random variables, 125–127

80/20 rule and the Lorenz curve, 126–127
properties of, 116
rare events and long tails, 126
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